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[Just as] other information should be available to those who want
to learn and understand, program source code is the only means for
programmers to learn the art from their predecessors. It would be
unthinkable for playwrights not to allow other playwrights to read
their plays [and] only be present at theater performances where they
would be barred even from taking notes. Likewise, any good author
is well read, as every child who learns to write will read hundreds
of times more than it writes. Programmers, however, are expected to
invent the alphabet and learn to write long novels all on their own.
Programming cannot grow and learn unless the next generation of
programmers have access to the knowledge and information gathered
by other programmers before them.

— Erik Naggum
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Rendering is a crucial component of most computer graphics work. Without rendering, the
results of algorithms for animation, geometric modeling, and texturing would have no visual rep-
resentation. At the very highest level of abstraction, rendering converts a description of a three-
dimensional scene into an image for display. By its very nature, rendering incorporates ideas from
a broad range of disciplines, including physics, astronomy, biology, psychology, and pure mathe-
matics. The interdispiplinary nature is one of the reasons rendering is such a fascinating area to
study.

Rendering is sufficiently important that almost all modern computers use dedicated hardware to
accelerate interactive rendering. Huge computational resources are available in specialized graphics
processing units (GPUs) to improve the visual quality of interactive graphics. In this book, however,
we will focus on non-interactive rendering on CPUs. GPUs are not yet sufficiently flexible to
be programmed to implement many of the algorithms in this book, though work in this area is
progressing rapidly.

This book presents a variety of modern rendering algorithms through the documented source
code for a complete rendering system. This system, called lrt, is written using a programming
methodology called literate programming that mixes prose describing the system with the source
code that implements it. Note that this book and the system it describes are by no means complete;
many interesting topics in rendering will not be covered either because they didn’t fit well with
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the architecture of the software system (e.g. finite element radiosity algorithms), or because we
believed that the pedagogical value of the algorithm was outweighed by the complexity of the im-
plementation. In most cases, we will provide pointers to further reading so the reader can continue
his studies.

We believe that the literate programming approach is a valuable way to teach ideas in computer
science. Not only does the implementation help clarify how an algorithm is implemented in practice,
but by showing these algorithms in the context of a complete and non-trivial software system we are
also able to address issues in the design and implementation of medium-sized rendering systems.
Often, all of the subtleties of an algorithm can be missed until it is implemented; seeing someone
else’s implementation is (sometimes) nearly as good.
���������	�
������	�������	���

Our primary audience is students in upper-level undergraduate or in graduate-level computer
graphics classes. This book is not self-contained; it assumes existing knowledge of computer graph-
ics at the level of an introductory college-level course. Certain key concepts from such a course will
be presented again here, such as basic vector geometry and transformations.

Our secondary, but equally important audiences are advanced graduate students, researchers,
and software developers in industry. Though many of the ideas in this manuscript will likely be
familiar to these readers, reading explanations of some algorithms in the literate style should be of
interest. We have also also included implmentations and descriptions of more recently-developed
algorithms and techniques, including subdivision surfaces, Monte Carlo light transport, and volu-
metric scattering models; these should be of particular interest even to experienced researchers. We
also hope that it will be useful for this audience to see one way to organize a complete non-trivial
rendering system.
��� ��� � ���������	��� �
�"!$#

lrt was designed and implemented with two main goals in mind: it should be complete, and
it should be illustrative. Completeness implies that the system should not lack important features
found in high-quality rendering systems. In particular, it means that important practical issues, such
as anti-aliasing, robustness in the face of numerical error, and the use of physical units to describe
light and reflection should be addressed thoroughly.

It is often quite difficult to retrofit such functionality to a rendering system after it has been
designed, as these features can have subtle implications for all components of the system, and even
the overall architectural design.

Our second goal means that we tried to choose algorithms, data structures, and rendering tech-
niques with care. Since their implementations will be examined by more readers than those in most
rendering systems, we tried to select the cleanest and most elegant algorithms that we were aware
of. The second goal also implies that the system should be small enough for a single person to
understand completely.

Note that there is an obvious tension between these two goals. Implementing and describing
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every useful technique that would be found in a production rendering system would not only make
this book extremely long, but it would make the system too big to fully understand. In cases where
lrt lacks a generally useful feature, we have attempted to design the architecture so that feature
could be easily added without altering the overall system design. Exercises at the end of each
chapter suggest programming projects that involve new features.

Efficiency was a tertiary goal. Since rendering systems often run for many minutes or hours
in the course of generating an image, efficiency is clearly important. However, we have mostly
confined ourselves to algorithmic efficiency rather than low-level code optimization. In many cases,
obvious micro-optimizations take a back seat to clear, well-organized code. For this reason as well
as portability, lrt is not presented as a parallel or multi-threaded application, although parallelizing
lrt would not be very difficult.

In the course of presenting lrt, we hope to convey some hard-learned lessons from some years
of rendering research and development. Writing a good renderer is much more complex than string-
ing together a set of fast algorithms; making the system both flexible and robust is the hard part.
The system’s performance must degrade gracefully as more geometry is added to it, as more light
sources are added, or as any of the other axes of complexity are pushed. Numeric stability must be
handled carefully; stable algorithms that don’t waste floating-point precision are critical. In the end,
a renderer is something like an operating system: managing large amounts of data and computation
without crashing, while always returning correct (or in some cases, reasonable) results.

� � ��� ��� � � � � �
��� ��� ��#

We have chosen to write lrt in C++. However, we use a subset of the language, both to make
the code easier to understand for the non C++ expert, as well as to improve portability between
compilers. In particular, we have avoided multiple inheritance and the use of exceptions. We have
also used only a small subset of C++’s extensive standard library for similar reasons. In particular,
we use the iostream input/output facilities and the vector, set, and map container classes.

Types, objects, and variables are named to indicate their scope; classes and functions that have
global scope all start with capital letters. The system also uses no global variables. Small utility
classes, module-local static variables, and functions that are used in just one part of the system
start with lower-case letters.

Finally, we will omit various pieces of lrt’s entire collection of source code from this document.
For example, when there are a number of cases to be handled, all with nearly identical code, we
will present one case and note that the code for the remaining cases is omitted (of course, it’s not
omitted from the final program source code!). Furthermore, when we declare a new class (Foo, for
example), we won’t include the code for the class declaration in this document. Instead of having
many fragments like:



viii Preface

�
Classes ���
class Foo {
public:�

Foo Public Methods �
private:�

Foo Private Methods ��
Foo Private Data �

};

for every new class, each class declaration fragment will be omitted and we will immediately start
adding methods to

�
Foo Public Methods � and so forth.

� � �
� ��� � ��� �	����� ��� �

As mentioned above, we have tried to make lrt efficient by using well-chosen algorithms rather
than by having many low-level optimizations. However, we have used a profiler to find which parts
of it account for most of the execution time and have performed some local optimization of those
parts. There are a handful of techniques that are particularly useful to keep in mind when trying to
write efficient code for modern processors:


 Use your profiler well! Optimization should be driven by statistics about
the performance of the system on typical scenes. It doesn’t do any good to
optimize based on scenes that aren’t interesting (e.g. a single sphere), and it
is hopeless to try to speed up the program without understanding which parts
of it are truly the bottlenecks.


 On current CPU architectures, the slowest mathematical operations are di-
vides, square-roots, and trigonometric functions. Addition, subtraction, and
multiplication are generally ten to fifty times faster than those operations.
Code changes that reduce the number of slow mathematical operations can
help performance substantially; for example, replacing a series of divides by
a value v with the computing the value 1 � v and then multiplying by that value
can help a lot. Contrary to a popular misconception, compilers will generally
not manipulate mathematical expressions to faster, semantically equivalent
ones because of concerns over numerical precision.


 Declaring short functions as inline can speed up code substantially, both
by removing the run-time overhead of performing a function call (which
may involve saving values in registers to memory) as well as by giving the
compiler larger basic blocks to optimize.


 As CPUs are continuing to become faster while RAM access rates are grow-
ing at a much slower pace, waiting for values to be loaded from memory
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is becoming a major performance barrier. While in the past it may have
been advantageous to precomupte the values of expensive functions and store
them in tables, the modern trend is towards re-computation of simple values
rather than accessing memory.

� �"����� ��� ����!�� � ����� ���

Knuth’s article Literate Programming(Knu84) describes the main ideas behind literate program-
ming as well as his web programming environment. The entire TEX typesetting system was written
with this system and has been published as a book(Knu93a). More recently, Knuth has published a
collection of graph algorithms in The Stanford Graphbase(Knu93b). Both of these are enjoyable to
read and are respectively excellent presentations of modern automatic typesetting and graph algo-
rithms. The website http://www.literateprogramming.com has pointers to many articles about
literate programming as well as a variety of literate programming systems; many refinements have
been made since Knuth’s original development of the idea.

The implementation of the lcc C compiler is described in a literate program written by Fraser
and Hansen and published as A Retargetable C Compiler: Design and Implementation (FH95).

A good introduction to the C++ programming language and C++ standard library is the third
edition of Stroustroup’s The C++ Programming Language(Str97).

Some notable books on rendering and image synthesis include Radiosity and Realistic Image
Synthesis (CW93), which primarily describes the finite-element radiosity method; Principles of
Digital Image Synthesis (Gla95); an encyclopediac two-volume summary of theoretical foundations
for realistic rendering; and Illumination and Color in Computer Generated Imagery (Hal89), one of
the first books to present rendering in a physically-based framework.

A number of papers have been written that describe the design and implementation of other
rendering systems. The REYES architecture, which forms the basis for Pixar’s RenderMan renderer,
was first described by Cook et al (CCC87); a number of improvements to the original algorithm are
described in (AG00). Ward describes Radiance, which is focused on accurate lighting simulation
in a paper and a book (War94b; LS98). Gritz and Hahn describe the BMRT ray-tracer (GH96),
and the Maya renderer is described by Sung et al (SCW � 98). Introduction to Ray Tracing, which
describes the state-of-the-art in ray-tracing in 1989 (Gla89a), Heckbert’s chapter sketches the design
of a ray-tracer. Finally, Shirley’s recent book XXXX.

The complete source code to a number of ray-tracers and renderers is available on the web.
Notable ones include Mark VandeWettering’s MTV, which was the first widely-distributed freely-
available ray-tracer; it was posted to the comp.sources.unix newsgroup in 1988. Craig Kolb’s
rayshade had a number of releases during the 1990s; its current homepage is http://graphics.stanford.edu/ cek/rayshade/rayshade.html.
The radiance system is available from http://radsite.lbl.gov/radiance/HOME.html.
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This chapter provides a high-level description of lrt and the entire rendering
system from the top down. We describe what happens during rendering by tracing a
single ray through the system. Along the way we introduce the major classes in the
system. Subsequent chapters will describe the various classes and their methods in
detail. Because this is a top-down exploration of the system, some concepts will be
referred to before they are defined. Therefore, the reader will benefit from reading
this section more than once.�	�
��� � ����� ������ � � � � � � � � � �

In the course of the development of the TEX typesetting system, Donald Knuth
developed a new programming methodology based on the simple idea that pro-
grams should be written more for people’s consumption than for computers’ con-
sumption. He named this methodology literate programming. This book (including
the chapter you’re reading now) is a long literate program. Literate programs are
written in a meta-language that mixes a document formatting language (e.g. LATEX
or HTML) and a programming language (e.g. C++). The meta-language compiler
then can transform the literate program into either a document suitable for type-
setting (this process is generally called weaving), or into source code suitable for�



2 Introduction [Ch. 1

compilation (tangling).
The literate programming meta-language provides two important features. The

first is a set of mechanisms for mixing English text with source code. This makes
the description of the program just as important as its actual source code, encour-
aging careful design and documentation on the part of the programmer. Second,
the language provides mechanisms for presenting the program code to the reader in
an entirely different order than it is supplied to the compiler. This feature makes it
possible to describe the operation of the program in a very logical manner. Knuth
named his literate programming system web since literate programs tend to have
the form of a web: various pieces are defined and inter-related in a variety of ways
and programs are written in a structure that is neither top-down nor bottom-up.

As a simple example, consider a function InitGlobals() that is responsible for
initializing all of the program’s global variables. If all of the variable initializations
are presented to the reader at once, InitGlobals() might be a large collection of
variable assignments the meanings of which are unclear because they do not appear
near the definition or use of the variables. A reader would need to search through
the rest of the entire program to see where each particular variable was declared in
order to understand the function and the meanings of the values it assigned to the
variables. As far as the human reader is concerned, it would be better to present
the initialization code near the code that actually declares and uses the global.

In a literate program, then, one can instead write InitGlobals like this:�
Function Definitions ���
void InitGlobals() {�

Initialize Global Variables �
}

Here we have added text to a fragment called
�
Function Definitions � . (This

fragment will be included in a C++ source code file when the literate program is
woven for the compiler.) The fragment contains the definition of the InitGlobals
function. The InitGlobals function itself includes another fragment,

�
Initialize

Global Variables � . At this point, no text has been added to the initialization frag-
ment. However, when we introduce a new global variable ErrorCount somewhere
later in the program, we can now write:�
Initialize Global Variables ���
ErrorCount = 0;

Here we have started to define the contents of
�
Initialize Global Variables � .

