
Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019 http://jcgt.org

Efficient Generation of Points that Satisfy
Two-Dimensional Elementary Intervals

Matt Pharr
NVIDIA Research

Figure 1. 4,096 pmj02bn samples generated using our technique. These points are progres-
sive, satisfy all applicable power-of-two elementary intervals, and have optimized spectral
properties. They were generated in 5.19 ms on a single core of a 4 GHz CPU.

Abstract

Precomputing high-quality sample points has been shown to be a useful technique for Monte
Carlo integration in rendering; doing so allows optimizing properties of the points without
the performance constraints of generating samples during rendering. A particularly useful
property to incorporate is stratification across elementary intervals, which has been shown to
reduce error in Monte Carlo integration. This is a key property of the recently-introduced
progressive multi-jittered, pmj02 and pmj02bn points [Christensen et al. 2018].

For generating such sets of sample points, it is important to be able to efficiently choose
new samples that are not in elementary intervals occupied by existing samples. Random
search, while easy to implement, quickly becomes infeasible after a few thousand points.
We describe an algorithm that efficiently generates 2D sample points that are stratified with
respect to sets of elementary intervals. If a total of n sample points are being generated, then
for each sample, our algorithm uses O(

√
n) time to build a data structure that represents the

regions where a next sample may be placed. Given this data structure, valid samples can be
generated in O(1) time. We demonstrate the utility of our method by generating much larger
sets of pmj02bn points than were feasible previously.

56 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

1. Introduction

Sampling is at the heart of modern rendering; care in choosing good [0, 1)n sample
points for use in (quasi)-Monte Carlo integration has been shown to have significant
benefits for image quality. Good samples effectively provide a performance improve-
ment by making it possible to render images with fewer samples (and thus, fewer
rays traced) than if inferior distributions of sample points are used. See, for example,
Keller’s survey [2013] or Chapter 7 of Pharr et al. [2016] for background and more
information.

In a Monte Carlo path tracer, each ray path consumes tens or even hundreds of
dimensions of such a sample point, and in high performance ray tracers, millions or
even billions of rays may be traced in a second. Thus, it is important to be able to
generate samples efficiently; too much time spent generating them eventually would
be better used in just tracing more rays.

Two main approaches have been taken to the sample generation problem: di-
rect generation of samples with known good properties at rendering-time, or opti-
mization of explicitly enumerated samples before rendering in the pursuit of specific
criteria. Examples of the first approach include both stratified sampling and Kollig
and Keller’s application of randomized instances of the first two dimensions of the
Sobol’ sequence to rendering [Kollig and Keller 2002]. The second is exemplified by
Mitchell’s work on multidimensional sampling [Mitchell 1991].1

While the first approach makes it possible to generate unlimited numbers of sam-
ple points at rendering time, it is constrained because not much computation is possi-
ble for each one. Further, to fulfill particular criteria requires finding an appropriate
mathematical construction and proving that it fulfills the criteria. The second ap-
proach generally trades generating a fixed number of samples for the opportunity to
apply much more computation to generate them, thus being able to satisfy a wider
range of criteria.

1.1. Stratification and Elementary Intervals

It has long been understood that stratified sampling patterns are effective for low-
dimensional integration problems in rendering (e.g., direct illumination) [Dippé and
Wold 1985; Cook 1986]. With stratified sampling in 2D, the [0, 1)2 integration do-
main is divided into nx × ny non-overlapping strata defined by[

x

nx
,
x + 1

nx

)
×
[
y

ny
,
y + 1

ny

)
,

where x and y are integers with 0 ≤ x < nx and 0 ≤ y < ny. In the following, we
will sometimes label the (x, y)-stratum in an nx × ny stratification as (x, y)nx×ny .

1There are, of course, also hybrid approaches that mix both of these approaches, for example
Grünschloß et al. [2008] and Perrier et al. [2018].

57

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

Figure 2. The five 2D power-of-two sets of elementary intervals that apply given n = 16

sample points. From left to right, there are stratifications of 1 × 16, 2 × 8, 4 × 4, 8 × 2, and
16× 1.

If a single sample point placed is within each stratum, then the sample points can-
not cluster together as much as they could with independent samples, which usually
reduces integration error.

