
28

Guest Editor’s Introduction: Special Issue on Production Rendering

MATT PHARR, Google, Inc.

CCS Concepts: • Computing methodologies → Rendering; Ray trac-

ing; Computer graphics;

Additional Key Words and Phrases: Path tracing, production rendering,

graphics software systems

ACM Reference format:

Matt Pharr. 2018. Guest Editor’s Introduction: Special Issue on Production

Rendering. ACM Trans. Graph. 37, 3, Article 28 (July 2018), 4 pages.

https://doi.org/10.1145/3212511

1 HISTORY

3D computer graphics has revolutionized filmmaking. Computer

generated imagery (CGI) has become the foundation of modern

visual effects. It allows virtual characters, physical phenomena,

and environments to be seamlessly integrated with footage of the

real world; moviegoers regularly see cities being destroyed by

monsters and lush landscapes of alien worlds, all of which are

simulated on computers and rendered as images that are visually

indistinguishable from reality. Starting with Toy Story, CGI has

also made a new form of animated feature film possible, where

expressive 3D computer-generated characters perform in rich

virtual environments.

The capabilities of CGI have progressed rapidly over the nearly

three decades that it has been widely used in movies. If one

compares Jurassic Park and Toy Story, groundbreaking early visual

effects and CGI animated movies, respectively, to modern counter-

parts like War for the Planet of the Apes and Coco, the advancement

has been breathtaking: environments are much more complex,

the lighting is realistic, and large-scale physical simulation has

made high-fidelity flowing water, smoke, and fire possible.

Many factors have contributed to these improvements, includ-

ing more powerful processors, better interactive tools for artists,

and advances in the mathematics of physical simulation and an-

imation, but advances in rendering have been critical. Rendering

computes the final pixel colors; a renderer must not only do no

harm to the scenes given to it, but it must deliver results that are

acceptable to the human visual system, which is highly attuned to

detecting when something is not quite right.

From the late 1980s until a few years after 2000, rendering for

film was largely a monoculture: a single algorithm, Reyes (Cook

et al. 1987), and a single implementation, Pixar’s Photorealistic

RenderMan, were used ubiquitously.

Author’s address: M. Pharr, Google, Inc. 1600 Amphitheatre Parkway, Mountain View,
CA, 94043; email: matt@pharr.org.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author.
2018 Copyright is held by the owner/author(s).
0730-0301/2018/07-ART28
https://doi.org/10.1145/3212511

The Reyes algorithm was designed from the start to address the

demands of film production. Its foundation is a high-quality ras-

terization algorithm that can efficiently render anti-aliased images

with motion blur and depth of field, and computation is structured

such that only a small subset of the scene’s geometric and tex-

ture data must be in memory at any time, allowing Reyes to ren-

der complex scenes on systems with limited main memory. Cook

et al.’s paper on Reyes is a classic; it’s one where no matter how

many times one has read it, one always learns something new.

The last 10 or so years have seen a remarkably fast shift away

from Reyes. Today, not only are a multitude of different renderers

now used for film production, but they’re based on a completely

different algorithm—path tracing. Introduced to computer graph-

ics by Jim Kajiya (1986), path tracing uses Monte Carlo integration

to model global illumination: the effect of light scattering multiple

times as it illuminates surfaces.1

Unlike previous global illumination algorithms, path tracing

places few limits on geometric representation, surface reflection

models, or the types of light sources that can be supported. How-

ever, path tracing long seemed to be utterly unsuitable for feature

films; see Figure 1, which compares an image from Kajiya’s 1986

paper and an image from the 1987 paper on Reyes. Kajiya’s image

took about the same amount of time to render, though at a much

lower resolution. Although the subtle lighting effects are impres-

sive (and had never been seen at the time), his scenes themselves

were simple.

It wasn’t just computational demands that made path tracing

unsuitable for production rendering: path tracing also expects

that the entire scene description will be available in main memory.