When our literate program is turned into source code suitable for compiling, the
literate programming system will substitute the code ErrorCount = 0; inside the
definition of the InitGlobals function. Later on, we may introduce another global
FragmentsProcessed, and we can append it to the fragment:�
Initialize Global Variables ��� �
FragmentsProcessed = 0;

The � � symbol after the fragment name shows that we have added to a previ-
ously defined fragment. When tangled, the result of the above fragment definitions
is the code:

void InitGlobals() {
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ErrorCount = 0;
FragmentsProcessed = 0;

}

By making use of the text substitution that is made easy by fragments, we can
decompose complex functions into logically-distinct parts. This can make their
operation substantially easier to understand. We can write a function as a series of
fragments:�
Function Definitions ��� �
void func(int x, int y, double *data) {�

Check validity of arguments �
if (x < y) {�

Swap parameter values �
}�
Do precomputation before loop ��
Loop through and update data array �

}

The text of each fragment is then expanded inline in func for the compiler. In
the document, we can introduce each fragment and its implementation in turn–
these fragments may of course include additional fragments, etc. This style of
decomposition lets us write code in collections of just a handful of lines at a time,
making it easier to understand in detail. Another advantage of this style of pro-
gramming is that by separating the function into logical fragments, each one can
be written and verified independently–in general, we will try to make each frag-
ment less than ten lines or so of code, making it easier to understand the operation
of the function as a whole.

Of course, inline functions could be used similarly in a traditional programming
environment, but using fragments to decompose functions has three advantages.
The first is that all of the fragments can immediately refer to all of the parameters
of the original function as well as any function-local variables that are declared in
preceeding fragments; it’s not necessary to pass them all as parameters, as would
need to be done with inline functions. The second advantage is that one generally
names fragments with more descriptive names than one gives to functions; this
improves program readability and understandability. Finally, since it’s so easy to
use fragments to decompose complex functions, one does more decomposition in
practice.

In some sense, the literate programming language is just an enhanced macro
substitution language tuned to the task of rearranging program source code pro-
vided by the user. The simplicity of the task of this program can belie the mental
shift in programming methodology that literate programming leads to.
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Computer graphics is often divided into three main sub-problems: modeling,
animation, and rendering. Modeling generally refers to geometric modeling, and
involves specifying the precise, digital description of the shape of an object. Topics
in modeling include curved surface representations such as subdivision surfaces,
quadric surfaces and splines, as well as methods for representing dense polygon
meshes. Animation deals with the specification of motion. Motion may involve the
laws of real physics, or cartoon physics. This book is concerned with the problem
of rendering. Rendering is the process of producing an image from a description
of a scene. For this reason, rendering is sometimes referred to by the more precise
name of image synthesis.

The scene description input to the rendering system must specify all the differ-
ent aspects of objects and the environment that determined their appearance when
viewed with a camera. Appearance in turn depends on shape, motion, light and
color, texture, reflection and illumination. For the purpose of creating a single
frame of an animation or a still picture, we can ignore motion (except, as we will
see, when we model motion blur, the bluring of moving objects over the time range
the camera’s shutter is open). Texture and reflection will typically be combined into
a model of the material. Scenes also consist of light sources and a camera.

In recent years, rendering algorithms have advanced from ad-hoc methods cho-
sen mainly for computational efficiency to physically-based algorithms that try to
model the physics of light propagation and scattering at a more detailed and ac-
curate level of abstraction. In conjunction with more sophisticated techniques for
solving the mathematics of these new problems, the field of rendering continues to
improve the accuracy and realism of rendered images.�	������ ��� � ��������� ������ � � � � � �

lrt has four main phases:

1. Defining the scene

2. Simulating the camera

3. Tracing rays to compute visible objects

4. Shading and lighting, which may trace more rays

�	���
	 ��� ��� ��� ������ �������

An important part of a renderer is the interface that it provides for specifying the
scene to be rendered. Scene descriptions are communicated to lrt via text scene
description files; statements in the file set up rendering options and describe the
geometry, materials, and lights in the scene.

The main function is pretty simple; it parses scene input from these input files,
specified on the command line. main surrounds the scene parser with the API
calls RiBegin and RiEnd, which perform general system initialization and cleanup,
respectively.
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563 curGfxOptions
498 Error
569 MakeScene

7 Render
562 RiBegin
562 RiEnd

�
main program ���
int main(int argc, char *argv[]) {

fprintf(stderr, "lrt version %1.3f of %s at %s\n", LRT_VERSION,
__DATE__, __TIME__);�

Set debugging environment �
RiBegin();�
Process scene representation �
RiEnd();
return 0;

}

If the user ran lrt with no command-line arguments, then the scene descrip-
tion is read from standard input. Otherwise we loop through the command line
arguments, processing each input filename in turn.�
Process scene representation ���
if (argc == 1) {�

Parse scene from standard input �
} else {�

Parse scene from input files �
}

The ParseFile function parses a text scene description file, either from stan-
dard input or from a file on disk. The mechanics of parsing scene description files
will not be described here.�
Parse scene from standard input ���
ParseFile("-");

�
Parse scene from input files ���
for (int i = 1 ; i < argc ; i++) {

if (!ParseFile(argv[i]))
Error("Couldn’t open input file \"%s\"\n", argv[i]);

}

As the scene file is parsed, objects are created that represent the camera, lights,
and the geometric primitives in the scene. Each primitive has attributes, such as a
transformation that positions it in the scene, and material properties that describe
its texture and reflection properties.

At the end of the description of the scene for a particular frame, code in the
fragment

�
Create scene and render � will be executed. Information about the differ-

ent types of objects and their parameters is stored in the graphics options object,
curGfxOptions. The graphics options object has a method that bundles all of the
information together into a Scene.�
Create scene and render ���
Scene *scene = curGfxOptions->MakeScene();
scene->Render();
delete scene;

The Scene holds a number of key objects. All of the light sources in the scene
are there, and all of the geometric primitives are managed by a Primitive that the
scene holds.
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The camera object controls the viewing and lens parameters such as field of view
and aperture. The film is considered part of the camera object; it handles image
storage. After the image has been comupted, a sequence of image operations is
applied to make adjustments to the image before finally writing it to disk. The
Camera and Film classes are described in Chapter 6 and the imaging process and
DisplayInfo class are described in Chapter 8.

The Sampler object controls how the image plane is sampled in order to com-
pute pixel values. The sample values are then mapped to rays by the camera. Gen-
erating good distributions of samples is an important part of the rendering process
and is discussed in Chapter 7.

The Integrator object controls the overall technique used to simulate light
transport in the scene. Example integrators include ray casting and recursive ray
tracing. See Chapter 15 for these and other, more sophisticated integrators.�
Scene Data ���
vector<Light *> lights;
Primitive *prims;
Camera *camera;
Sampler *sampler;
SurfaceIntegrator *surfaceIntegrator;
VolumeIntegrator *volumeIntegrator;
vector<VolumeRegion *> volumeRegions;
DisplayInfo *displayInfo;

�
Scene Data ��� �
BBox bound;
Point center;
Float radius;

�
Scene Method Declarations ��� �
BBox Scene::WorldBound() const {

return bound;
}

�
Scene Method Declarations ��� �
void BoundingSphere(Point *c, Float *rad) const {

*c = center;
*rad = radius;

}
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444 AllocateSample
173 film
198 GetNextSample
498 ProgressReporter
26 Ray
26 RayDifferential
5 Scene

501 StatsCounter
199 TotalSamples
240 WriteDisplayImage

�	���  ��� �"!$��� � � � ����� � � � ��� �

To compute an image, the scene’s Render method is invoked. For each of a
series of positions on the image plane, this method shoots a ray from the camera
out into the scene. By computing the color along that ray for all of those image
positions, the image of the scene is generated.�
Scene Methods ��� �
void Scene::Render() {�

Declare variables for progress reporting �
Sample *sample = surfaceIntegrator->AllocateSample(this);
while (sampler->GetNextSample(sample)) {�

Report rendering progress ��
Compute camera ray ��
Evaluate radiance along ray ��
Add sample to image �

}
delete sample;
cerr << endl;
camera->film->WriteDisplayImage(*displayInfo);

}
�
Declare variables for progress reporting ���
ProgressReporter progress(sampler->TotalSamples(), "Rendering");

�
Report rendering progress ���
static StatsCounter cameraRaysTraced("Camera", "Camera Rays Traced");
++cameraRaysTraced;
progress(stderr);

lrt provides a camera model that simulates the process of image formation. A
Sampler generates a series of multi-dimensional sample values to be used by the
Camera to construct the position and direction of each of the rays traced into the
scene and the integrators for Monte Carlo integration. The main function of the
Camera class is to provide a GenerateRay method, which does the mapping from
sample values to rays.�
Camera Interface Declarations ���
virtual void GenerateRay(const Sample *sample,

Ray &ray) const = 0;

�
Compute camera ray ���
RayDifferential ray;
camera->GenerateRay(sample, ray);�
Generate ray differentials for camera ray �
We also generate the rays for offsets of one pixel in the x and y direction on the

image and store them in the RayDifferential declared in the previous fragment.
These will be useful for anti-aliasing computations in Chapter 11.
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Figure 1.1: The basic ray-tracing algorithm. For each of a series of positions on
the plane, the camera constructs a ray through that position out into the scene. The
closest visible object along that ray is found by performing intersection tests with
objects in the scene and recording which hit, if any, is the closest one to the camera.
Shading computations are performed at the intersection point to comupte a color
to store in the image.

�
Generate ray differentials for camera ray ���
++sample->imagex;
camera->GenerateRay(sample, ray.rx);
--sample->imagex;
++sample->imagey;
camera->GenerateRay(sample, ray.ry);
ray.hasDifferentials = true;

Given a ray, the SurfaceIntegrator traces that ray through the scene and com-
putes the light or radiance L that returns to the camera along the ray–see Figure 1.1.
Details of an integrator will be shown in the next section. Scene radiance values are
represented with the Spectrum class, the abstraction that defines the representation
of general energy distributions by wavelength.�
Evaluate radiance along ray ���
Float alpha;
Spectrum L = surfaceIntegrator->L(this, ray, sample, &alpha);
L += volumeIntegrator->L(this, ray, sample, &alpha);

In addition to returning the ray’s radiance, the integrator sets the alpha variable
to the alpha value at the hit point. Alpha can be thought as an extra component
in an image, encoding the opacity of each pixel. If the ray hits an opaque object,
alpha will be one. If the object is partially transparent, alpha will be between
zero and one, and if no object is intersected, alpha is zero. Storing an alpha value
with each pixel can be useful for a variety of post-processing effects; for example,
we can composite a rendered object on top of a photograph, using the pixels in
the image of the photograph wherever the rendered image’s alpha channel is zero,
using the rendered image where its alpha channel is one, and using a mix of the
two for the remaining pixels.

After we have the ray’s radiance, we can add its value to the image. We first
compute the raster-space depth value of the hit point (using the position of the first
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intersection found by the SurfaceIntegrator) and initialize Praster. We make
sure that the hit found wasn’t farther away than the far clip plane (which is at depth
1, after the projection has been applied). We then call the Sampler::AddSample()
method, which updates the pixels in the image given the results from this sample.
The details of this process are given in section 7.6.�
Add sample to image ���
Float screenz = camera->ScreenDepth(ray(ray.maxt));
if (screenz > 1.) {

L = 0.;
alpha = 0.;

}
Point Praster(sample->imagex, sample->imagey, screenz);
sampler->AddSample(camera->film, Praster, L, alpha);

�	��� � ���� �����
� # ��� � � � ��#

�
Primitive Declarations ���
class Primitive : public ReferenceCounted<Primitive> {
public:�

Primitive Interface �
virtual ˜Primitive();

};

Individual objects in the scene as well as collections of objects are represented
in lrt as Primitives. Primitives include both the geometric description of the
shapes of objects as well as information about their materials. There are five key
methods that Primitives implement:�
Primitive Interface ���
virtual BBox WorldBound() const = 0;
virtual bool CanIntersect() const;
virtual bool Intersect(const Ray &r, Surf *s) const = 0;
virtual bool IntersectP(const Ray &r) const = 0;
virtual void Refine(vector<Reference<Primitive> > &refined) const;

The first method, WorldBound, returns a box that encompasses the extent of the
object in the scene. The BBox class is defined in Section 2.5. In addition to being
able to bound themselves, all primitives either must either be able to determine if a
given ray passes through them or else refine themselves into a new set of primitives.
Repeated refinement must eventually lead to intersectable primitives.�
GeometricPrimitive Methods ��� �
void GeometricPrimitive::Bump(const DifferentialGeometry &dg,

DifferentialGeometry *dgShading) const {
material->Bump(dg, Ns, Ss, dgShading);

}

We will also define a GeometricPrimitive, which represents a single primitive
shape (e.g. a sphere) in the scene. GeometricPrimitives are constructed during
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the processing of the scene description file. Each is an encapsulation of a Shape, a
Material and possibly an AreaLight (if the object is emissive).