A more general form of stratification, which can be used to define multiple strati-
fications, can be defined using elementary intervals.2 A single 2D base-2 elementary
interval is a stratum with power-of-two side lengths[

x

2lx
,
x + 1

2lx

)
×
[
y

2ly
,
y + 1

2ly

)
,

where lx and ly are integers that are greater than or equal to zero, and x and y are
integers where 0 ≤ x < 2lx and 0 ≤ y < 2ly . For fixed lx and ly, the set of intervals
given by all valid x- and y-values are a 2lx × 2ly stratification over [0, 1)2.

Given a power-of-2 number of sample points n, we will define the set of all ap-
plicable elementary intervals as those that satisfy the additional constraint lx + ly =

log2 n. For an example, see Figure 2, which shows the five elementary intervals that
apply given n = 16 sample points. For the remainder of this paper, all of the sets of
elementary intervals will be of this form.

We will say that a set of sample points where there is exactly one sample point in
every elementary interval in the entire set is stratified with respect to those elementary
intervals. This form of stratification has been shown to be important for point sets
used in rendering because it helps preserve the distribution when samples are warped
during importance sampling.

It can be shown that for any power-of-two number of samples, it is possible to
generate a point set that is stratified with respect to all applicable elementary intervals.
Furthermore, such sample sets can be constructed in a greedy manner—we can always
be sure there is a free spot left, even for the last sample.

2See Dick and Pillichshammer’s book [2010] for more information on elementary intervals and low-
discrepancy sampling.

58

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

Figure 3. When placing a new sample point in the (1, 1)2×2 stratum (left, shown with a
bold outline), we would like to make sure that the point doesn’t violate the constraint of there
being only a single point in each elementary interval. If we consider the two existing sample
points here with respect to the 1 × 4 and 4 × 1 elementary intervals that they are in (middle
two illustrations), we can see that only the upper left quarter of the (1, 1)2×2 stratum may be
chosen for the new point (unshaded region inside bold outline, right).

2. Generating Samples Subject to Elementary Intervals

It is easy to represent the occupancy of elementary intervals: if one is generating
n sample points, there are a total of n(1 + log2 n) elementary intervals and the oc-
cupancy of each can be represented with a Boolean value. Because every point in
[0, 1)2 is inside O(log n) elementary intervals, both querying the admissibility of a
candidate point and updating the representation of occupied intervals for a new point
require O(log n) operations.

It is less obvious how to efficiently generate new samples that are valid with re-
spect to the already-occupied elementary intervals.

Figure 3 illustrates the elementary interval constraint in the context of choosing
the location for a new sample in a point set. There, we have two sample points already
placed and are trying to place a third in the square stratum shown with a bold outline.
If we consider the two occupied elementary intervals from the 1×4 and 4×1 stratifi-
cations that overlap the square stratum, then we can see that only one-quarter of it can
be used. Placing a point in the rest (shaded region) would leave two sample points
in one elementary interval. As the number of sample points increases (and thus, the
number of elementary intervals that must be satisfied increases), finding admissible
sample points becomes increasingly challenging.

Christensen et al. [2018] used random search to find valid points, first choosing
a square interval and then generating random points inside it until they find one that
satisfies all of the other overlapping elementary intervals. Figure 4 illustrates the diffi-
culty with this approach. It shows one of the square elementary intervals encountered
when generating 16,384 samples; invalid regions are shaded gray. It’s evident that
random sampling over the entire square interval is an inefficient way to find valid
samples.

59

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

Figure 4. Visualization of a randomly-chosen stratum from the 128 × 128 stratification of
[0, 1)2 that was considered when generating a set of 16,384 points that satisfy the elementary
interval constraint. The invalid area is shaded in gray and the valid region is white.

2.1. Algorithm

Our approach builds on a single key observation: given an elementary interval e =

(x, y)nx×ny in which we’d like to to generate a new sample, all of the elementary
intervals from other stratifications that overlap e cover it entirely in one of the two
dimensions—the one where the other elementary interval’s length is longer than e’s.
This observation is illustrated in Figure 5. This property follows from the fact that the
power-of-two elementary intervals all have inverse power-of-two side lengths, start at
offsets that are integer multiples of their side lengths, and all have the same area.

Therefore, in order to represent the 2D subset of e that is invalid due to overlap-
ping occupied elementary intervals, it suffices to represent the 1D x- and y-ranges
within e that are invalid. Overlapping strata that have a narrower x-extent than e con-
tribute to the set of invalid x-ranges, and those that are narrower in y contribute to the
invalid y-ranges.