In mid-1985, a gigabyte of RAM cost approximately $500,000

(McCallum 2017); thus, only a few megabytes of RAM were

available on the machines used for production rendering at the

time, making it impossible to render complex scenes with path

tracing. Anyone serious about making feature films naturally

chose what Reyes made available to them on the computers of

the day—geometric and texture complexity—over the lighting

complexity that path tracing offered.2

As RAM became less expensive and computers came to have

more and more memory, Reyes delivered imagery with increas-

ing amounts of geometric and texture complexity. (Consider, for

example, the lush world of ant-sized plants in A Bug’s Life.) How-

ever, richer and more accurate lighting became increasingly de-

sirable for feature films as improving the realism of illumination

became the most effective way to improve image realism. A vari-

ety of efforts were undertaken to build hybrid rendering systems

1For a gentle introduction to path tracing, see Pete Shirley’s Ray Tracing in One Week-
end book (Shirley 2016).
2With one important exception: Blue Sky Studios pursued a ray-tracing based global
illumination approach beginning in the late 1980s. In 1998, their Oscar-winning short,
Bunny, caught the attention of many with the beautiful soft lighting that their global
illumination algorithms made possible. Unfortunately, Blue Sky has published almost
no technical information about the implementation of their renderer, CGI Studio.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 28. Publication date: July 2018.

https://doi.org/10.1145/3212511
https://doi.org/10.1145/3212511

28:2 • M. Pharr

Fig. 1. Left, an image generated with path tracing by Jim Kajiya in 1985. Though the scene is simple, it still required 7 hours to render at 256x256 resolution.

However, the lighting effects—soft shadows, indirect illumination, and caustics—had never before been seen. Right, an image rendered with Reyes in 1987.

This scene was highly complex for the era and was slightly faster to render than Kajiya’s scene at 6 hours 27 minutes, but it was rendered at 1024x768

resolution and with much more geometric and texture detail on a system with 32MB of RAM (Reeves and Ostby 2018). However, all non-local lighting

effects like shadows and reflections had to be approximated with shadow and reflection maps.

with Reyes as a foundation and either selectively used ray trac-

ing (Apodaca and Gritz 1999; Christensen et al. 2006; Tabellion and

Lamorlette 2004) or used various precomputed global illumination

lighting representations (Christensen and Batali 2004; Pantaleoni

et al. 2010).

While these approaches succeeded in bringing ray tracing

and global illumination effects to Reyes, they led to unwieldy

workflows. The discussions in the papers by Christensen et al.

and Fascione et al. in this issue describe the challenges that these

approaches brought with them in detail. When these approaches

were in use, most practitioners would have agreed that given un-

limited computing resources, path tracing would be the preferred

approach for its generality, but also would have agreed that, as a

practical matter, it was still too expensive.

Starting in the early 2000s, a number of developments outside

of film production made it reasonable to begin to consider writing

production rendering systems that were based on path tracing:

—Many advancements were made in Monte Carlo techniques

for rendering, including more effective light sampling algo-

rithms (Shirley et al. 1996), high-quality sampling patterns

(Kollig and Keller 2002), and multiple importance sampling

(Veach and Guibas 1995), which together greatly reduced the

variance of path tracing, giving high-quality images with

fewer rays traced, and thus, less computational cost.

—Gigabytes of RAM became affordable—in 2005, 1GB of DRAM

cost less than $200. Thus, it started to become possible to

store the entirety of complex scenes in main memory.

—Progress in high-performance ray tracing and better tech-

niques for building acceleration structures made implemen-

tations of the core ray tracing algorithm that path tracing

uses much more efficient (Wald et al. 2001).

—CPUs continued to become faster (and more parallel); multi-

ple CPU cores became available on systems used for render-

ing, making the computational demands of path tracing more

acceptable. Further, path tracing is more amenable to scalable

parallel implementation than Reyes, so it could make better

use of multi-core CPUs.

While these developments made it possible to imagine using

path tracing for production rendering, a number of problems spe-

cific to rendering for film still had to be solved. Texture complex-

ity was one of the most important ones: loading all of the texture

maps of a production scene into RAM remained infeasible and the

ability to maintain a texture cache that only kept a small fraction

of the scene’s texture in main memory was a necessity. Develop-

ers found that the combination of texture caching (Peachey 1990)

and ray differentials (Christensen et al. 2003; Gritz and Hahn 1996;

Igehy 1999) to extend Peachey’s “principle of texture thrift” to path

tracing made it possible to render scenes with small texture caches

of just a few gigabytes of RAM.