As we will see, GeometricPrimitives have similar methods to Shapes and
Materials. The geometry of each primitive in lrt is represented by an abstract
Shape class. lrt implements many shapes, including triangle meshes, quadric sur-
faces (spheres, cylinders, cones, paraboloids, hyperboloids), non-uniform rational
b-splines (NURBS), and subdivision surfaces. Shapes are discussed in Chapter 3.

The material properties of each primitive are represented by an abstract Material
class, as described in Chapter 10. lrt is capable of modeling many different ma-
terials such as glass, mirrors, plastics, and metals. Materials encapsulate the color,
texture, and reflective properties of the surface.�
GeometricPrimitive Data ���
Reference<Shape> shape;
Reference<Material> material;
AreaLight *areaLight;
Texture<Normal> *Ns;
Texture<Vector> *Ss;

The GeometricPrimitive’s Intersect method tests a ray against the object to
find an intersection. It uses methods of the Shape contained in the GeometricPrimitive
to do the actual test and then updates information in the Surf about the hit found,
if any.

The details of how different shapes perform these intersection test will be dis-
cussed in Chapter 3. Intersect returns a boolean indicating whether the shape
was hit, and information about the hit if an intersection occurs. The hit itself is not
represented as a point, but rather as a small patch on the surface. This informa-
tion is stored in a structure called DifferentialGeometry that includes position,
normal, tangents to the surface, and surface parameters. Section 2.7 describes the
differential geometry abstraction in detail.�
Primitive Declarations ��� �
struct Surf {�

Surf Method Declarations ��
Surf Data Members �

};
�
Surf Data Members ���
DifferentialGeometry dgGeom;
mutable DifferentialGeometry dgShading;
const GeometricPrimitive *primitive;

The Surf returned from Intersect includes both information about the differ-
ential geometry of the point on the surface as well as information about its material
properties. dgGeom is the differential geometry computed by the shape’s intersec-
tion routine. Another differential geometry object, dgShading, holds a possibly-
perturbed version of dgGeom; this is computed by the shading system and enables
effects like bump-mapping, which perturbs the surface normal to simulate bumpy
surfaces on smooth base geometry. The primitive is also stored in the Surf so that
other primitive attributes may be fetched by the shading system if needed.
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�
GeometricPrimitive Methods ��� �
bool GeometricPrimitive::Intersect(const Ray &r, Surf *surf) const {

Float thit;
if (shape->Intersect(r, &thit, &surf->dgGeom)) {

surf->primitive = this;
r.maxt = thit;
return true;

}
return false;

}
�
Surf Method Declarations ���
Surf() { primitive = NULL; }

�	���  ������� ��� ���	� � � � ��� � ���
lrt provides a number of different integrators for achieving differing levels

of realism or providing different functionality. Here we will present the classic
Whitted-style ray-tracing integration method.�
WhittedIntegrator Method Definitions ���
Spectrum WhittedIntegrator::L(const Scene *scene, const RayDifferential &ray,

const Sample *sample, Float *alpha) const {
Surf surf;
Spectrum L(0.);
if (scene->Intersect(ray, &surf)) {

if (alpha) *alpha = 1.;�
Compute emitted and reflected light �

}
else {�

Handle ray with no intersection �
}
return L;

}

For the integrator to determine what primitive is hit by a ray, it calls the Intersect
method of the Scene class. Intersect returns information about the closest hit
in the Surf structure, as discussed in the previous section. Because scenes usually
contain many distinct geometric primitives, we pass the intersection-test request on
to the Scene’s lone Primitive. These sets, described in section 4.2, will typically
accelerate the ray tracing computation by only testing rays against those objects
that the ray is likely to intersect.�
Scene Method Declarations ��� �
bool Intersect(const Ray &ray, Surf *surf) const {

return prims->Intersect(ray, surf);
}

These geometric calculations provide half of the functionality of lrt. The other
half lies in the shading process. Recall that the integrator returns a power spectrum
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along a ray. In the case when a ray intersects a geometric primitive, the reflected
and emitted light is returned. The total amount of light returned is represented by
a power spectrum in the outgoing ray direction, -ray.D.

Because Whitted-style ray tracing works by recursively evaluating radiance along
reflected and refracted ray directions, we keep track of the depth of recursion in the
variable rayDepth. After a predetermined recursion depth, we stop tracing re-
flected and refracted rays. By default the maximum recursion depth is five. More
advanced integrators might use other techniques to terminate computation early.
One such technique is Russian Roulette sampling, described in section ??.�
Compute emitted and reflected light ����

Compute emitted light if an area light source ��
Evaluate BSDF at hit point ��
Compute reflection by integrating over the lights �
if (rayDepth++ < maxDepth) {�

Trace rays for specular reflection and refraction �
}
--rayDepth;�
Clean up from integration �
If the ray happened to hit geometry that is itself emissive, we compute its emitted

radiance by calling the Surf’s Le method. If the object is not a light source, this
method will return 0. Light sources are discussed bn Chapter 12.�
Compute emitted light if an area light source ���
L += surf.Le(-ray.D);

To compute reflected light, the integrator must have access to material properties
of the surface at the intersection point as well as illumination arriving at that point.

In order to describe the reflection of light at a point, lrt uses a class called
BSDF, which stands for “Bidirectional Scattering-Distribution Function”. These
functions take an incoming direction and an outgoing direction and return a value
that indicates the amount of light that is reflected from the incoming direction to
the outgoing direction (actually, BSDF’s use a fraction per-wavelength, so they re-
ally return a Spectrum). lrt provides built-in BSDF classes for several standard
scattering functions used in computer graphics. Examples of BSDFs include Lam-
bertian reflection, and the Torrance-Sparrow microfacet model; these are defined
in Chapter 9.

The BSDF at a surface point provides all information needed to shade that point,
but BSDFs may vary across a surface. Surfaces with complex material properties,
such as wood or marble, have a different BSDF at each point. Even if wood is
modelled as perfectly diffuse, the diffuse color at each point will depend on the
wood’s grain. These spatial variations of shading parameters are described with
Textures, which in turn may be either described procedurally or stored in texture
maps; see Chapter 11.

Here we won’t go into further detail about BSDFs and texturing; a method in
Surf returns a pointer to the BSDF at the intersection point on the object.�
Evaluate BSDF at hit point ���
BSDF *bsdf = surf.GetBSDF(ray);
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The class Light implements light sources. There are a number of different
types of light sources in lrt, including point lights, directional lights, area lights,
and ambient lights.

For each light, we compute the light energy, or differential irradiance, falling on
the surface at the point being shaded by calling the light’s dE() method. (Radio-
metric concepts such as energy and differential irradiance are discussed in Chap-
ter 5.) This method also returns the direction vector from the point being shaded to
the light source. The dE() methods will themselves generally trace rays as well to
make sure no other objects are between the light source and the point being shaded,
casting a shadow on the point.

To evaluate the contribution to the reflection light, we multiply dE by the BSDF.
The BSDF is a function of the incoming and outgoing direction. We add the con-
tribution from this light source to a running total of reflected radiance, stored in
L.

After this step, we have computed reflection due to direct lighting: light that
arrives at the surface directly from emissive objects (as opposed to light that has
reflected off other objects in the scene before arriving at the point.)�
Compute reflection by integrating over the lights ���
Vector wi;
for (u_int i = 0; i < scene->lights.size(); ++i) {

VisibilityTester visibility;
Spectrum dE = scene->lights[i]->dE(surf.dgShading.P,

surf.dgShading.Nn, &wi, &visibility);
if (!dE.Black() && visibility.Unoccluded(scene))

L += bsdf->f(-ray.D, wi) * dE *
visibility.Transmittance(scene);

}

In 1979, Turner Whitted developed a new rendering algorithm based on the fact
that light scattered by perfectly specular surfaces (like mirrors or glass objects)
could be modeled with ray-tracing. When a specularly reflective or transmissive
object is hit by a ray, new rays are also traced in the reflected and refracted di-
rections. The radiance along these rays is computed in the same way we compute
radiance along camera rays. It is then scaled appropriately and added to the radi-
ance scattered from the original point. For each of the specular components of the
BSDF, we have the BSDF generate a ray; if the value of the BSDF in that direction
is non-zero, we call the Scene’s radiance estimation function, which will call back
to the WhittedIntegrator’s L function. By continuing this process recursively,
realistic images of multiple reflection and refraction can be generated.�
Trace rays for specular reflection and refraction ���
for (int i = 0; i < bsdf->NumSpecular(); ++i) {

Spectrum fr = bsdf->f_delta(i, -ray.D, &wi);
if (!fr.Black())

L += scene->L(Ray(surf.dgShading.P, wi)) * fr *
fabsf(Dot(wi, surf.dgShading.Nn));

}

When we’re done, we need to free the BSDF that the shader returned.



lights 579
size 494

14 Introduction [Ch. 1

�
Clean up from integration ���
delete bsdf;

Finally, rays that don’t hit any geometry in the scene may still carry radiance
back to the image;

XXXX do this via volume rendering stuff?? XXX�
Handle ray with no intersection ���
if (alpha) *alpha = 0.;
for (u_int i = 0; i < scene->lights.size(); ++i)

L += scene->lights[i]->Le(ray);
if (alpha && !L.Black()) *alpha = 1.;
return L;

That’s all there is to it folks!

�	����� � � ���  � � � � � # #�� �"� � ��� � ���
��#�� ���	�
DAG of possibilities, chapter dependencies.

� �"��� � � � ���"! � � ����� � �

Knuth’s article Literate Programming(Knu84) describes the main ideas behind
literate programming as well as his web programming environment. The entire
TEX typesetting system was written with this system and has been published as
a book(Knu93a). More recently, Knuth has published a collection of graph al-
gorithms in The Stanford Graphbase(Knu93b). Both of these are enjoyable to
read and are respectively excellent presentations of modern automatic typesetting
and graph algorithms. The website http://www.literateprogramming.com has
pointers to many articles about literate programming as well as a variety of literate
programming systems; many refinements have been made since Knuth’s original
development of the idea.

The implementation of the lcc C compiler is described in a literate program
written by Fraser and Hansen and published as A Regartegable C Compiler: Design
and Implementation (FH95).

A good introduction to the C++ programming language is XXX. Stroustroup
XXX is the definitive reference and extensively describes the use of the standard
library.

General books on rendering: Radiosity and Realistic Image Synthesis, Princi-
ples of Digital Image Synthesis, Introduction to Ray Tracing, Roy Hall.

Appel ray tracing shadows, etc (App68)
Kay and Greenberg on transparency (KG79)
Whitted original paper (Whi80)
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�
geometry.h* ����

Source Code Copyright �
#ifndef GEOMETRY_H
#define GEOMETRY_H
#include "lrt.h"
#include <float.h>�
Geometry Classes ��
Geometry Inline Functions �
#endif // GEOMETRY_H

�
geometry.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "geometry.h"�
BBox Method Definitions �
We now present the fundamental geometric primitives around which lrt is built.

Our representation of actual scene geometry (triangles, etc.) is presented in Chap-
ter 3; here we will discuss fundamental building blocks of 3D graphics, such as
points, vectors, rays, and transformations. We assume that the reader is familiar
with the basics of vector geometry and linear algebra.

Affine Spaces

In order to compute numeric coordinates for points and vectors, we need also
to have a coordinate system that their coordinates are in relation to. An affine
space is defined by a frame given by a point po (the origin of the space), and
a set of basis vectors. In an n-dimensional space, the basis vectors are a set of n���
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linearly independent vectors. All vectors �v in the space can be expressed as a linear
combination of the basis vectors. Given a vector �v and the basis vectors �vi, we can
compute scalar values si such that

�v � s1 �v1 � ����� � sn �vn

The scalars si are the representation of �v with respect to the basis. Similarly, for all
points p, we can compute scalars si such that

p � po � s1 �v1 � ����� � sn �vn

This brings us to an ambiguity, however: to define a frame we need a point
and a set of vectors. But we can only meaningfully talk about points and vectors
with respect to a particular frame. Therefore, we will define a standard frame with
origin

�
0 � 0 � 0 � and basis vectors

�
1 � 0 � 0 � , � 0 � 1 � 0 � , and

�
0 � 0 � 1 � that other frames

will be defined with respect to. We will call this coordinate system world space;
all other coordinate systems are defined in terms of it.

� �
��� ��� ���"� #
�
Geometry Classes ���
class Vector {
public:�

Vector Constructors ��
Vector Methods ��
Vector Public Data �

};

A vector is a direction in 3D space. The most convenient representation of a
vector is a three-tuple of components that give its magnitude in terms of the x, y,
and z axes of the space it is defined in. The individual components of a vector �v
will be written vx, vy, and vz.�
Vector Public Data ���
Float x, y, z;

The Vector constructor allows values for x, y, and z to be passed in. The default
for all these values is 0.0.�
Vector Constructors ���
Vector()

: x(0.), y(0.), z(0.) {
}

�
Vector Constructors ��� �
Vector(Float xx, Float yy, Float zz)

: x(xx), y(yy), z(zz) {
}

Arithmetic

Adding and subtracting vectors is done component-wise. The usual geometric
interpretation of vector addition and subtraction is shown in Figures 2.1 and 2.2.
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Figure 2.1: Vector addition. Notice that the sum �v � �w forms the diagonal of
the parallelogram formed by �v and �w. Also, the figure on the right shows the
commutativity of vector addition.
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Figure 2.2: Vector subtraction. The difference �v � �w is the other diagonal of the
parallelogram formed by �v and �w.
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�
Vector Methods ���
Vector operator+(const Vector &v) const {

return Vector(x + v.x, y + v.y, z + v.z);
}

Vector& operator+=(const Vector &v) {
x += v.x; y += v.y; z += v.z;
return *this;

}

The code for subtracting two vectors is similar, and not shown here.