Figure 5. All of the elementary intervals from different stratifications that overlap an ele-
mentary interval span its entire extent in one of the two dimensions. Here, we consider the
(2, 1)4×4 interval (shaded square) and its overlap with all of the other applicable stratifica-
tions. For example, in the third figure, we can see that two of the 8 × 2 intervals overlap—
(4, 0)8×2 and (5, 0)8×2. Both cover all of the square interval’s extent in y and then extend
below it. Thanks to this property, we only have to maintain two one-dimensional represen-
tations of the regions of an interval that are invalid for new samples, which in turn is the
foundation of our efficient sample generation algorithm.

60

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

Note that it is easy to enumerate the strata from other stratifications that overlap e.
In the x-dimension, the elementary intervals that cover part of e’s x-range and all of its
y-range have stratifications 2nx×ny/2, 4nx×ny/4, . . ., n×1. The coordinates of the
overlapping intervals are also easily enumerated. Again considering x, the intervals
(2x, by/2c)2nx×ny/2 and (2x + 1, by/2c)2nx×ny/2 each overlap half of the x-extent
of e’s extent in x and overlap all of its y-extent. Similarly for (4x+ i, by/4c)4nx×ny/4

for i = 0, 1, 2, 3, and so forth.
Our algorithm uses binary trees to encode a hierarchical representation of invalid

ranges. If a total of n = nxny samples are being generated, then given an elementary
interval e = (x, y)nx×ny in which to generate a sample, we construct two binary trees,
one in x and one in y, where there are n/nx and n/ny leaves, respectively, that encode

Figure 6. The two binary trees used to represent invalid regions for samples in the elementary
interval e = (2, 1)4×4. (This is the same setting as the case illustrated in Figure 5.) Each non-
root node of each tree corresponds to a range of the extent of e in its dimension and stores a
Boolean value that’s true if that range is completely covered by already-occupied elementary
intervals. Each non-root node corresponds to the extent of overlap of a single elementary
interval, shown here. Under each interval’s coordinates is the range of the domain of either
the 16× 1 (x’s tree) or 1× 16 (y’s tree) stratification that it represents.

61

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

whether the corresponding range in their dimension is invalid. Interior nodes store a
Boolean value that is true only if the entire range that its children cover is invalid.

If we consider the overlapping elementary intervals, we can see that each node of
each tree corresponds to exactly one of them. This idea is shown in Figure 6. Note
there that in x, for example, the stratum (2x, by/2c)2nx×ny/2 corresponds to the x-
range represented by the first node one level down from the root. For each occupied
elementary interval, we can mark the corresponding node as occupied and don’t need
to consider any nodes (and corresponding elementary intervals) beneath it.

The algorithm to construct the tree for the x-dimension is shown in Figure 7. In
our implementation, we use bit vectors to represent the trees, with one bit representing
each node’s occupancy. After the trees have been initialized, a second traversal gives
arrays of 1D coordinates of acceptable sub-strata within the selected stratum e. That
algorithm is given in Figure 8.

Given these arrays, generating a valid sample is a matter of randomly selecting
elements x′ and y′ from them. Because the sub-strata indices are defined with respect
to a full n× n stratification of the unit square, any point within the square interval[

x′

n
,
x′ + 1

n

)
×
[
y′

n
,
y′ + 1

n

)
is both a valid sample and inside e.

function INITIALIZEXTREE(node, x, y, nx, ny)
if the (x, y)nx×ny

elementary interval is filled then
node.occupied ← true . Tree traversal stops

else
node.occupied ← false

if ¬node.leaf then
InitializeXTree(node.left , 2x, by/2c, 2nx, ny/2)

InitializeXTree(node.right , 2x + 1, by/2c, 2nx, ny/2)

node.occupied ← node.left .occupied ∧ node.right .occupied

Figure 7. Our algorithm initializes two binary trees corresponding to the binary subdivi-
sion of the x- and y-extent of an elementary interval. The algorithm for the x-case is shown
here. Traversal starts with the elementary interval selected to have a sample placed in it,
e = (x, y)nx×ny

, at the root. Each node stores a Boolean value that indicates whether the cor-
responding range of the extent is fully covered by filled elementary intervals and thus inadmis-
sible for a new sample point. Note that the coordinates and dimensions of the corresponding
elementary interval at each node are easily computed during traversal. The algorithm for y is
analogous, just with the elementary interval indexing modified appropriately.