Computing accurate global illumination also required finding

ways to incorporate specialized effects into the path tracing algo-

rithm. Previously, effects like volumetric scattering (e.g., clouds,

smoke, and explosions), hair and fur, and subsurface scattering

were often handled by different renderers and required special-

ized techniques for effects like shadows and reflections. Including

these in path tracing’s light scattering simulation required a com-

bination of applying techniques from the research literature and

developing new ones; many of the details are described in the ar-

ticles in this issue. For an in-depth look at this transition, see the

work of Christensen and Jarosz (2016).

As these problems were solved and path tracing started to

see adoption in studios, users soon found that in addition to

ACM Transactions on Graphics, Vol. 37, No. 3, Article 28. Publication date: July 2018.

Guest Editor’s Introduction: Special Issue on Production Rendering • 28:3

eliminating the complex Reyes-based pipelines, path tracing of-

fered useful additional advantages over Reyes, including progres-

sive refinement of low-quality images, the ability to easily stop,

checkpoint, and restart rendering. There was also the surprising

fact that noisy images that have been rendered with just a few

samples per pixel could still be useful for animation reviews and

finalizing shading and lighting in shots; multiple studios have re-

ported taking advantage of this (Fascione et al. 2017). Thus, the

expensive final rendering of a frame might only need to happen

once during production, rather than multiple times as it made its

way through the production pipeline as was done with Reyes.

Just as remarkable as the shift to path tracing is the fact that

many studios are now writing their own custom renderers. For a

studio, the tradeoff is not an easy one: more control and customiz-

ability and the ability to fix bugs quickly with an in-house ren-

derer versus the fact that the commercial systems have been used

on hundreds of movies and are thus likely to be more robust than

in-house systems that have been used on fewer. However, the very

fact that this choice can be considered is a significant shift from the

days of Reyes.

The availability of a wide variety of open source software li-

braries has made it easier to write an in-house renderer. With li-

braries like Embree, OpenSubdiv, Open Shading Language, Open

ImageIO, OpenColorIO, OpenVDB, Ptex, OpenEXR, and Alembic

available with permissive licenses, many of the key ingredients

needed to develop a production renderer are freely available. The

open source versions of these are one and the same as the versions

used throughout film production pipelines at most studios, which

ensures that they are robust and well-tested.

Finally, widespread availability of information about path trac-

ing, Monte Carlo rendering, and physically based rendering has

also helped facilitate this transition. Most research papers are eas-

ily found online, there are now entire books on path tracing and

physically based rendering available (Pharr et al. 2016). If one is

trying to implement a tricky rendering algorithm, one can often

find blog posts where others have written about how they’ve im-

plemented it and there are a multitude of open source path tracers

that also serve as a useful reference about implementation details.

2 ISSUE OVERVIEW

We were fortunate that the developers of most of the major ren-

dering systems used in film production have been willing to write

articles about their systems for this issue. Almost all published ren-

dering research is algorithm-focused, but a successful production

system is much more than a bunch of algorithms strung together.

These systems must be highly robust (both in their execution and

in the results they generate), interoperate with complex produc-

tion pipelines and exhibit fairly predictable behavior in output,

runtime, and memory use. The constraints of production render-

ing and the algorithms that have been developed to address these

constraints are rarely discussed in the research literature.

This issue includes articles on five renderers:

—Arnold (Solid Angle), described by Georgiev et al.: a commer-

cial renderer used on hundreds of feature films and numerous

commercials and TV series since 2001.

—Arnold (Sony Pictures Imageworks), described by Kulla et al.:

Sony’s proprietary version of Arnold, used on all of Sony’s

movies since 2008 after early success on the film Monster

House (2006).

—Hyperion (Walt Disney Animation Studios), described by

Burley et al.: used on all of the studio’s animated movies

starting with Big Hero 6 (2014).

—Manuka (Weta Digital), described by Fascione et al.: used on

all of Weta’s films starting with Dawn of the Planet of the Apes

(2014).