Scaling

We can also multiply a vector component-wise by a scalar, effectively changing
its length. We need three functions to do this in order to cover all of the different
ways that this operation may be written in source code (e.g. v*s, s*v, and v *=
s.)�
Vector Methods ��� �
Vector operator*(Float f) const {

return Vector(f*x, f*y, f*z);
}

Vector &operator*=(Float f) {
x *= f; y *= f; z *= f;
return *this;

}
�
Geometry Inline Functions ��� �
inline Vector operator*(Float f, const Vector &v) { return v*f; }

Similarly, a vector can be divided component-wise by a scalar. The code for
scalar division is similar to scalar multiplication, though division of a scalar by a
vector is not well-defined, so is not included. Here we will use the optimization
of turning three divides into one divide to compute the reciprocal and then three
multiplications.�
Vector Methods ��� �
Vector operator/(Float f) const {

Float inv = 1.f/f;
return Vector(x * inv, y * inv, z * inv);

}

Vector &operator/=(Float f) {
Float inv = 1.f/f;
x *= inv; y *= inv; z *= inv;
return *this;

}

We also provide the unary negation operator for Vectors. This returns a new
vector pointing in the opposite direction of the original one.
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�
Vector Methods ��� �
Vector operator-() const {

return Vector(-x, -y, -z);
}

Normalization

It is often necessary to normalize a vector; that is, to compute a new vector
pointing in the same direction but with length of one. To do this, we divide each
component by the length of the vector, denoted in text by

� �v � . The method to
do this is called Hat, which is a common mathematical notation for a normalized
vector.�
Vector Methods ��� �
Float LengthSquared() const { return x*x + y*y + z*z; }
Float Length() const { return sqrtf( LengthSquared() ); }
Vector Hat() const { return (*this)/Length(); }

Dot and Cross Product

Two further useful operations on vectors are the dot product (also known as the
scalar or inner product) and the cross product. For two vectors �v and �w, their dot
product

� �v � �w � is defined as

vxwx � vywy � vzwz

�
Geometry Inline Functions ��� �
inline Float Dot(const Vector &v1, const Vector &v2) {

return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}

The dot product has a simple relationship to the angle between the two vectors:

� �v � �w � � � �v ��� �w �
cosθ

where θ is the angle between �v and �w. It follows from this that
� �v � �w � is zero if

and only if �v and �w are perpendicular (provided that neither �v nor �w is degenerate–
equal to

�
0 � 0 � 0 � ). Forthermore, if �v and �w are both of unit length, we can easily

compute the cosine of the angle between them with their dot product. As the cosine
of the angle between two vectors often needs to be computed in computer graphics,
we will frequently make use of this property.

A few basic properties directly follow from the definition. If �u, �v, and �w are
vectors and s is a scalar value, then

� �u � �v � � � �v � �u ��
s �u � �v � � s

� �v � �u �� �u � � �v � �w ��� � � �u � �v � � � �u � �w �

The cross product is another useful vector operation. Given two vectors in 3D,
the cross product �v � �w is a vector that is perpendicular to both of them. It is defined
as:
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h
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θ

Figure 2.3: The area of a parallelogram with edges given by vectors �v1 and �v2 is
equal to �v2h. The cross product can easily compute this value as �v1 � �v2.

�
ṽ � w̃ � x � �

vywz � �
�
vzwy ��

ṽ � w̃ � y � �
vzwx � �

�
vxwz ��

ṽ � w̃ � z � �
vxwy � �

�
vywx �

XXX left-handed vs. right handed coordinate systems, etc... XXX
An easy way to remember this is to compute the “determinant” of the matrix:

�v � �w �
�
�
�
�
�
�

i vx wx

j vy wy

k vz wz

�
�
�
�
�
�

where i, j, and k represent the axes
�
1 � 0 � 0 � , � 0 � 1 � 0 � , and

�
0 � 0 � 1 � , respectively.�

Geometry Inline Functions ��� �
inline Vector Cross(const Vector &v1, const Vector &v2) {

return Vector((v1.y * v2.z) - (v1.z * v2.y),
(v1.z * v2.x) - (v1.x * v2.z),
(v1.x * v2.y) - (v1.y * v2.x));

}

Using the basic properties of the dot product, it can be shown that if �u � �v � �w,
then � �u � � � �v � � �w �

sinθ � (2.1.1)

where θ is the angle between �v and �w. An important implication of this is that the
cross product of two perpendicular unit vectors is itself a unit length vector. Note
also that the result of the cross product is a degenerate vector if �v and �w are parallel.

This definition also shows a convenient way to compute the area of a parallelogram–
see Figure 2.3. If the two edges of the parallelogram are given by vectors �v1 and
�v2, and has height h, the area is given by

� �v2
�
h. Since h � sinθ

� �v1
�
, we can use

Equation 2.1.1 to see that the area is �v1 � �v2.

Coordinate system from a vector

We can use the fact that the cross product gives a vector orthogonal to the two
vectors to write a function that takes one vector and returns two new vectors so that
the three of them form an orthonormal coordiante system. Specifically, all three
of the vectors will be perpendicular to each other. Note that the other two vectors



Sec. 2.2] Points 21

20 Cross
16 Vector

returned are only unique up to a rotation about the given vector. This function
assumes that the vector passed in, v1, has already been normalized.

We first construct a perpendicular vector by zeroing one of the two components
of the original vector and permuting the remaining two. Inspection of the two cases
should make clear that v2 will be normalized and that the dot product

�
v1
� v2 � will

be equal to zero. Given these two perpendicular vectors, one more cross product
wraps things up to give us the third, which by definition of the cross product will
be be perpendicular to the first two.�
Geometry Inline Functions ��� �
inline void CoordinateSystem(const Vector &v1, Vector *v2, Vector *v3) {

if (fabsf(v1.x) > fabsf(v1.y)) {
Float invLen = 1.f / sqrtf(v1.x*v1.x + v1.z*v1.z);
*v2 = Vector(-v1.z * invLen, 0.f, v1.x * invLen);

}
else {

Float invLen = 1.f / sqrtf(v1.y*v1.y + v1.z*v1.z);
*v2 = Vector(0.f, v1.z * invLen, -v1.y * invLen);

}
*v3 = Cross(v1, *v2);

}

� ���  ��� ����#
�
Geometry Classes ��� �
class Point {
public:�

Point Constructors ��
Point Methods ��
Point Public Data �

};

A point is a zero-dimensional quantity that represents a location in 3D space. To
represent a Point, we simply need to know its x, y, and z coordinates with respect
to its coordinate system. Although the same

�
x � y � z � representation is used as is

used for vectors, the fact that a point represents a position and a vector represents
a direction leads to a number of important differences in how they are treated.�
Point Public Data ���
Float x,y,z;

�
Point Constructors ���
Point()

: x(0.), y(0.), z(0.) {
}

�
Point Constructors ��� �
Point(Float xx, Float yy, Float zz)

: x(xx), y(yy), z(zz) {
}
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P-Q

Figure 2.4: Obtaining the vector between two points. The vector �P � Q is the
component-wise subtraction of the points P and Q.

There are certain Point methods which either return or take a Vector. For in-
stance, you can add a vector to a point, offsetting it in the given direction, obtaining
a new point. Alternately, you can subtract one point from another, obtaining the
vector between them, as shown in Figure 2.4.�
Point Methods ���
Point operator+(const Vector &v) const {

return Point(x + v.x, y + v.y, z + v.z);
}

Point &operator+=(const Vector &v) {
x += v.x; y += v.y; z += v.z;
return *this;

}

Vector operator-(const Point &p) const {
return Vector(x - p.x, y - p.y, z - p.z);

}

Point operator-(const Vector &v) const {
return Point(x - v.x, y - v.y, z - v.z);

}

Point &operator-=(const Vector &v) {
x -= v.x; y -= v.y; z -= v.z;
return *this;

}

The distance between two points is easily computed by subtracting the two of
them to compute a vector and then finding the length of that vector.
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�
Geometry Inline Functions ��� �
inline Float Distance(const Point &p1, const Point &p2) {

return (p1 - p2).Length();
}
inline Float DistanceSquared(const Point &p1, const Point &p2) {

return (p1 - p2).LengthSquared();
}

Although it doesn’t make sense mathematically to weight points by a scalar or
add two points together, we will still allow these operations in order to be able to
compute weighted sums of points, which does make sense so long as the weights
used sum to one.�
Point Methods ��� �
Point &operator+=(const Point &p) {

x += p.x; y += p.y; z += p.z;
return *this;

}
�
Point Methods ��� �
Point operator+(const Point &p) {

return Point(x + p.x, y + p.y, z + p.z);
}

�
Point Methods ��� �
Point operator* (Float f) const {

return Point(f*x, f*y, f*z);
}

�
Point Methods ��� �
Point &operator*=(Float f) {

x *= f; y *= f; z *= f;
return *this;

}
�
Geometry Inline Functions ��� �
inline Point operator*(Float f, const Point &p) { return p*f; }

� ����� �
� � ��!$#
�
Geometry Classes ��� �
class Normal {
public:�

Normal Constructors ��
Normal Methods ��
Normal Public Data �

};

A surface normal is a vector that is perpendicular to a surface at a particular
position. It can be defined as the cross product of any two non-parallel vectors that
are tangent to the surface at a point. Although normals have some similarities with
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vectors, it is important to distinguish between the two of them; because normals
are defined in terms of their relationship to a particular surface. For example they
behave differently with respect to transformations; this difference is discussed in
Section 2.6.

The implementations of Normals and Vectors are very similar: like vectors,
normals are represented by three Floats x, y, and z, they can be added and sub-
tracted to compute new normals and they can be scaled and normalized. However,
a normal cannot be added to a point and we cannot take the cross product of two
normals. Note that in an unfortunate turn of terminology normals are not necessar-
ily normalized.

We provide an extra Normal constructor that constructs a Normal from a Vector.
In order to ensure that this conversion only happens when specifically intended, the
C++ explicit keyword is added. We will also add a Vector constructor that goes
the other way.�
Normal Constructors ��� �
explicit Normal(const Vector &v)

: x(v.x), y(v.y), z(v.z) {}
�
Vector Constructors ��� �
explicit Vector(const Normal &n);

�
Geometry Inline Functions ��� �
inline Vector::Vector(const Normal &n)

: x(n.x), y(n.y), z(n.z) { }

Thus, given the declarations Vector v; Normal n;, the assignment n = v is
illegal, so we must explicitly convert the vector, as in n = Normal(v).

We also overload the Dot function to compute dot products between the various
possible combinations of normals and vectors.�
Geometry Inline Functions ��� �
inline Float Dot(const Normal &n1, const Vector &v2) {

return n1.x * v2.x + n1.y * v2.y + n1.z * v2.z;
}
inline Float Dot(const Vector &v1, const Normal &n2) {

return v1.x * n2.x + v1.y * n2.y + v1.z * n2.z;
}
inline Float Dot(const Normal &n1, const Normal &n2) {

return n1.x * n2.x + n1.y * n2.y + n1.z * n2.z;
}

� ��� � ����#

�
Geometry Classes ��� �
class Ray {
public:�

Ray Constructor Declarations ��
Ray Method Declarations ��
Ray Public Data �

};
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Figure 2.5: A ray is a semi-infinite line defined by its origin and direction.

A ray is a semi-infinite line specified by its origin and direction. We represent a
Ray with a Point for the origin, and a Vector for the direction. A ray is denoted
as r; it has origin o

�
r � and direction �d � r � , as shown in Figure 2.5.