62

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

function GETVALIDXOFFSETS(node, x, y, nx, ny,outoffsets[])
if ¬node.occupied then

if node.isLeaf then
offsets.append(x)

else
GetValidXOffsets(node.left , 2x, by/2c, 2nx, ny/2, offsets)

GetValidXOffsets(node.right , 2x + 1, by/2c, 2nx, ny/2, offsets)

Figure 8. After the invalid interval trees have been initialized, they can be traversed to extract
valid stratum indices with respect to the n×1 stratification in x (and 1×n in y.) The algorithm
for the x-dimension is shown here.

2.2. Summary

Our algorithm can be used to generate a set of well-distributed points via the following
steps:

1. Select an empty elementary interval for the next sample point. The interval
may be chosen so that the point set is progressive—that prefixes of it are well-
distributed, as was done by Christensen et al. [2018], or, for example, by con-
sidering square elementary intervals in scanline order.

2. Construct two binary trees that encode the regions of the selected elementary
interval that are invalid due to overlapping occupied elementary intervals.

3. Generate a new sample inside the subset of the selected elementary interval that
is admissible, for example by choosing a random point in the valid area.

4. Update data structures that represent occupied elementary intervals, given the
new point.

2.3. Running-time Analysis

Given an empty elementary interval in which we’d like to generate a sample, our
algorithm has three phases: initializing the binary trees, extracting the valid sub-strata
in each dimension, and generating samples.

We have O(n/nx) = O(ny) and O(n/ny) = O(nx) nodes to visit in each tree
and thus O(ny +nx) elementary intervals to consider. The total number of tree nodes
is minimized if we choose a square stratum as the initial one, in which case nx = ny =√
n and there are O(

√
n) nodes in both trees. Note that not all nodes will always be

visited—once we mark an interior node as occupied, we don’t need to consider the
elementary intervals that correspond to its children. We don’t model that factor in the
analysis here, though as more of the elementary intervals are filled, this characteristic
significantly reduces the number of nodes visited. (And thus, our algorithm becomes
more efficient in that respect as more points are added to the sample set.)

63

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

Thus, with two tree traversals and a square stratum as a starting point, we’re left
with O(

√
n) computation to create the trees and find valid sub-strata indices, since

each node is visited no more than once for each of those phases.
Then, given the x- and y-arrays of sub-strata indices from the algorithm in Fig-

ure 8, it requires O(1) time to pick a random element of each one and generate a
sample.

Finally, because 1+log2 n elementary intervals overlap each point, O(log n) time
is needed to update the data structure representing occupied elementary intervals after
we place a sample, but that’s dominated by the O(

√
n) time for the tree traversals.

3. Results

In order to evaluate our algorithm, we applied it to the generation of pmj02 and
pmj02bn points [Christensen et al. 2018]. We used the same approach that Chris-
tensen et al. did to select elementary intervals in which to generate samples; see their
paper for details. Performance was measured with a single-threaded implementation
on a 4 GHz Intel CPU.

The pmj02 points are progressive and stratified across elementary intervals. There
are no further constraints on the points: any valid one will do. Table 1 compares the
performance of our algorithm to using random search to generate these points. Our
algorithm is always faster, and its advantage increases as more points are generated.
Our approach is over 750× faster for a 10242 point set, generating the points in just
over three seconds, while using random search requires over 40 minutes.

The pmj02bn points are further optimized to have blue noise properties: multiple
candidate points are generated, and the one farthest away from the existing points is
kept. Our algorithm is particularly beneficial for that case, thanks to its O(1) execu-
tion time to generate valid points after the binary trees have been created and the valid
stratum indices extracted. Table 2 shows the result when 10 candidates are consid-

samples Random Our algorithm Ratio
256 0.415 ms 0.202 ms 2.05 : 1

1,024 5.13 ms 0.632 ms 8.11 : 1
4,096 63.5 ms 3.19 ms 19.9 : 1

16,384 857 ms 19.0 ms 45.1 : 1
65,536 12,199 ms 103 ms 118 : 1

262,144 175,703 ms 543 ms 323 : 1
1,048,576 2,509,131 ms 3,343 ms 751 : 1

Table 1. Comparison of execution time to generate various numbers of pmj02 sample points
using random search versus using our algorithm to find samples that satisfy the elementary
intervals.

