ispc: A SPMD Compiler for High-
Performance CPU Programming

Matt Pharr

Intel
|6 March 2012

http://ispc.github.com


http://ispc.github.com
http://ispc.github.com

Topics

® Context: characteristics and design space of modern HW
® The challenge: effective use of CPU SIMD hardware

® ispc:a C-with-SPMD comepiler for the CPU



Processor Design Space

® Given die area / power consumption limits, balance:
® Clock speed
® Execution context size
® # fetch/decode units
o #ALUs
® On-chip memory size

® [atency vs. throughput



The Programmer’s Ideal

| x

Exec Context

Fetch/Decode

ALU

Cache

@ 100 GHz



The Programmer’s Ideal

| x

Exec Context

Fetch/Decode

ALU

Cache

@ 100 GHz

or, as a fallback

32x

Exec Context

Fetch/Decode

ALU

Cache

@ 3-4 GHz



The HW Architect’s |deal

| x

Fetch/Decode

ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU
ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU
ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU
ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU ALU

Mem/Cache



3 Modern Parallel Architectures

CPU:;
2-10x

Exec Context
Fetch/Decode

ALU ALU ALU ALU
ALU ALU ALU ALU

Cache

ALU
ALU
ALU

ALU

MIC:
50+x

Exec Context
Fetch/Decode
ALU ALU
ALU ALU
ALU ALU
ALU ALU

Cache

ALU
ALU
ALU

ALU

ALU
ALU
ALU
ALU

ALU
ALU
ALU
ALU

GPU:
2-32x

Exec Context

ALU
ALU
ALU
ALU

Fetch/Decode

ALU ALU
ALU ALU
ALU ALU
ALU ALU

Mem/Cache

ALU
ALU
ALU
ALU

ALU
ALU
ALU
ALU

ALU
ALU
ALU
ALU



Filling the Machine (CPU and GPU)

Fetch/Decode Fetch/Decode
Cache Cache
® Iask parallelism across cores: run Erecution Context  Execution Context
different programs (if wanted) ALU ALU ALU ALU  ALU ALU ALU ALU
on different cores ALU ALU ALU ALU  ALU ALU ALU ALU

® Data-parallelism across SIMD _

|aneS in d Single core. run the Fetch/Decode Fetch/Decode
same program on different input Cache Cache

Va,l ues Execution Context Execution Context

ALU ALU ALU ALU ALU ALU ALU ALU
ALU ALU ALU ALU ALU ALU ALU ALU




Peak Performance vs. Parallelism

(Iso-Power)
1000.0
100.0
- SNB CPU 4C x 8 SIMD
GFLOPS 10.0 - GTX460 GPU 7C x 32 SIMD
1.0
0.1

1 10 100 1000 10000

Available Parallel Computation



Peak Performance vs. Parallelism
(Iso-Power)

GFLOPS 100 '

1 10 100 1000 10000

B SNB CPU 4C x 8 SIMD
e (GTX460 GPU 7C x 32 SIMD

Available Parallel Computation



Peak Performance vs. Parallelism
(Iso-Power)

"' m SNB CPU 4C x 8 SIMD
GFLOPS 10.0 ' I e GTX460 GPU 7C x 32 SIMD
1.0 "
1 10 100 1000 10000

At 32 elements, |83 GFLOPS vs. 8.6 GFLOPS



CPU pert. vs. GPU perf (modeled)

100.0

10.0

1.0

0.1
0% 25% 50% 75% 100%

— % of computation that is parallel



CPU pert. vs. GPU perf (modeled)

100.0

10.0

0% 25% 50% 75% 100%
% of computation that is parallel



CPU perf. vs. GPU perf (modeled)

100.0

10.0

1.0

0.1
95% 96% 97% 98% 99% 100%

% of computation that is parallel



CPU perf. vs. GPU perf (modeled)

100.0

10.0

‘

1.0

N

99.0% 99.2% 99.4% 99.6% 99.8% 100.0%
% of computation that is parallel



The Challenge



Peak Performance vs. Parallelism
(Iso-Power)