—RenderMan3 (Pixar Animation Studios), described by

Christensen et al.: both a commercial product, used on over

45 feature films, and the renderer used by Pixar for all of its

movies since Finding Dory (2016).

These renderers are built on a few common foundations: all use

path tracing and employ bounding volume hierarchies for ray in-

tersection acceleration. All support a range of geometric primi-

tives, including subdivision surfaces, hair, and scattering volumes,

and all run on CPUs and are multi-threaded, with varying levels

of adoption of single instruction, multiple data (SIMD) processing.

The challenges of graphics processing unit (GPU) rendering (pri-

marily, limited local memory on GPUs) have so far precluded any

of these systems also using GPUs, though work in this area con-

tinues, given the computational capabilities they offer.

Beyond that core, there’s a remarkable amount of variety among

them; different system designers have made different implemen-

tation decisions in a number of fundamental areas. Examples

include:

—The variety of light transport algorithms supported, ranging

from just path tracing (the Solid Angle version of Arnold),

to path tracing with selective photon mapping (Hyperion),

to a wide variety of global illumination algorithms (Manuka,

RenderMan, Sony’s Arnold).

—When texture mapping and shading occurs: in Manuka, all

of it is done before rendering begins, allowing efficient BRDF

generation at intersection points during rendering, with no

need for a texture cache at that point; other systems do this

the conventional way—at ray intersection time.

—Whether the renderer is sold commercially (Solid Angle

Arnold and RenderMan): commercial products must serve a

wider variety of workflows than in-house renderers and must

include features that let the end-user customize their behav-

ior. For an in-house renderer, therefore, simpler software ar-

chitectures can be possible.

—Specialization to studio workflows and needs: Hyperion’s de-

sign was strongly influenced by the need for artistic con-

trol, while Manuka places particular emphasis on grounding

rendering in measured data for predictably matching on-set

measurements.

—Whether “out of core” rendering is supported: Hyperion

batches and sorts rays in order to access geometry and tex-

ture more coherently while other systems do not, accepting

incoherent memory access from path tracing.

3An all new path-tracer that has kept Pixar’s Reyes renderer’s name.

ACM Transactions on Graphics, Vol. 37, No. 3, Article 28. Publication date: July 2018.

28:4 • M. Pharr

The detailed analyses of these systems in these articles is a great

gift to the broader graphics research community. Not only are

there many new ideas and insights throughout all of these arti-

cles, but they provide a window into the biggest challenges that

still face production rendering, which should be of benefit to ren-

dering researchers.

ACKNOWLEDGMENTS

The idea for this special issue of Transactions on Graphics is due to

Luca Fascione, who had the insight that the best way to convince

the developers of production rendering systems to write about

them in depth would be for everyone to do it simultaneously. This

issue wouldn’t have been possible without Kavita Bala’s support

of this project as Editor-in-Chief of ACM Transactions on Graphics.

Thanks also to Pete Shirley and Kayvon Fatahalian for help with

reviewing the submissions and providing feedback to the authors.

Finally, many thanks to the authors of these articles—both for their

willingness to share many new details of their systems and the

insights behind them as well as their good cheer in going through

the multiple editing cycles while being busy with their day jobs.

REFERENCES
Tony A. Apodaca and Larry Gritz. 1999. Advanced Renderman: Creating CGI for Motion

Pictures. Morgan Kaufmann, San Francisco, CA.
Per H. Christensen and Dana Batali. 2004. An irradiance atlas for global illumination

in complex production scenes. In Proceedings of the Fifteenth Eurographics Confer-
ence on Rendering Techniques (EGSR’04). 133–141. DOI:http://dx.doi.org/10.2312/
EGWR/EGSR04/133-141

Per H. Christensen, Julian Fong, David M. Laur, and Dana Batali. 2006. Ray tracing for
the movie Cars. In Proceedings of the IEEE Symposium on Interactive Ray Tracing.
1–6.

Per H. Christensen and Wojciech Jarosz. 2016. The path to path-traced movies. Foun-
dations and Trends in Computer Graphics and Vision 10, 2 (2016), 103–175.