64

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

samples Random Our algorithm Ratio
256 3.38 ms 0.280 ms 12.1 : 1

1,024 42.7 ms 1.08 ms 39.5 : 1
4,096 548.3 ms 5.19 ms 106 : 1

16,384 7,398 ms 26.2 ms 282 : 1
65,536 103,540 ms 130.1 ms 796 : 1

262,144 1,452,286 ms 687.8 ms 2,111 : 1
1,048,576 21,287,063 ms 3,695 ms 5,761 : 1

Table 2. Comparison of execution time to generate various numbers of pmj02bn sample points
using random search and our algorithm to find valid candidate samples. For each sample
generated, ten candidates were considered in order to improve the blue noise characteristics
of the points.

ered. For very low sample counts (e.g., 256 sample points), our approach is over 12×
faster than random search. For higher sample counts, the relative performance ben-
efits of our algorithm grow quickly: it is over 5000× faster when generating 10242

sample points.3 Note that the total runtime with random search increases by roughly
a factor of 12 with each quadrupling of the number of samples, which suggests an
O(n2) complexity.

To measure the impact of our algorithm’s ability to generate candidates in O(1)

time, we also measured the performance of generating pmj02bn samples using one
thousand candidates. Table 3 shows the results. We found that our algorithm was

samples 10 candidates 1000 candidates Ratio
256 0.280 ms 9.43 ms 1 : 33.7

1,024 1.08 ms 42.0 ms 1 : 38.8
4,096 5.19 ms 171.2 ms 1 : 33.0

16,384 26.2 ms 706.8 ms 1 : 27.0
65,536 130.1 ms 2,961 ms 1 : 22.8

262,144 687.8 ms 11,967 ms 1 : 17.4
1,048,576 3,695 ms 49,337 ms 1 : 13.4

Table 3. Comparison of execution time to generate various of pmj02bn sample points using
ten candidate samples and one thousand candidate samples. Thanks to our algorithm’s O(1)

runtime to generate a candidate sample after the invalid interval tree has been generated and
the valid sub-stratum offsets extracted from it, we observe much less than the 100× increase
in processing time that random search exhibits.

3In the full pmj02bn point-generation algorithm, the time to choose the stratum for the next progres-
sive point is just a O(logn) walk down a quadtree for each new point. Then, the time to compute the
distances to the nearest neighbors is constant time if the points are stored in a

√
n ×
√
n grid, since

only the nearest eight neighbors need be considered. Thus, both asymptotic running time and the vast
majority of measured runtime is determined by the time for candidate point generation.

65

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

samples Avg. # candidates
until valid sample

4 3.8
16 12.6
64 45.8

256 128.2
1,024 430.2
4,096 1,577

16,384 5,416
65,536 19,300

262,144 69,550
1,048,576 253,560

Table 4. Average number of candidates considered before finding a single valid sample when
random search is used, for various total numbers of samples generated.

between 13× and 39× slower to generate one hundred times more candidate samples,
with the relative slow-down decreasing as more samples were generated. Note that
random search would be 100× slower in this case, due to requiring one hundred times
more random searches.

Table 4 indicates why random search becomes intractable; it shows the average
number of samples considered before a valid sample was found when using random
search. As the total number of sample points becomes large, we can see that random
search quickly becomes very inefficient.

4. Conclusion

We have introduced an efficient new algorithm for incrementally generating sample
points that are stratified across the elementary intervals and have shown its use for
generating pmj02 and pmj02bn point sets. Performance is over 5000× faster than
random search for million-point pmj02bn sets.

With our algorithm, it is now reasonable for a renderer to generate large tables of
pmj02bn points at start-up rather than precomputing them, and it is possible to gen-
erate much larger sets of pmj02bn points than before, which allows using optimized
point sets that span large blocks of pixels, for example. For sample counts up to a
few thousand (as would be the case when generating independent sample sets at each
pixel), our algorithm is efficient enough to allow on-demand generation of samples.

The extension to higher-dimensional elementary intervals is not just a matter of
using more binary trees: the challenge is that one elementary interval that overlaps
another will only necessarily cover all of the other’s extent in a single dimension. As
such, in three dimensions for example, three quadtrees would be required to maintain
the invalid region information.

66

http://jcgt.org

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

Our algorithm is not amenable to high-performance GPU implementation, as it
requires a fair amount of per-thread state, including data structures to represent ele-
mentary interval occupancy. If “blue noise” points are to be generated, then all of the
samples that have previously been generated must be stored as well. The fact that each
sample must be placed before the next can be considered also inhibits parallelism. We
plan on investigating these shortcomings in future work.

Approaches based on optimizing sample patterns to achieve specific goals in
terms of distribution and quality have repeatedly been shown to be effective for ren-
dering; all modern examples have included satisfying elementary intervals in their
criteria. We hope that by having demonstrated an efficient approach for generating
points that satisfy the elementary interval constraints, this work will facilitate more
progress in the area of sample pattern optimization.