The parametric form of a ray gives the set of points that the ray passes through:

r
�
t � � o

�
r � � t �d � r � (2.4.2)

Because we will be referring to these variables often throughout the code, the
origin and direction members of a Ray are named simply O and D.�
Ray Public Data ���
Point O;
Vector D;

In addition, we include fields to restrict the ray to a particular segment. These
fields, called mint and maxt, allow us to restrict the ray to a potentially finite seg-
ment of points � r � mint � � r � maxt ��� . Notice that these fields are declared as mutable,
meaning that they can be changed even if the Ray structure that contains them is
const. Because we need to update these fields all the time, we elect to keep the
code simpler rather than adding mutator methods.�
Ray Public Data ��� �
mutable Float mint, maxt;

For simulating motion blur, each ray may have a unique time value associated
with it. The rest of the renderer is responsible for constructing a representation of
the scene at the appropriate time for each ray.�
Ray Public Data ��� �
Float time;

Constructing Rays is straightforward. A default constructor is provided, which
lets the default constructors of Points and Vectors set the origin and direction to�
0 � 0 � 0). Alternatively, a particular point and direction can be provided. Also note

that mint is initialized to a small constant rather than 0. This is a classic ray-tracing
hack to avoid false self-intersections due to floating point precision problems.
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�
Ray Constructor Declarations ���
Ray(): mint(RAY_EPSILON), maxt(FLT_MAX), time(0.f) {}
Ray(const Point &origin, const Vector &direction,

Float start = RAY_EPSILON, Float end = FLT_MAX, Float t = 0.f)
: O(origin), D(direction), mint(start), maxt(end), time(t) {

}
�
Global Constants ���
#define RAY_EPSILON 1e-3f

Because a ray can be thought of as a function of a single parameter t, we will
overload the function application operator for rays. This way, when we need to
find the point at a particular distance along a ray, we can write code like:

Ray r(Point(0,0,0), Vector(1,2,3));
Point p = r(1.7);

�
Ray Method Declarations ���
Point operator()(Float t) const { return O + D * t; }

Ray differentials

In order to be able perform better anti-aliasing with the texture functions defined
in Chapter 11, we will keep track of some additional information with each camera
ray that we trace. In Section 11.1, we will use this information to estimate the area
on the image plane that a part of the scene being shaded projects to. From this,
we can compute the texture’s average value over that area, leading to a better final
image.

With each ray, we store information about two auxiliary rays in the RayDifferential
class. These two rays are represent camera rays offset one pixel in the x and y di-
rections. By determining at the area that these three rays project to on the object
being shaded, we can estimate the filter extent necessary for proper anti-aliasing.

Because the RayDifferential class inherits from Ray, geometric interfaces
in the system are written to take const Ray & values, so that either a Ray or
RayDifferential can be passed in and the routines can just treat either as a Ray.
Only the routines related to anti-aliasing and texturing need to take RayDifferential
parameters.�
Geometry Classes ��� �
class RayDifferential : public Ray {
public:�

RayDifferential Constructors ��
RayDifferential Public Data �

};
�
RayDifferential Constructors ���
RayDifferential() { hasDifferentials = false; }
RayDifferential(const Ray &ray) : Ray(ray) { hasDifferentials = false; }

�
RayDifferential Public Data ���
bool hasDifferentials;
Ray rx, ry;
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� ��� ������#�� ��!�� � ����� � � �"�	��� � � � ��� � #
Two-dimensional extents
�
Geometry Classes ��� �
struct Extent2D {�

Extent2D Constructors ��
Extent2D Data �

};

It’s useful to have a structure that holds a representation of an axis-aligned region
of space in two-dimensions; Extent2D takes care of that here. This will be useful
later, for example in Chapters 6 and 7, where it will simplify a number of functions
by saving us from needing to pass four individual Floats when we are providing
them with a 2D region on the image plane.�
Extent2D Constructors ���
Extent2D() { x0 = x1 = y0 = y1 = 0.; }
Extent2D(Float xx0, Float xx1, Float yy0, Float yy1) {

x0 = min(xx0, xx1);
x1 = max(xx0, xx1);
y0 = min(yy0, yy1);
y1 = max(yy0, yy1);

}
�
Extent2D Data ���
Float x0, x1, y0, y1;

Three-dimensional bounding boxes
�
Geometry Classes ��� �
class BBox {
public:�

BBox Constructors ��
BBox Method Declarations ��
BBox Public Data �

};

The scenes that we will render will often contain objects that are computation-
ally expensive to process. For many operations, it is often useful to have a three-
dimensional bounding volume that encloses an object. If, for example, we know
that we cannot see the bounding volume, we can avoid processing all of the objects
inside of it.

The measurable benefit of this technique is related to two factors: the expense
of processing the bounding volume compared to the expense of processing the
objects inside of it, and the tightness of the fit. If we have a very loose bound
around an object, we will often incorrectly determine that its contents need to be
examined further. However, in order to make the bounding volume a closer fit, it
may be necessary to make the volume a complex object itself, and the expense of
processing it increases.
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Figure 2.6: An example axis-aligned bounding box. We store only the coordinates
of the minimum and maximum points of this box; all other box corners are implicit
in this representation.

There are many choices for bounding volumes; we will be using axis-aligned
bounding boxes (AABBs). (Other popular choices are spheres and oriented bound-
ing boxes (OBBs)). An AABB can be described by one of its vertices and three
lengths, each representing the distance spanned along the x, y, and z coordinate
axes. Alternatively, two opposite vertices of the box describe it. We will store the
positions of the vertex with minimum x, y, and z values, and the one with maximum
x, y, and z. A 2D illustration of a bounding box and its representation is shown in
Figure 2.6.

The default BBox constructor sets the extent to be degenerate; by violating the
invariant that pMin.x <= pMax.x, etc., we ensure than any operations done with
this box will have the correct result for a completely empty box.�
BBox Constructors ���
BBox() {

pMin = Point( INFINITY, INFINITY, INFINITY);
pMax = Point(-INFINITY, -INFINITY, -INFINITY);

}
�
BBox Public Data ���
Point pMin, pMax;

It is also useful to be able to initialize a BBox to enclose a single point.�
BBox Constructors ��� �
BBox(const Point &p) : pMin(p), pMax(p) { }

If the user passes two corner points, p1 and p2 to define the box, since p1 and
p2 are not necessarily ordered so that [[p1.x ¡= p2.x]] etc, we need to find their
minimum and maximum component-wise values.
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�
BBox Constructors ��� �
BBox(const Point &p1, const Point &p2) {

pMin = Point(min(p1.x, p2.x),
min(p1.y, p2.y),
min(p1.z, p2.z));

pMax = Point(max(p1.x, p2.x),
max(p1.y, p2.y),
max(p1.z, p2.z));

}

Given a bounding box and a point, we can compute a new bounding box that
encompasses that point as well as the space that the original box encompassed.�
BBox Method Definitions ���
BBox Union(const BBox &b, const Point &p) {

BBox ret = b;
ret.pMin.x = min(b.pMin.x, p.x);
ret.pMin.y = min(b.pMin.y, p.y);
ret.pMin.z = min(b.pMin.z, p.z);
ret.pMax.x = max(b.pMax.x, p.x);
ret.pMax.y = max(b.pMax.y, p.y);
ret.pMax.z = max(b.pMax.z, p.z);
return ret;

}

And similarly, we can construct a new bounding box that also encompasses the
space encompassed by another bounding box. The definition of this function is
similar to the Union method above that takes a Point; the difference is the pMin
and pMax of the other box are used for the min() and max() tests, respectively.�
BBox Method Declarations ��� �
friend BBox Union(const BBox &b, const BBox &b2);

We can also take two bounding boxes and compute their intersection: the bound-
ing box that encloses the parts of them that overlap.�
BBox Method Definitions ��� �
BBox Intersection(const BBox &b1, const BBox &b2) {

BBox ret;
ret.pMin.x = max(b1.pMin.x, b2.pMin.x);
ret.pMin.y = max(b1.pMin.y, b2.pMin.y);
ret.pMin.z = max(b1.pMin.z, b2.pMin.z);
ret.pMax.x = min(b1.pMax.x, b2.pMax.x);
ret.pMax.y = min(b1.pMax.y, b2.pMax.y);
ret.pMax.z = min(b1.pMax.z, b2.pMax.z);
return ret;

}

We can also easily determine if two BBoxes overlap seeing if their extents over-
lap in x, y, and z.
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�
BBox Method Declarations ��� �
bool Overlaps(const BBox &b) const {

bool x = (pMax.x >= b.pMin.x) && (pMin.x <= b.pMax.x);
bool y = (pMax.y >= b.pMin.y) && (pMin.y <= b.pMax.y);
bool z = (pMax.z >= b.pMin.z) && (pMin.z <= b.pMax.z);
return (x && y && z);

}

We have a quick test that tells us if a given point is inside the bounding box.�
BBox Method Declarations ��� �
bool Inside(const Point &pt) const {

return (pt.x >= pMin.x && pt.x <= pMax.x &&
pt.y >= pMin.y && pt.y <= pMax.y &&
pt.z >= pMin.z && pt.z <= pMax.z);

}

And finally, the Expand method pads out the bounding box by a user-supplied
constant factor.�
BBox Method Declarations ��� �
void Expand(Float delta) {

pMin -= Vector(delta, delta, delta);
pMax += Vector(delta, delta, delta);

}
�
BBox Method Declarations ��� �
Float Volume() const {

Vector d = pMax - pMin;
return d.x * d.y * d.z;

}

� ��� � � �"��# � �
� � ��� ��� ��#
�
transform.h* ����

Source Code Copyright �
#ifndef TRANSFORM_H
#define TRANSFORM_H
#include "lrt.h"
#include "geometry.h"�
Transform Declarations ��
Transform Inline Functions �
#endif // TRANSFORM_H

�
transform.cc* ����

Source Code Copyright �
#include "transform.h"
#include "shapes.h"�
Transform Methods �



Sec. 2.6] Transformations 31

In general, a transformation T can be described as a mapping from points to
points and from vectors to vectors:

p
� � T

�
p � �v � � T

� �v �
The transformation T may be an arbitrary procedure. However, we will consider a
subset of all of the possible transformations in this chapter. In particular, they will
be:


 Linear: If T is an arbitrary linear transformation and s is an arbitrary scalar,
then T

�
s �v � � sT

� �v � and T
� �v1 � �v2 � � T

� �v1 � � T
� �v2 � . These two properties

can greatly simplify reasoning about transformations.


 Continuous: roughly speaking, T leaves the neighborhoods around p and �v
around p

�

and �v �

.


 One-to-one and invertible: for each p, T maps p to a single p
�

. Furthermore,
for each p

�

, we can find an inverse transform such that T � 1 � p � � � p.

We will often want to take a point, vector, or normal defined with respect to
one coordinate frame and find its coordinate values with respect to another frame.
Using basic properties of linear algebra, it can be shown that in three dimensions, a
4x4 matrix can express the linear transformation of a point or vector from one frame
to another. Furthermore, such a 4x4 matrix suffices to express all linear transfor-
mations of points and vectors within a fixed frame, such as translation in space or
rotation around a point. As such, there are two different (and incompatible!) ways
that a matrix can be interpreted:

1. Transformation of the frame: given a point, the matrix could express how to
compute a new point in the same frame that represents the transformation of
the original point (e.g. by translating it in some direction.)

2. Transformation from one frame to another: a matrix can express how a new
point in a new frame is computed given a point in an original frame.

In general, transformations like these make it possible to work in the most con-
venient coordinate space. For example, we can write routines that define a virtual
camera that looks at a scene to be rendered assuming that the camera is located
at the origin, is looking down the z axis, and where the y axis points in the up
direction. These assumptions may greatly simplify the camera implementation.
However, so that we can place the camera at any point in the scene looking in
any direction, we can construct a transformation that maps points in the scene’s
coordinate space to the camera’s coordinate space.�
Transform Declarations ���
class Transform {
public:�

Transform Constructor Declarations ��
Transform Method Declarations �

private:�
Transform Private Data �

};
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A transformation is represented by the elements of the matrix m[4][4], repre-
sented by a reference to a Matrix4x4 object. The low-level Matrix4x4 class is
defined in Appendix A.5. m is stored in row-order form; to reference the matrix
element mi � j , where i and j range from zero to three, and where i is the row number
and j is the column number, we access element m[i][j]. For convenience, we
also store the inverse of the matrix m in the m_inv member; it will be handy to have
the inverse easily available for a number of situations.�
Transform Private Data ���
Reference<Matrix4x4> m, m_inv;

Basic operations

When a new Transform is created, it will default to the identity transforma-
tion: the transformation that maps each point and each vector to itself. This is
represented by the identity matrix:

I �

���
�

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

����
�

�
Transform Constructor Declarations ���
Transform() {

m = m_inv = new Matrix4x4;
}

�
Transform Constructor Declarations ��� �
Transform(Float mat[4][4]) {

m = new Matrix4x4(mat[0][0], mat[0][1], mat[0][2], mat[0][3],
mat[1][0], mat[1][1], mat[1][2], mat[1][3],
mat[2][0], mat[2][1], mat[2][2], mat[2][3],
mat[3][0], mat[3][1], mat[3][2], mat[3][3]);

m_inv = m->Inverse();
}

�
Transform Constructor Declarations ��� �
Transform(const Reference<Matrix4x4> &mat) {

m = mat;
m_inv = m->Inverse();

}
�
Transform Constructor Declarations ��� �
Transform(const Reference<Matrix4x4> &mat,

const Reference<Matrix4x4> &minv) {
m = mat;
m_inv = minv;

}

Homogeneous coordinates



Sec. 2.6] Transformations 33

Given a frame defined by
�
p � �v1 � �v2 � �v3 � , there is ambiguity between the repre-

sentation of a point
�
px � py � pz � and a vector

�
vx � vy � vz � with equivalent coordinates.