1000.0

100.0
B SNB CPU 4C x 8 SIMD
GFLOPS 100 | e GTX460 GPU 7C x 32 SIMD
1.0
0.1

1 10 100 1000 10000

Available Parallel Computation



Filling The Processor With
Computation

® Auto-parallelization / auto-vectorization
® Brittle, limited performance transparancy
® Explicit SIMD programming

e “SPMD on SIMD”



Programmer Flexibility vs.
Architectural Efficiency

® MIMD: most flexible, least efficient

® S|IMD: least flexible, most efficient

® SPMD: provide illusion of MIMD on SIMD hardware

® Same as MIMD if all program instances operate on separate data



SPMD 10|

® Run the same program in parallel with different inputs

® |nputs = array elements, pixels, vertices, ...

float func(float a, float b) {
if (a < 0.) a=0.;
return a + b;

}

® The contract: programmer guarantees independence between
different program instances running with different inputs; compiler is
free to run those instances in parallel



SPMD On SIMD

® Map program instances to individual lanes of the SIMD unit
® e.g.8 instances on 8-wide AVX SIMD unit
® A gang of program instances runs concurrently

® One gang per hardware thread / execution context



SPMD On A GPU SIMD Unit

~PTX
a = b + c; fadd
1f (a < 0) cmp, jge 1_a
++b; fadd, jmp 1 b
else 1 a:
++C; Fade
1l Db:

(Based on http://bps | 0.idav.ucdavis.edu/talks/03-fatahalian gpuArchTeraflop BPS SIGGRAPHZ2010.pdf)



http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

SPMD On A GPU SIMD Unit

O O O - O
a = b + c; fadd
if (a < 0)  coo e 1a
_|__|_b; fadd, jmp 1 Db
else —
+4+c; fadd - -
1 b:

(Based on http://bps | 0.idav.ucdavis.edu/talks/03-fatahalian gpuArchTeraflop BPS SIGGRAPHZ2010.pdf)



http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

SPMD On A CPU SIMD Unit

v MMM -
a = b + ¢c; ke
1f (a < O) vempltps
‘|“|‘b; vaddps, vblendvps
else
‘|“|‘C,° vaddps, vblendvps - -

(Based on http://bps | 0.idav.ucdavis.edu/talks/03-fatahalian gpuArchTeraflop BPS SIGGRAPHZ2010.pdf)



http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf
http://bps10.idav.ucdavis.edu/talks/03-fatahalian_gpuArchTeraflop_BPS_SIGGRAPH2010.pdf

SPMD on SIMD Execution

Transform control-flow to data-flow

old mask = current mask

test mask = evaluate test

current mask &= test mask

// emit true stmts, predicate with current mask
current mask = old mask & ~test mask

// emit false stmts, predicate with current mask
current mask = old mask

1f (test) {
TLrue stmts;

J

else {
false stmts;

J

25



SPMD Mandelbrot

int mandel (float ¢ re, float ¢ i1m, 1int count) ({
float z re = ¢c re, z 1m = C 1m;
int 1;
for (1 = 0; 1 < count; ++1) {
1f (z re * z re + z im * z 1m > 4.)
break;

float new re = z re*z re - z 1m*z 1m;
float new 1m = 2.f * z re * z 1m;

Zz re = c re + new re;

Zz 1m = Cc 1m + new 1im;

return 1;

26



SPMD Memory Access: Gathers

int func(int in[], 1nt i1ndex) {
return 1n[index];

e




Perf. Model: SPMD vs. MIMD

® Execution divergence across SIMD lanes reduces SPMD performance

® Memory access divergence across SIMD lanes reduces SPMD
performance

28



ISpC



ispc Goals

® High-performance code for CPU SIMD units
® Scale with both core count and SIMD vector width

® FEase of adoption and integration



ispc Language Features

C-based syntax (familiarity)

Code looks scalar, but executes in parallel (SPMD)
Mixed scalar + vector computation

Single coherent address space

AOS/SOA language support



Related VWork

CUDA, OpenCL, GPU shading languages
RenderMan shading language
VL

C* MasPar C, ...