Per H. Christensen, David M. Laur, Julian Fong, Wayne L. Wooten, and Dana Batali.
2003. Ray differentials and multiresolution geometry caching for distribution ray
tracing in complex scenes. Computer Graphics Forum (Eurographics 2003 Confer-
ence Proceedings) 22, 3 (2003), 543–552.

Robert L. Cook, Loren Carpenter, and Edwin Catmull. 1987. The Reyes image ren-
dering architecture. Computer Graphics (Proceedings of SIGGRAPH) (Aug. 1987),
95–102. DOI:http://dx.doi.org/10.1145/37402.37414

Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley, and
Brian Green. 2017. Path tracing in production—Part 1: Production renderers. ACM
SIGGRAPH 2017 Courses (2017). DOI:http://dx.doi.org/10.1145/3084873.3084904

Larry Gritz and James K. Hahn. 1996. BMRT: A global illumination implementation
of the RenderMan standard. Journal of Graphics Tools 1, 3 (1996), 29–47.

Homan Igehy. 1999. Tracing ray differentials. Computer Graphics (Proceedings of SIG-
GRAPH) (1999), 179–186. DOI:http://dx.doi.org/10.1145/311535.311555

James T. Kajiya. 1986. The rendering equation. Computer Graphics (Proceedings of SIG-
GRAPH) (1986), 143–150. DOI:http://dx.doi.org/10.1145/15922.15902

Thomas Kollig and Alexander Keller. 2002. Efficient multidimensional sampling. Com-
puter Graphics Forum (Proceedings of Eurographcis) 21 (2002), 557–563. DOI:http://
dx.doi.org/10.1111/1467-8659.00706

John C. McCallum. 2017. Memory Prices (1957–2017). Retrieved from https://jcmit.
net/memoryprice.htm.

Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. 2010. PantaRay: Fast
ray-traced occlusion caching of massive scenes. ACM SIGGRAPH 2010 papers
(2010). DOI:http://dx.doi.org/10.1145/1833349.1778774

Darwyn Peachey. 1990. Texture on Demand. (1990). Animation Studios Technical
Memo #217.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering:
From Theory to Implementation. Elsevier.

Bill Reeves and Eben Ostby. 2018. Personal communication. (2018).
Peter Shirley. 2016. Ray Tracing in One Weekend.
Peter Shirley, Changyaw Wang, and Kurt Zimmerman. 1996. Monte Carlo techniques

for direct lighting calculations. ACM Transactions on Graphics 15, 1 (1996), 1–36.
DOI:http://dx.doi.org/10.1145/226150.226151

Eric Tabellion and Arnauld Lamorlette. 2004. An approximate global illumination sys-
tem for computer generated films. Computer Graphics (Proceedings of SIGGRAPH)
(2004), 469–476. DOI:http://dx.doi.org/10.1145/1186562.1015748

Eric Veach and Leonidas J. Guibas. 1995. Optimally combining sampling techniques
for Monte Carlo rendering. Computer Graphics (Proceedings of SIGGRAPH) (1995),
419–428. DOI:http://dx.doi.org/10.1145/218380.218498

Ingo Wald, Phillip Slusallek, Carsten Benthin, and Markus Wagner. 2001. Interactive
rendering with coherent ray tracing. Computer Graphics Forum 20 (2001), 153–165.
DOI:http://dx.doi.org/10.1111/1467-8659.00508

ACM Transactions on Graphics, Vol. 37, No. 3, Article 28. Publication date: July 2018.

http://dx.doi.org/10.2312/EGWR/EGSR04/133-141
http://dx.doi.org/10.1145/37402.37414
http://dx.doi.org/10.1145/3084873.3084904
http://dx.doi.org/10.1145/311535.311555
http://dx.doi.org/10.1145/15922.15902
http://dx.doi.org/10.1111/1467-8659.00706
https://jcmit.net/memoryprice.htm
http://dx.doi.org/10.1145/1833349.1778774
http://dx.doi.org/10.1145/226150.226151
http://dx.doi.org/10.1145/1186562.1015748
http://dx.doi.org/10.1145/218380.218498
http://dx.doi.org/10.1111/1467-8659.00508