However, taking the definition of the representations of points and vectors, we
can write the point as � s1 s2 s3 1 � � �v1 �v2 �v3 p � T and the vector as � s �

1 s
�

2 s
�

3 0 � � �v1 �v2 �v3 p � T

These four-vectors of three si values and a zero or one are homogeneous repre-
sentations of the point and the vector. The fourth coordinate of the homogeneous
representation is sometimes called the weight. For a point, its value can be any
scalar other than zero: the homogeneous points � 1 � 3 � � 2 � 1 � and � � 2 � � 6 � 4 � � 2 �
describe the same Cartesian point

�
1 � 3 � � 2 � .

Given

M �

���
�

m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m22 m33

����
�

Then
M � 1 � 0 � 0 � 0 � T � � m00 � m10 � m20 � m30 � T �

So directly reading the columns of the matrix shows how the basis vectors

�x � � 1 � 0 � 0 � 0 � T

�y � � 0 � 1 � 0 � 0 � T

�z � � 0 � 0 � 1 � 0 � T

p � � 0 � 0 � 0 � 1 � T

Are transformed by the matrix. And by characterizing how the basis is transformed,
the transformation thus characterizes how any point or vector specified in terms of
that basis is transformed.

So, for example, if we know how the basis vectors are changed by a linear
transform, we can determine what that transformation is from the coordinates of
the transformed basis vectors.

Specifically, the coordinates of the basis vectors in the matrix must be defined
with respect to some particular frame. Then, the matrix describes how stuff in that
frame is transformed...

We will not use homogeneous coordinates explicitly in our code; there is no
Homogeneous class. However, the various transformation routines in the next sec-
tion will implicitly convert points, vectors, and normals to homogeneous form,
transform the homogeneous points, and then convert them back before returning
the result. We will explain this further as it happens.

Translations

One of the simplest transformations is the translation T
�
∆x � ∆y � ∆z � . When ap-

plied to a point p, it translates p’s coordinates by ∆x, ∆y, and ∆z, as shown in
Figure 2.7.

The translation has some simple properties:
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Figure 2.7: Translation in 2D.

T
�
0 � 0 � 0 � � I

T
�
x1 � y1 � z1 � � T

�
x2 � y2 � z2 � � T

�
x1 � x2 � y1 � y2 � z1 � z2 �

T
�
x1 � y1 � z1 � � T

�
x2 � y2 � z2 � � T

�
x2 � y2 � z2 � � T

�
x1 � y1 � z1 �

T
� 1 � x � y � z � � T

�
� x � � y � � z �

Translation should only affect points, leaving vectors unchaged.
In matrix form, the translation transformation is:

T
�
∆x � ∆y � ∆z � �

���
�

1 0 0 ∆x
0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

����
�

When we consider the operation of a translation matrix on a point, we see
the value of homogeneous coordinates. Consider the product of the matrix for
T
�
∆x � ∆y � ∆z � with a point p in homogeneous coordinates � xyz1 � :���

�
1 0 0 ∆x
0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

����
�

���
�

x
y
z
1

����
� �

���
�

x � ∆x
y � ∆y
z � ∆z

1

����
�

As expected, we have computed a new point with its coordinates offset by�
∆x � ∆y � ∆z � . However, if we apply T to a vector �v, we have:���

�
1 0 0 ∆x
0 1 0 ∆y
0 0 1 ∆z
0 0 0 1

����
�

���
�

x
y
z
0

����
� �

���
�

x
y
z
0

����
�

The result is the same vector �v. This makes sense, since translations shouldn’t have
any effect on vectors; because vectors represent directions, a translation leaves
them unchanged.

We will define a routine that creates a new Transform matrix that represents a
given translation. We define this as a plain global function: rather than operating
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on a Transform that already exists, this returns a new Transform with the given
translation. Though the possible extra creation of temporary Transforms could
have a negative performance impact if called frequently, this doesn’t have a sig-
nificant impact on lrt since new Transforms aren’t computed during the main
rendering loop after the scene has been specified.�
Transform Methods ��� �
Transform Translate(const Vector &delta) {

Matrix4x4 *m, *minv;
m = new Matrix4x4(1, 0, 0, delta.x,

0, 1, 0, delta.y,
0, 0, 1, delta.z,
0, 0, 0, 1);

minv = new Matrix4x4(1, 0, 0, -delta.x,
0, 1, 0, -delta.y,
0, 0, 1, -delta.z,
0, 0, 0, 1);

return Transform(m, minv);
}

Scaling

Another basic transformation is the scale transform. This has the effect of taking
a point or vector and multiplying its components by scale factors in x, y, and z:
S
�
2 � 2 � 1 � � x � y � z � � �

2x � 2y � z � . It has the following basic properties:

S
�
1 � 1 � 1 � � I

S
�
x1 � y1 � z1 � � S

�
x2 � y2 � z2 � � S

�
x1x2 � y1y2 � z1 � z2 �

S
� 1 � x � y � z � � S

�
1
x
� 1
y
� 1
z �

We can differentiate between uniform scaling, where all three scale factors have
the same value and non-uniform scaling, where they may have different values.
The general scale matrix is

S
�
x � y � z � �

���
�

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1

����
�
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�
Transform Methods ��� �
Transform Scale(Float x, Float y, Float z) {

Matrix4x4 *m, *minv;
m = new Matrix4x4(x, 0, 0, 0,

0, y, 0, 0,
0, 0, z, 0,
0, 0, 0, 1);

minv = new Matrix4x4(1.f/x, 0, 0, 0,
0, 1.f/y, 0, 0,
0, 0, 1.f/z, 0,
0, 0, 0, 1);

return Transform(m, minv);
}

X, Y, and Z axis rotations

Another useful type of transformation is the rotation. In general, we can define
an arbitrary axis from the origin in any direction and can then rotate around that
axis by a given angle. The most common rotations of this type are around the x,
y, and z coordinate axes. We will write these rotations as Rx

�
θ � , etc.. The rotation

around an arbitrary axis
�
x � y � z � is denoted by R � x � y � z �

�
θ � .

Rotations also have some basic properties:

Ra
�
0 � � I

Ra
�
θ1 ��� Ra

�
θ2 � � Ra

�
θ1 � θ2 �

Ra
�
θ1 ��� Ra

�
θ2 � � Ra

�
θ2 � � Ra

�
θ1 �

R � 1
a

�
θ � � Ra

�
� θ � � RT

a

�
θ �

where RT is the matrix transpose of R. This property, that the inverse of R is
equal to its transpose (a quantity that is much easier to compute than a full matrix
inverse!), stems from the fact that we know that R is an orthonormal matrix; its
upper 3x3 components are all normalized and orthogonal to each other.

The matrix for rotation around the x axis is

Rx
�
θ � �

���
�

1 0 0 0
0 cosθ � sinθ 0
0 sinθ cosθ 0
0 0 0 1

����
�

Figure 2.8 gives an intuition for how this matrix works. It’s easy to see that

Rx
�
θ � � � 1 � 0 � 0 � 0 � T � � 1 � 0 � 0 � 0 � ;

it leaves the x axis unchanged. In maps the y axis
�
0 � 1 � 0 � to

�
0 � cos θ � sin θ � and

the z axis to
�
0 � � sin θ � cos θ � . More specifically, reading the columns of Rx

�
θ � , we

can directly see what vectors the original coordinate axes are transformed to. The
y and z axes remain in the same plane, perpendicular to the x axis, but are rotated
around the circle by the given angle. An arbitrary point in space is similarly rotated
about x while staying in the same yz plane as it was originally.

The implementation of the RotateX creation function is straightforward.
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Figure 2.8: Rotation by an angle θ about the x axis leaves the x coordinate un-
changed. The y and z axes are mapped to the vertices given by the dashed lines; y
and z coordinates move accordingly.

�
Transform Methods ��� �
Transform RotateX(Float angle) {

Float sin_t = sinf(Radians(angle));
Float cos_t = cosf(Radians(angle));
Matrix4x4 *m = new Matrix4x4(1, 0, 0, 0,

0, cos_t, -sin_t, 0,
0, sin_t, cos_t, 0,
0, 0, 0, 1);

return Transform(m, m->Transpose());
}

Similarly, for rotation around y and z, we have

Ry
�
θ � �

���
�

cos θ 0 sinθ 0
0 1 0 0

� sinθ 0 cos θ 0
0 0 0 1

����
� Rz

�
θ � �

���
�

cosθ � sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

����
�

The implementations of RotateY and RotateZ follow directly and will not be
included here.

Rotation around an arbitrary axis

Finally, we provide rotation around an arbitrary axis. The usual derivation of
this is based on computing rotations that map the given axis to a fixed axis (e.g. z),
performing the rotation there, and then rotating the fixed axis back to the original
axis. A more elegant derivation can be constructed with vector algebra.

Consider a normalized direction vector a that gives the axis to rotate around by
angle θ and a vector v to be rotated (see Figure 2.9). First, we can compute the
point p along the axis a: this point is in the plane perpendicular to a that also goes
through the end-point of v.

p � �acosα � �a � �v � �a � �



38 Geometry and Transformations [Ch. 2

Figure 2.9: Rotation about an arbitrary axis a: ...

We now compute a pair of basis vectors �v1 and �v2 in this plane. Trivially, one of
them is

�v1
� �v � �p

and the other can be computed with a cross product

�v2
� � �v1 � �a ���

Because �a is normalized, �v1 and �v2 have the smae length, equal to the distance
from �v to p. To now compute the rotation by θ degrees about the point p in the
plane of rotation, the rotation formulas above give us

�v � � p 	
�v1 cos θ 	��v2 sinθ �

To convert this to a rotation matrix, we apply this formula to the basis vectors
�v � � 1 � 0 � 0 � , �v � � 0 � 1 � 0 � , and �v � � 0 � 0 � 1 � to get the values of the rows of the
matrix. The result of all this is encapsulated in the function below.
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�
Transform Methods ��� �
Transform Rotate(Float angle, const Vector &axis) {

Vector a = axis.Hat();
Float s = sinf(Radians(angle));
Float c = cosf(Radians(angle));
Float m[4][4];

m[0][0] = a.x * a.x + (1.f - a.x * a.x) * c;
m[0][1] = a.x * a.y * (1.f - c) - a.z * s;
m[0][2] = a.x * a.z * (1.f - c) + a.y * s;
m[0][3] = 0;

m[1][0] = a.x * a.y * (1.f - c) + a.z * s;
m[1][1] = a.y * a.y + (1.f - a.y * a.y) * c;
m[1][2] = a.y * a.z * (1.f - c) - a.x * s;
m[1][3] = 0;

m[2][0] = a.x * a.z * (1.f - c) - a.y * s;
m[2][1] = a.y * a.z * (1.f - c) + a.x * s;
m[2][2] = a.z * a.z + (1.f - a.z * a.z) * c;
m[2][3] = 0;

m[3][0] = 0;
m[3][1] = 0;
m[3][2] = 0;
m[3][3] = 1;

Matrix4x4 *mat = new Matrix4x4(m);
return Transform(mat, mat->Transpose());

}

The look-at transformation

There is a transformation that is particularly useful for placing a camera in the
scene; it is known as the look-at transformation. The user species the desired posi-
tion of the camera, the point the camera is looking at, and an “up” vector that orients
the camera along the viewing direction specified by the first two parameters. All of
these values are given in world-space coordinates. The look-at transformation uses
these values to initialize a transformation matrix that describes the transformation
between camera space and world space. See Figure 2.10.