C Features Available

® Structured control flow: if, switch, for, while, do, break, continue, return
® |imited support for goto

® Full C pointer model: pointers to pointers, function pointers, ...

® Structs, arrays, array/pointer duality

® Standard basic types (float, int, ...)

® Some C++ features



Example: A Ray Tracer in ispc
C++ Application Code ispc Code

int width = ..., height = ...; export void
const float raster2cameral[4][4] = { ... }; (uniform int width, uniform int height,
const float camera2world[4][4] = { ... }; const uniform float raster2camera[4] [4],
float *image = new float[width*height]; const uniform float camera2world[4][4],
Triangle *triangles = new Triangle[nTris]; uniform float image[],
LinearBVHNode *nodes = new LinearBVHNode [nNodes] ; const LinearBVHNode nodes][],
const Triangle triangles|[]) {
// init triangles and nodes //
// set up mapping to machine vector width
(width, height, raster2camera, // ...
camera2world, image, nodes, triangles); for (y = 0; y < height; y += yStep) {
for (x = 0; x < width; x += xStep) {
Ray ray;

generateRay (raster2camera, camera2world,
x+dx, y+dy, ray);
BVHIntersect (nodes, triangles, ray);

int offset = (y + idy) * width + (x + idx);
image[offset] = ray.maxt;
id[offset] = ray.hitId;




export void mandelbrot ispc(uniform float x0, uniform float yO,
uniform float x1, uniform float yl,
uniform int width, uniform int height,
uniform int maxIterations,
uniform int output[])

uniform float dx = (x1 - x0) / width, dy = (yl - y0) / height;

for (uniform int j = 0; j < height; j++) {
for (uniform int i = 0; i < width; i += programCount) ({

// Figure out the position on the complex plane to compute the
// number of iterations at. Note that the x values are
// different across different program instances, since x’'s
// initializer incorporates the value of the programIndex
// wvariable.
float x = x0 + (programIndex + i) * dx;
float y = y0 + j * dy;

int index = j * width + 1 + programIndex;
output[index] = mandel (x, y, maxIterations)

35



static inline int mandel (float c re, float c _im, int count) {
float z re = c re, z im = c_1im;
int 1;
for (1 = 0; 1 < count; ++1i) {
if (z re * z re + z im * z im > 4.)
break;

float new re = z re*z re - z im*z im;
float new im = 2. f * z re * z im;

Z re C re + new re;

z_im c_im + new;im;

return 1i;

36



task void
mandelbrot scanlines(uniform int ystart, uniform int yend,

N I |
for (uniform int j = ystart; j < yend; ++7j) {

}
}

export void mandelbrot ispc(...) {
uniform float dx = (x1 - x0) / width, dy = (yl - y0) / height;

/* Launch task to compute results for spans of 'span' scanlines. */
uniform int span = 2;
for (uniform int jJ = 0; j < height; j += span)
launch mandelbrot scanlines(j, Jj+span, x0, dx, y0, dy, width,
maxIterations, output) ;

37



Building Applications Using ispc

ispc Source C/C++ Source

\ \
ispc Compiler C/C++ Compiler

\ \

Object File Object File
N\ v

Linker
\

Executable



Integration With Regular Debuggers

(gdb) down

#1 0x00000001000096e2 in BVHIntersect (nodes=@0x100200000, tris=£0x101000000, r=€0 =
¢« X7fffS5fbfef@@) at rt.ispc:201

(gdb) where

#0 BBoxIntersect (bounds=@0x7fff5fbfe@70, ray=@0x7fff5fbfelcd) at rt.ispc:124

#1 0x00000001000096e2 in BVHIntersect (nodes=20x100200000, tris=80x101000000, r=2Q 2
s X7fffSfbfef@d) at rt.ispc:201