Acknowledgments

Thanks to Aaron Lefohn and NVIDIA Research for supporting this work.

References

CHRISTENSEN, P., KENSLER, A., AND KILPATRICK, C. 2018. Progres-
sive multi-jittered sample sequences. Computer Graphics Forum 37, 4, 21–
33. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.
13472, doi:10.1111/cgf.13472. 56, 59, 63, 64

COOK, R. L. 1986. Stochastic sampling in computer graphics. ACM Transactions on
Graphics 5, 1 (Jan.), 51–72. URL: http://doi.acm.org/10.1145/7529.8927,
doi:10.1145/7529.8927. 57

DICK, J., AND PILLICHSHAMMER, F. 2010. Digital Nets and Sequences: Discrepancy
Theory and Quasi-Monte Carlo Integration. Cambridge University Press, New York, NY.
58

DIPPÉ, M. A. Z., AND WOLD, E. H. 1985. Antialiasing through stochastic sampling.
SIGGRAPH Computer Graphics Proceedings 19, 3 (July), 69–78. URL: http://doi.
acm.org/10.1145/325165.325182, doi:10.1145/325165.325182. 57

GRÜNSCHLOSS, L., HANIKA, J., SCHWEDE, R., AND KELLER, A. 2008. (t, m, s)-nets and
maximized minimum distance. In Monte Carlo and Quasi-Monte Carlo Methods 2006,
Springer, Berlin - Heidelberg, Germany, A. Keller, S. Heinrich, and H. Niederreiter, Eds.,
397–412. 57

KELLER, A. 2013. Quasi-Monte Carlo image synthesis in a nutshell. In Monte Carlo
and Quasi-Monte Carlo Methods 2012, Springer, Berlin - Heidelberg, Germany, J. Dick,
F. Kuo, G. Peters, and I. Sloan, Eds., 203–238. 57

KOLLIG, T., AND KELLER, A. 2002. Efficient multidimensional sampling. Computer
Graphics Forum 21, 3, 557–563. doi:10.1111/1467-8659.00706. 57

67

http://jcgt.org
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13472
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13472
http://doi.acm.org/10.1145/7529.8927
http://doi.acm.org/10.1145/325165.325182
http://doi.acm.org/10.1145/325165.325182

Journal of Computer Graphics Techniques
Generation of Points that Satisfy Two-Dimensional Elementary Intervals

Vol. 8, No. 1, 2019
http://jcgt.org

MITCHELL, D. P. 1991. Spectrally optimal sampling for distribution ray trac-
ing. In Proceedings of the 18th Annual Conference on Computer Graphics and In-
teractive Techniques, SIGGRAPH 1991, Providence, RI, April 27-30, 1991, ACM,
New York, NY, 157–164. URL: https://doi.org/10.1145/122718.122736,
doi:10.1145/122718.122736. 57

PERRIER, H., COEURJOLLY, D., XIE, F., PHARR, M., HANRAHAN, P., AND OSTRO-
MOUKHOV, V. 2018. Sequences with low-discrepancy blue-noise 2-d projections. Com-
puter Graphics Forum 37, 2, 339–353. 57

PHARR, M., JAKOB, W., AND HUMPHREYS, G. 2016. Physically Based Rendering: From
Theory To Implementation. Elsevier, Cambridge, MA. URL: http://www.pbr-book.
org/3ed-2018. 57

Author Contact Information
Matt Pharr
NVIDIA, Inc.
2788 San Tomas Expressway
Santa Clara, CA 95051
matt@pharr.org
http://pharr.org/matt

Matt Pharr, Generation of Points that Satisfy Two-Dimensional Elementary Intervals, Journal
of Computer Graphics Techniques (JCGT), vol. 8, no. 1, 56–68, 2019
http://jcgt.org/published/0008/01/04/

Received: 2018-12-17
Recommended: 2019-02-01 Corresponding Editor: Marc Stamminger
Published: 2019-02-27 Editor-in-Chief: Marc Olano

c© 2019 Matt Pharr (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

68

http://jcgt.org
https://doi.org/10.1145/122718.122736
http://www.pbr-book.org/3ed-2018
http://www.pbr-book.org/3ed-2018
mailto:matt@pharr.org
http://pharr.org/matt
http://jcgt.org/published/0008/01/04/
http://creativecommons.org/licenses/by-nd/3.0/