The derivation of the look-at transformation just requires application of the prin-
ciples described earlier in this section where we described how the columns of a
transformation matrix show what effect the transformation has on the basis of the
coordinate system that it is acting upon.
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Figure 2.10: lookat setting

�
Transform Methods ��� �
Transform LookAt(const Point &pos, const Point &look,

const Vector &up) {
Float m[4][4];�
Initialize fourth column of viewing matrix ��
Initialize first three columns of viewing matrix �
Matrix4x4 *camToWorld = new Matrix4x4(m);
return Transform(camToWorld->Inverse(), camToWorld);

}

The easiest column is the fourth one, which gives the point that the camera-
space origin, � 0001 � T , maps to in world space. This is clearly just the coordinates
of the camera position, supplied by the user.�
Initialize fourth column of viewing matrix ���
m[0][3] = pos.x;
m[1][3] = pos.y;
m[2][3] = pos.z;
m[3][3] = 1;

XXX note just need to generate an orthonormal coordinate system for these guys
XXX

And the other three columns aren’t much worse. First, we normalize the di-
rection vector from the camera point to the look-at point; this gives us the vector
coordinates that the z axis should map to and thus, the third column of the matrix.
(Recall that camera space is defined with the viewing direction down the � z axis.)
The first column, giving the world space direction that the � x axis in camera space
maps to, is found by taking the cross product of the user-supplied “up”’ vector with
the viewing direction vector. Finally, the “up” vector is recomputed by taking the
cross product of the viewing direction vector with the x axis vector, thus ensuring
that we have an orthonormal viewing coordinate system. (Otherwise, if y and z
axes weren’t perpendicular, we wouldn’t have an orthonormal coordinate system.)
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�
Initialize first three columns of viewing matrix ���
Vector dir = (look - pos).Hat();
Vector right = Cross(dir, up.Hat());
Vector newUp = Cross(right, dir);
m[0][0] = right.x;
m[1][0] = right.y;
m[2][0] = right.z;
m[3][0] = 0.;
m[0][1] = newUp.x;
m[1][1] = newUp.y;
m[2][1] = newUp.z;
m[3][1] = 0.;
m[0][2] = dir.x;
m[1][2] = dir.y;
m[2][2] = dir.z;
m[3][2] = 0.;

Applying Transforms

We can now define routines that perform the appropriate matrix multiplications
to transform points and vectors. We will overload the function application operator
to describe these transformations; this lets us write code like:

Point Pold = ...;
Transform T = ...;
Point Pnew = T(Pold);

Points

We compute the inner products of rows of the matrix with the column vector
defined by the homogeneous point that we’re transforming in order to compute the
transformed result. For efficiency, we skip the divide by the resulting homogeneous
weight w when its value is one; this is a common case for most of the transforma-
tions that we’ll be using–only the projective transformations defined in Chapter 6
will require this divide.�
Transform Inline Functions ���
inline Point Transform::operator()(const Point &pt) const {

Float x = pt.x, y = pt.y, z = pt.z;

Float xp = m->m[0][0]*x + m->m[0][1]*y + m->m[0][2]*z + m->m[0][3];
Float yp = m->m[1][0]*x + m->m[1][1]*y + m->m[1][2]*z + m->m[1][3];
Float zp = m->m[2][0]*x + m->m[2][1]*y + m->m[2][2]*z + m->m[2][3];
Float wp = m->m[3][0]*x + m->m[3][1]*y + m->m[3][2]*z + m->m[3][3];

if (wp == 1.) return Point(xp, yp, zp);
else return Point(xp / wp, yp / wp, zp / wp);

}

For efficiency, we also provide transformation methods that let the caller pass in
a pointer to an object for the result; this saves passing structures by value on the
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stack. Note that we copy the original
�
x � y � z � coordinates to local variables in case

the result pointer points at the same point as pt.�
Transform Inline Functions ��� �
inline void Transform::operator()(const Point &pt,

Point *ptrans) const {
Float x = pt.x, y = pt.y, z = pt.z;

ptrans->x = m->m[0][0]*x + m->m[0][1]*y + m->m[0][2]*z + m->m[0][3];
ptrans->y = m->m[1][0]*x + m->m[1][1]*y + m->m[1][2]*z + m->m[1][3];
ptrans->z = m->m[2][0]*x + m->m[2][1]*y + m->m[2][2]*z + m->m[2][3];
Float w = m->m[3][0]*x + m->m[3][1]*y + m->m[3][2]*z + m->m[3][3];

if (w != 1.) {
ptrans->x /= w;
ptrans->y /= w;
ptrans->z /= w;

}
}

Vectors

We compute the transformations of vectors in a similar fashion. However, the
multiplication of the matrix and the row vector is simplified since the homogeneous
w coordinate is zero.�
Transform Inline Functions ��� �
inline Vector Transform::operator()(const Vector &v) const {

Float x = v.x, y = v.y, z = v.z;
return Vector(m->m[0][0]*x + m->m[0][1]*y + m->m[0][2]*z,

m->m[1][0]*x + m->m[1][1]*y + m->m[1][2]*z,
m->m[2][0]*x + m->m[2][1]*y + m->m[2][2]*z);

}
�
Transform Inline Functions ��� �
inline void Transform::operator()(const Vector &v,

Vector *vt) const {
Float x = v.x, y = v.y, z = v.z;
vt->x = m->m[0][0] * x + m->m[0][1] * y + m->m[0][2] * z;
vt->y = m->m[1][0] * x + m->m[1][1] * y + m->m[1][2] * z;
vt->z = m->m[2][0] * x + m->m[2][1] * y + m->m[2][2] * z;

}

Normals

Normals do not transform in the same way that vectors do, as shown in Fig-
ure 2.11. Although the tangent vectors to the surface that define the normal trans-
form as expected, normals require special treatment. Because the normal vector �N
and any tangent vector �T are orthogonal by construction, we know that

�N � �T � �NT �T � 0 �
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Figure 2.11: Transforming surface normals. The circle in (a) is scaled by 50% in
the y direction. Note that simply treating the normal as a direction and scaling it in
the same manner, as shown in (b), will lead to incorrect results.

When we transform a point on the surface by some matrix M, the new tangent
vector �T �

at the transformed point is simply M �T. The transformed normal �N �

should
be equal to S �N for some 4 � 4 matrix S. To maintain the orthogonality requirement,
we must have:

0 � �N � T �T �

� S �NT M �T
� �NT ST M �T

This condition holds if ST M � I, the identity matrix. Therefore, ST � M
� 1, so

S � M
� 1T

, and we see that normals must be transformed by the inverse transpose
of the transformation matrix. This is the main reason why Transforms maintain
their inverses.�
Transform Method Declarations ��� �
Transform GetInverse() const {

return Transform(m_inv, m);
}

Note that we do not explicitly compute the transpose of the inverse when trans-
forming normals ; we simply iterate through the inverse matrix in a different order
(compare to the code for transforming Vectors).�
Transform Inline Functions ��� �
inline Normal Transform::operator()(const Normal &n) const {

Float x = n.x, y = n.y, z = n.z;
return Normal(m_inv->m[0][0] * x + m_inv->m[1][0] * y +

m_inv->m[2][0] * z,
m_inv->m[0][1] * x + m_inv->m[1][1] * y +

m_inv->m[2][1] * z,
m_inv->m[0][2] * x + m_inv->m[1][2] * y +

m_inv->m[2][2] * z);
}
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�
Transform Inline Functions ��� �
inline void Transform::operator()(const Normal &n,

Normal *nt) const {
Float x = n.x, y = n.y, z = n.z;
nt->x = m_inv->m[0][0] * x + m_inv->m[1][0] * y +

m_inv->m[2][0] * z;
nt->y = m_inv->m[0][1] * x + m_inv->m[1][1] * y +

m_inv->m[2][1] * z;
nt->z = m_inv->m[0][2] * x + m_inv->m[1][2] * y +

m_inv->m[2][2] * z;
}

Rays

Transforming rays is straightforward: we just transform the constituent origin
and direction.�
Transform Inline Functions ��� �
inline Ray Transform::operator()(const Ray &r) const {

Ray ret;
(*this)(r.O, &ret.O);
(*this)(r.D, &ret.D);
ret.mint = r.mint;
ret.maxt = r.maxt;
return ret;

}
�
Transform Inline Functions ��� �
inline void Transform::operator()(const Ray &r, Ray *rt) const {

rt->mint = r.mint;
rt->maxt = r.maxt;
(*this)(r.O, &rt->O);
(*this)(r.D, &rt->D);

}

Bounding Boxes

The easiest way to transform an axis-aligned bounding box is to transform all
eight of the vertices at its corners and then compute a new bounding box that en-
compasses those points. We will present code for this method below; one of the
exercises for this chapter is to find a way to do this more efficiently.
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�
Transform Methods ��� �
BBox Transform::operator()(const BBox &b) const {

const Transform &M = *this;
BBox ret( M(Point(b.pMin.x, b.pMin.y, b.pMin.z)));
ret = Union(ret, M(Point(b.pMax.x, b.pMin.y, b.pMin.z)));
ret = Union(ret, M(Point(b.pMin.x, b.pMax.y, b.pMin.z)));
ret = Union(ret, M(Point(b.pMin.x, b.pMin.y, b.pMax.z)));
ret = Union(ret, M(Point(b.pMin.x, b.pMax.y, b.pMax.z)));
ret = Union(ret, M(Point(b.pMax.x, b.pMax.y, b.pMin.z)));
ret = Union(ret, M(Point(b.pMax.x, b.pMin.y, b.pMax.z)));
ret = Union(ret, M(Point(b.pMax.x, b.pMax.y, b.pMax.z)));
return ret;

}

Composition of Transformations

Having defined how the matrices representing individual types of transforma-
tions are constructed, we can now consider the transformation resulting from a
series of individual transformations. It is in this setting that we can see the real
value of representing transformations with 4x4 matrices.

Consider a series of transformations ABC. We’d like to compute a new trans-
formation T such applying T gives the same result as applying each of A, B, and
C in order; i.e. A

�
B
�
C
�
p ����� � T

�
p � . Such a transformation T can be computed by

multiplying the matrices of the transformations A, B, and C together. In code, we
can write:

Transform T = A * B * C;

Then we can apply T to Points p as usual Point pp = T(p) instead of apply-
ing each transformation in turn: Point pp = A(B(C(p)));.

We use the C++ * operator to compute the new transformation that results from
post-multiplying the current transformation with a new transformation t2. From
the definition of matrix multiplication, the

�
i � j � th element of the resulting matrix

ret is the product of the ith row of the first matrix with the jth column of the
second.

The inverse of the resulting transformation, is equal to the product of t2.m_inv
* m_inv; this is a result of the matrix identity

�
AB � � 1 � B

� 1A
� 1 �

�
Transform Methods ��� �
Transform Transform::operator*(const Transform &t2) const {

Reference<Matrix4x4> m1 = Matrix4x4::Mul(m, t2.m);
Reference<Matrix4x4> m2 = Matrix4x4::Mul(t2.m_inv, m_inv);
return Transform(m1, m2);

}

Example:Rotation Around an Arbitrary Point

The rotations described so far all center the rotation around the origin of the
active coordinate space. We can use the composition of three transformations in
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order to rotate around an arbitrary axis that does not pass through the origin. Given
an arbitrary axis of rotation defined by a point

�
x � y � z � and an axis α, and an angle

θ to rotate by, the transformation can be constructed in three steps:

1. The coordinate frame is translated by
�
� x � � y � � z � so that the axis passes

through the origin.

2. The rotation is performed.

3. The coordinate frame is translated back by
�
x � y � z � so that the origin returns

to its original location.

.
Thus we have

R
�
x � y � z � θ � � T

�
x � y � z ��� R

�
θ � α ��� T

�
� x � � y � � z �

We will not include code for this operation as it won’t be necessary for imple-
menting lrt. However, this kind of coordinate system change is an important and
powerful way of solving problems in computer graphics.

� ��� 	 ��� ��� ����� ����! � � � � ��� � �

We will wrap up this chapter by developing a self-contained representation that
holds the geometric information about a particular point on a surface (e.g. the point
of a ray intersection). In particular, this abstraction needs to hide the particular type
of geometric shape the point lies on, allowing the shading and geometric operations
in the rest of the renderer to be implemented generically, not considering different
shape types (e.g. spheres vs triangles, etc.).

The information that we will store to do this includes:


 The 3D hit point P


 A local coordinate system at the hit point, given by the surface normal N and
two tangent vectors S and T


 The parametric partial derivatives ∂P � ∂u and ∂P � ∂v.


 The partial derivatives of the change in surface normal ∂N � ∂u and ∂N � ∂v.


 u, v coordinates from the parameterization of the surface.


 A pointer to the Shape that the differential geometry lies on; the shape class
will be introduced in the next chapter. See Figure 2.12 for an depiction of
these values.

This representation assumes that shapes have a parametric description–i.e. that
for some range of

�
u � v � values, points on the surface are given by some function

f such that P � f
�
u � v � . Though this isn’t true for all of the shape representations

that are used in graphics, all of the shapes that lrt supports do have at least a local
a parametric description, so we will stick with the parametric representation since
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Figure 2.12: The local differential geometry around a point P. The tangent vectors
S and T are orthogonal vectors in the plane that is tangent to the surface at P.
The parametric partial derivatives of the surface, ∂P � ∂u and ∂P � ∂v, also lie in the
tangent plane but are not necessarily orthogonal. The surface normal N, is given by
the cross product of ∂P � ∂u and ∂P � ∂v. The vectors ∂N � ∂u and ∂N � ∂v (not shown
here) record the differential change in surface normal as we move in u and v along
the surface.

this assumption will be helpful to us elsewhere (e.g. for anti-aliasing of textures in
Chapter 11.)�
DifferentialGeometry Declarations ���
struct DifferentialGeometry {

DifferentialGeometry() { u = v = 0.; shape = NULL; }�
DifferentialGeometry Method Declarations ��
DifferentialGeometry Data �

};
�
DifferentialGeometry Data ���
Point P;
Normal Nb, Nn;
Vector S, T;
Float u, v;
const Shape *shape;

�
DifferentialGeometry Data � 	 �
Vector dPdu, dPdv;
Vector dNdu, dNdv;

The DifferentialGeometry constructor only needs a few parameters–the point
of interest, the partial derivatives, and the

�
u � v � coordinates. It computes the nor-

mal as the cross product of the partial derivatives and initializes S to be the nor-
malized ∂P � ∂u vector. It then computes T by crossing S with N, which gives us a
vector that is orthonormal to both of them and thus lies in the tangent plane.
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�
DifferentialGeometry Method Declarations ���
DifferentialGeometry(const Point &p, const Vector &dpdu,

const Vector &dpdv, const Vector &dndu,
const Vector &dndv, Float uu, Float vv,
const Shape *sh)