#2 0x0000000100000f24 in start OO

(gdb) p node.bounds

$11 = {{-17.402759%, -7.80148792, -0.906687021}, {0, -10.6387606, -0.00148700003}}

(gdb) p ray.dir[0]

$12 = {0.010883674, 0.0108848382, 0.010878643, 0.0108798062}

(gdb)

--1%*.  %gud-rt* Bot (102,6) (Debugger:run [stopped] +2)--8:09AM 9.39
Ray ray = r;
bool hit = false;
// Follow ray through BVH nodes to find primitive intersections
uniform int todoOffset = @, nodeNum = 0;
uniform int todo[64];

while (true) {
// Check ray against BVH node
LinearBVHNode node = nodes[nodeNum];
if (any(BBoxIntersect(node.bounds, ray))) {
uniform unsigned int nPrimitives = nPrims(node);
if (nPrimitives > @) {
// Intersect ray with primitives in leaf BVH node

uni farm 1insi aned int nrimitivecNffent = nade nffcet:
66% (200,44) (Coe/1 +2 Abbrev)--8:00AM 0.39 - --rrrrmccmmcm

39



Scalar + Vector Computation

void sqr4 (float value) ({
for (int 1 = 0; 1 < 4; ++1i)
value *= wvalue;

}



Scalar + Vector Computation

® “Uniform” variables have a void sqr4d(float value) {
' for (uniform int i = 0; 1 < 4; ++1i)
single value over the set of value *= value;
SPMD program instances }

® Stored in scalar registers

® Perf benefits: multi-issue, BVY,
control flow coherence



Data Layout: AOS

struct Point {
float x, vy, z;

};

uniform Point af[...];
int index = { 0, 1, 2, ... };
float x = a[index] .x;

yO | z0 | xI |yl [zl | x2 [ y2 | z2 | x3 | y3

float x = a[index] .x

42




Data Layout: SOA

struct Point4d {
float x[4], yI[4], z[4];
};

uniform Point4d af[...];
int index = { 0, 1, 2, ... };
float x = a[index / 4] .x[index & 3];

x2 | x3 |y0 [yl | y2|y3|z0 |zl | z2 | z3 | x4

float x = a[index / 4] .x[index & 3]

43




Data Layout: SOA

struct Point {
float x, y, z;

};

soa<4> Point af[...];
int index = { 0, 1, 2, ... };
float x = a[index] .x;

x2 | x3 |y0 [yl | y2|y3|z0 |zl | z2 | z3 | x4

float x = a[index] .x;

44




Z,

AQOS Access Optimization: Coalescing

struct Point {
float x, vy,

};

uniform Point a[...];
int index = { 0, 1, 2, ... };
float x = a[index] .x;
float y = a[index] .y;
float z = a[index] .z;
xO0 [ yO [ z0 | xI |yl | zl | x2 | y2 | z2 | x3 | y3 | z3

45




AQOS Access Optimization: Coalescing

struct Point {
float x, vy,

};

3x vector loads

Z,

uniform Point a[...];
int index = { 0, 1, 2, ... };
float x = a[index] .x;
float y = a[index] .y;
float z = a[index] .z;
xO0 [ yO [ z0 | xI |yl | zl | x2 | y2 | z2 | x3 | y3 | z3

46




AQOS Access Optimization: Coalescing

struct Point {
float x, vy, z;

};

uniform Point a[...];
int index = { 0, 1, 2, ... };
float x a[index] .x;
float y a[index] .y;
float z a[index] .z;

xO0 [ yO [ z0 | xI |yl | zl | x2 | y2 | z2 | x3 | y3 | z3
3x vector loads l ‘%%}X | l
Shuffle elements

xI [ x2 [ x3 | yO | yl | y2 | y3 | z0 | zI | z2 | z3

x0

47



Performance vs. Serial C++

| core x 8-wide AVX [ 4 cores x 8-wide AV X
AO Bench 6.19x 28.06x
Binomial 7.94x 33.43x
Black-Scholes 8.45x 32.48x
Deferred Shading 5.02x 23.06x
Mandelbrot 6.21x 20.28x
Perlin Noise 5.37x -
Ray Tracer 4.31x 20.29x
Stencil 4.05x 15.53x
Volume Rendering 3.60x 1 7.53x




