
92 CommuNiCatioNS of the aCm | MAy 2013 | VOl. 56 | nO. 5

an eFFeCtiVe approaCh to building flex-
ible software systems has been to make
them extensible through embedded
scripting languages. Languages like
TCL, Python, and Lua have allowed
programmers to orchestrate and cus-
tomize the behavior of many software
systems—examples include games,
which are mostly written in C++ but
often have AI for characters and other
gameplay mechanics implemented in
Lua, and high-performance comput-
ing applications written with Python
code coordinating the execution of
C++ or Fortran library code.

Most embedded scripting lan-
guages are interpreted, and thus are
not suitable for the implementation
of performance-critical inner loops.
Furthermore, the runtime overhead
of passing through the interface be-
tween the core system and the em-
bedded language is too much to ac-
cept in many performance-focused
domains, especially when frequent
transitions are needed. Thus, most
performance-oriented systems have
not offered the option of program-
mability in the heart of their perfor-
mance-critical parts.

However, in graphics, a program-
mable high-performance rasteriza-
tion pipeline has been at the heart
of interactive rendering for the last
decade. Programmers of modern
graphics processing units (GPUs)
provide code for the pipeline’s inner
loops, writing “shaders” in C-based
languages like HLSL or GLSL. The
shader programming model is data-
parallel; this model provides abun-
dant parallelism, which maps well
to the underlying SIMD hardware ar-
chitecture. Although programmable
GPUs have now been used in many
domains beyond graphics for high-
performance computation, it has
been an open question whether it is
possible to build GPU-targeted high-
performance software systems that
are themselves programmable.

The following paper by Parker et al.
shows how to achieve both program-
mability and high performance in such
a system. The domain of their system,
OptiX, is interactive ray tracing for
image synthesis. Ray tracing is a very
flexible approach to rendering, and
can simulate many important lighting
effects more effectively than rasteriza-
tion, but its use in interactive graphics
has until recently been limited—prior
to OptiX, users had the choice of high-
performance ray-tracing systems that
were insufficiently flexible, or highly
flexible ray-tracing systems that had
insufficient performance.

The authors have developed an
elegant expression of the classic ray-
tracing algorithm as a programmable
data-flow graph assembled from user-
supplied code at each stage. OptiX
supplies highly optimized implemen-
tations of core geometric and parallel
work scheduling algorithms that run
between stages. Just like the GPU
rasterization pipeline, the program-
mer has full control of the system’s
behavior at key points of programma-
bility without needing to worry about
the gritty details of high-performance
GPU programming. OptiX uses the
CUDA language for the user-supplied
kernels; CUDA provides a data-parallel
programming model that runs with
high efficiency on GPUs.

OptiX achieves programmability with-
out sacrificing performance by eliminat-
ing the barrier between the core OptiX
system code and the code provided by
the user. It applies a specializing JIT
compiler to both collections of code,
allowing for not just inlining across the
boundary between the two parts of the
system but also for constant propaga-
tion and dead code elimination, thus
generating a specialized version of
the system. The core OptiX system can
thus provide functionality that may not
be needed in the end; the code for such
functionality is removed when the
system is compiled together.

This system implementation ap-
proach allows users of OptiX to
implement, for example, custom
representations of the 3D scene ge-
ometry as well as custom algorithms
to simulate lighting and reflection—
both key areas for customization in
ray tracing. An indication of the au-
thors’ success in designing the right
decomposition of the problem is the
wide variety of applications of ray
tracing—spanning not just render-
ing, but even audio simulation and
collision detection—that have been
implemented with OptiX. The result-
ing systems are close enough to peak
efficiency that OptiX has quickly be-
come the standard foundation for
most GPU ray tracing.

One of the unexpected successes
of the introduction of the program-
mable rasterization pipeline on GPUs
has been the creativity program-
mers have shown in using the GPU
rasterization pipeline in ways never
imagined by its original designers.
By putting both flexible and high-per-
formance ray tracing in the toolbox of
many more developers than before,
it seems quite likely that OptiX will
spark innovation in ways that are im-
possible to predict today.

This paper is a must-read for any-
one who cares about writing exten-
sible software systems that are also
high-performance software systems.
Although the target hardware archi-
tecture for this work is GPUs, the un-
derlying ideas are equally applicable
to high-performance software systems
on CPUs. Today, with the availability
of high-quality compiler toolkits like
LLVM, the barrier to entry for imple-
menting all sorts of systems in this
manner is now quite low, while the
potential advantages are significant.

Matt Pharr (matt.pharr@gmail.com) is a software
engineer in the google [x] group at google, Inc.,
mountain view, ca.

© 2013 acm 0001-0782/13/05

technical Perspective
the Ray-tracing
engine that Could
By Matt Pharr

research highlights

Doi:10.1145/2447976.2447996