Performance vs. Serial C++

40 cores x 4-wide SSE

AQO Bench 182.36x
Binomial 63.85x
Black-Scholes 83.97x
Ray Tracer 195.67x

Volume Rendering 243.18x




Reasons for Super-Linear
Performance Improvements

Better cache performance

Effective use of scalar + vector registers

Control flow amortized over multiple program instances
Shared computation between program instances

When running “extra-wide”, more ILP available to processor

50



ispc is Open Source

Released June 201 | -thousands of downloads since then

BSD license
Built on top of LLVM

{OS X, Linux, Windows} x {32, 64 bit} x {SSE2, SSE4, AVX, AVX2}

http://ispc.github.com



http://ispc.github.com
http://ispc.github.com

Recap

® Demand opportunity for performance scaling with
core count * SIMD width / core

® Real-world applications generally exhibit variable available parallelism
® Can work smarter if massive parallelism not required
® Open question: optimal trade-off between HWV and SWV!

® Detecting control flow, scatter/gather coherence, ...



Thanks

http://ispc.github.com



http://ispc.github.com
http://ispc.github.com

Optimization Notice

Intel compilers, associated libraries and associated development tools may include or utilize options that optimize for instruction
sets that are available in both Intel and non-Intel microprocessors (for example SIMD instruction sets), but do not optimize equally
for non-Intel microprocessors. In addition, certain compiler options for Intel compilers, including some that are not specific to Intel
micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel compiler options, including the
instruction sets and specific microprocessors they implicate, please refer to the "Intel Compiler User and Reference Guides" under
"Compiler Options." Many library routines that are part of Intel compiler products are more highly optimized for Intel
microprocessors than for other microprocessors. While the compilers and libraries in Intel compiler products offer optimizations
for both Intel and Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely
will get extra performance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include Intel® Streaming
SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions
3 (Intel SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on Intel and non-
Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine which best meet your
requirements. VWe hope to win your business by striving to offer the best performance of any compiler or library; please let us
know if you find we do not.



Backup



Arch Features That Improve
SPMD Performance

e SIMT (HW SPMD control flow support)
® Gather / scatter
® |nstructions, coalescing memory controllers, ...
® |atency hiding
® Masked vector instructions

® Scalar registers & instructions

56



Big, Medium, and Small Cores

SNB CPU MIC/LRB GTX460
2 HW threads/core 2 HW threads/core To 48 HWV threads/core
Hide inst, $ latency Hide inst, $, mem latency Hide inst, $, mem latency
3+ GHz 22 ~| GHz
4 cores 50+ cores /7 SMs (cores)
8x SIMD/core | 6x SIMD/core 2 16x SIMD/core
Out-of-order In order In order
Latency optimized Middle ground.. Throughput optimized
HW SIMD HW SIMD HW SIMT




e
Q
o
@)
O
O
Pt
©
Q
-~
©
=
p -
O
P

Well-implemented versions of poster-child GPGPU throughput
kernels on CPU are geomean just 2.5x faster on GPU

Debunking the 100X GPU vs. CPU myth: An evaluation of throughput computing on CPU and
GPU, Lee et al. ISCA 2010. http://portal.acm.org/citation.cim?id=1816021&ret=1

58



http://portal.acm.org/citation.cfm?id=1816021&ret=1
http://portal.acm.org/citation.cfm?id=1816021&ret=1

Implementing Gather/Scatter

CPU MIC GPU
- ISA / Memory
%
HW Support Limited(*) ISA Controller
Coherence

Detection

Compile-time

Compile-time

Execution-time

59