: P(p), dPdu(dpdu), dPdv(dpdv), dNdu(dndu), dNdv(dndv) {�
Initialize DifferentialGeometry from parameters �

}
�
Initialize DifferentialGeometry from parameters ���
Nb = Normal(Cross(dPdu, dPdv));
Nn = Nb.Hat();
S = dPdu.Hat();
T = Cross(S, Nn);
u = uu;
v = vv;
shape = sh;

It is useful to be able to transform direction vectors from world space to the
coordinate frame defined by the three basis directions �S, �T, and �N. This maps
the object’s surface normal to the direction

�
0 � 0 � 1 � , for example, and can help to

simplify computations by letting us think of them in a standard coordinate system.
It is easy to show that given three such orthogonal vectors �S, �T, and �N in world-
space, the matrix M that transforms vectors in world space to the local differential
geometry space is:

M �
�� Sx Sy Sz

Tx Ty Tz

Nx Ny Nz

�� �
�� �S
�T
�N

��
To confirm this yourself, consider the value of M �N � � �S � �N � �T � �N � �N � �N � . Since �S,
�T, and �N are all orthonormal, the x and y two components of M �N are zero. Since
�N is normalized, �N � �N � 1. Thus, M �N � �

0 � 0 � 1 � . (In this case, we don’t need to
compute the inverse transpose of M to transform normals (recall the discussion of
transforming normals in Section 2.6 on page 42.) Because M is an orthonormal
matrix (its rows and columns are mutually orthogonal and are normalized), its
inverse is equal to its transpose, so it is its own inverse transpose already.)�
DifferentialGeometry Method Declarations ��� �
Vector WorldToLocal(const Vector &v) const {

return Vector(Dot(v, S), Dot(v, T), Dot(v, Nn)).Hat();
}

The function that takes vectors back from local space to world space just imple-
ments the transpose to invert M and does the appropriate dot products:�
DifferentialGeometry Method Declarations ��� �
Vector LocalToWorld(const Vector &v) const {

return Vector(S.x * v.x + T.x * v.y + Nn.x * v.z,
S.y * v.x + T.y * v.y + Nn.y * v.z,
S.z * v.x + T.z * v.y + Nn.z * v.z);

}
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���"� ������� � � ����� ���

DeRose and Goldman and others have pushed the coordinate-free geometry ap-
proach.

Geometric tools for Computer Graphics full of useful geometry for graphics,
including excellent development of the coordiante-free approach (SE03).

Lots of stuff is useful. For example, Mathematical Elements for Computer
Graphics by Rogers and Adams(RA90) is a winner. Note that they use a row-
vector representation of points and vectors, though, which means that everything
is backwards.

Linear algebra books: Lang(Lan86).
Homogeneous stuff: Stolfi(Sto91).
Advanced calculus (vector stuff), Buck(Buc78).
Möller and Haines for graphics-based introduction to linear algebra(MH02), lots

of ray bounds stuff and ray–obb stuff.
obb stuff

� � ��� ����# � #

2.1 (Jim Arvo) Find a more efficient way to transform axis-aligned bounding
boxes by taking advantage of the symmetries of the problem: because the
eight corner points are linear combinations of three axis-aligned basis vec-
tors and a single corner point, their transformed bounding box can be found
much more efficiently than by the method we presented.

2.2 Instead of boxes, we could compute tighter bounds by using the intersections
of many non-orthogonal slabs. Extend our bounding box class to allow the
user to specify a bound comprised of arbitrary slabs.

Axis-aligned bounding box Non-axis-aligned bounding box Arbitrary bounding slabs
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� � � � �

�
shapes.h* ����

Source Code Copyright �
#ifndef SHAPES_H
#define SHAPES_H
#include "lrt.h"
#include "geometry.h"
#include "transform.h"
#include "paramset.h"�
DifferentialGeometry Declarations ��
Shape Declarations �
#endif // SHAPES_H

�
shapes.cc* ����

Source Code Copyright �
#include "shapes.h"
#include "../shapes/trianglemesh.h"�
Shape Method Definitions ��
DifferentialGeometry Method Definitions �
Shapes in lrt are the basic representations of geometry in a scene. Each specific

shape in lrt is a subclass of the Shape base class. Thus, we can describe a general
interface to shapes that hides information about the actual type of shape that we
have (triangle, sphere, etc). This abstraction strategy makes extending the geomet-
ric capabilities of the system quite straightforward; the rest of lrt doesn’t need to
make any distinctions based on what specific shape it may be using. The Shape
class is purely geometric; it contains no information about the appearance of an ob-
ject. The Primitive class, introduced in Chapter 1, holds additional information� �
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about a shape such as its material properties.

� �
� � ��# � �  ��� � ���������� � �	���
�
Shape Declarations ���
class Shape : public ReferenceCounted<Shape> {
public:�

Shape Interface �
virtual ˜Shape() { }

protected:�
Shape Protected Data �

};

All shapes are defined in object coordinate space; for example, all spheres are
defined in an object space where the center of the sphere is at the origin. In order
to place a sphere at another position in the scene, a transformation that describes
the mapping from object space to world space can be provided. The shape stores
both this transformation and its inverse.�
Shape Method Definitions ���
Shape::Shape(const Transform &o2w)

: ObjectToWorld(o2w) {
WorldToObject = ObjectToWorld.GetInverse();�
Update shape creation statistics �

}
�
Shape Protected Data ���
Transform ObjectToWorld, WorldToObject;

�
Update shape creation statistics ���
static StatsCounter nShapesMade("Geometry",

"Total shapes created");
++nShapesMade;

Bounding

Each Shape subclass must be capable of bounding itself with a bounding box.
There are two different bounding methods. The first, ObjectBound(), returns a
bounding box in the shape’s object space, and the second, WorldBound(), returns
a bounding box in world space. The implementation of the first method is left up
to each individual shape, thought there is a default implementation of the second
method that transforms the object bound to world space and computes the bound
of the result. Shapes that can easily compute a world-space bound that is tighter
than the one computed by transforming the object-space bound to world space
should override this method, however–an example of such a shape is a triangle; see
Figure 3.1.�
Shape Interface ��� �
virtual BBox ObjectBound() const = 0;
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Figure 3.1: If we compute a world-space bounding box of a triangle by transform-
ing its object-space bounding box to world space and then finding the bounding
box that encloses the resulting bounding box, a sloppy bound may result (top).
However, if we first transform its vertices from object space to world space and
then bound those vertices (bottom), we can do much better.

�
Shape Interface ��� �
virtual BBox WorldBound() const {

return ObjectToWorld(ObjectBound());
}

Refinement

Not every shape needs to be capable of determining whether a ray intersects
it. For example, a complex curved surface might need to tessellate into triangles,
which would then be intersected. Or, we might have a special shape that is a place-
holder for a large amount of geometry that is stored on disk. We could store just the
filename of the geometry file and the bounding box of the geometry inside of it in
memory, only reading the geometry in from disk if a ray pierced the bounding box.
We can’t intersect a ray with such a shape directly, so its CanIntersect routine
would return a false boolean value.

The default implementation of this function indicates that a shape can provide an
intersection, so only shapes that are non-intersectable need to override this method.�
Shape Interface ��� �
virtual bool CanIntersect() const { return true; }

If the shape can not be intersected directly, a Shape::Refine method must be
provided; this splits the shape into a group of new shapes, some of which may be
intersectable and some of which may need further refinement. Repeated applica-
tion of this method should eventually lead to intersectable shapes. We provide a
default implementation of the Shape::Refine method that issues an error mes-
sage. This is so that shapes that are in fact intersectable (which is the common
case) do not have to provide an empty instance of this method. lrt will never call
Shape::Refine if Shape::CanIntersect returns true.�
Shape Interface ��� �
virtual void Refine(vector<RefinedShape> &refined) const {

Severe("Unimplemented Shape::Refine() method called");
}

The Refine method returns its results in the RefinedShape structure. It allows
the Shape to return textures that describe the shading normal and tangent along
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with the new Shapes. Textures are described in Chapter 11 and shading normals
are described in Section 10.1.�
Shape Declarations ��� �
struct RefinedShape {

RefinedShape(const Reference<Shape> &s, Texture<Normal> *ns = NULL,
Texture<Vector> *ss = NULL) {

shape = s;
Ns = ns;
Ss = ss;

}
Reference<Shape> shape;
Texture<Normal> *Ns;
Texture<Vector> *Ss;

};

Intersection

We will provide two separate intersection routines. The first, Intersect, re-
turns information about a a single ray-shape intersection corresponding to the inter-
section in the � mint � maxt � parametric range along the ray. The other, IntersectP
is a predicate function that determines whether or not an intersection occurs, with-
out returning any details about the nature of the intersection itself. Some shapes
may be able to provide a more efficient implementation for IntersectP.

There are a few important things to keep in mind when reading and writing
intersection routines:


 Recall that the Ray structure contains mint and maxt variables which define
a ray segment from the point ray(mint)) to the point ray(maxt). Inter-
section routines should ignore any intersections that do not occur along this
segment.


 If an intersection is found, the parametric distance along the ray where it
happened should be stored in the pointer thitp that is passed into the inter-
section routine. If multiple intersections are present, the closest one should
be returned.


 Information about intersection positions is stored in the DifferentialGeometry
structure, which completely captures the local geometric properties of a sur-
face. This type will be used heavily throughout lrt, and it serves to cleanly
isolate the geometric portion of our ray-tracer from the shading and illumi-
nation portion. The differential geometry class was defined in Section 2.7 on
page 46.


 The rays passed into these routines will be in world space, so shapes are
responsible for transforming them to object space if needed for intersection
tests. Furthermore, the differential geometry returned should be in world
space.

Instead of making the intersection routines pure virtual functions, we provide
default implementations of the intersect routine that report a severe error message
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if they are called. All shapes that return true from Shape::CanIntersect must
provide implementations of these functions; those that return false can depend
on the rest of the system to not call these routines on non-intersectable shapes. If
these were pure virtual functions, then even non-intersectable shapes would have
to implement them, which would be awkward.�
Shape Interface ��� �
virtual bool Intersect(const Ray &ray, Float *thitp,

DifferentialGeometry *dg) const {
Severe("Unimplemented Shape::Intersect() method called");
return false;

}

virtual bool IntersectP(const Ray &ray) const {
Severe("Unimplemented Shape::IntersectP() method called");
return false;

}

Surface Area

In order to properly use Shapes as area lights, wee need to be able to compute
the surface area of a shape in object space. As with the intersection methods, this
method will only be called for intersectable shapes.�
Shape Interface ��� �
virtual Float Area() const {

Severe("Unimplemented Shape::Area() method called");
return 0.;

}

� ���  � �	��� � #
�
sphere.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "shapes.h"
#include "mc.h"�
Sphere Declarations ��
Sphere Methods �

�
Sphere Declarations ���
class Sphere: public Shape {
public:�

Sphere Interface �
private:�

Sphere Data �
};

Spheres are a special case of a general type of surface called quadrics. Quadrics
are surfaces described by quadratic polynomials in x, y, and z; they are the simplest
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type of curved surface that is useful to a ray tracer, and are an interesting introduc-
tion to more general ray intersection routines. The sphere is the simplest quadric.
lrt supports six types of quadrics: spheres, cones, disks (a special case of a cone),
cylinders, hyperboloids, and paraboloids.

Surfaces like quadrics are described mathematically in two main ways: in im-
plicit form and in parametric form. An implicit function describes a surface (in the
three-dimensional case) as:

f
�
x � y � z � � 0

The set of x, y, and z that fulfill this condition define the surface. For a unit sphere
at the origin, the familiar implicit equation is x2 � y2 � z2 � 1 � 0. Only the set of�
x � y � z � one unit from the origin satisfies this constraint, giving us the unit sphere’s

surface.
Many surfaces can also be described parametrically: a functions maps a 2D set

of points to 3D points on the surface. For example, a sphere can be described as a
function of 2D spherical coordinates

�
θ � φ � where θ ranges from 0 to π and φ ranges

from 0 to 2π for a complete sphere.

x � r cosφ cosθ
y � r sinφ cosθ
z � r sinθ

We can transform this function f
�
θ � φ � � �

x � y � z � into a function f
�
u � v � over � 0 � 1 � 2

with the substitution

φ � u � φmax

θ � θmin � v � � θmax � θmin �

This form is particularly useful for texture mapping, where we can directly use the�
u � v � values to map a texture map over � 0 � 1 � 2 over the sphere.

As we describe the implementation of the sphere shape, we will make use of
both the implicit and parametric descriptions of the shape, depending on which is
a more natural way to approach the particular problem we’re facing.

Construction

Our Sphere class specifies a shape that is centered at the origin in object space;
to place them elsewhere in the scene, the user must apply appropriate transforma-
tions when specifying spheres in the input file.

The radius of the sphere can have an arbitrary value, though the sphere’s extent
can be truncated in two different ways. First, minimum and maximum z values
may be set; the parts of the sphere below and above these, respectively, are cut off.
Second, if we consider the parameterization of the sphere in spherical coordinates
(as in its parametric form), we can set a maximum θ value. The sphere sweeps out
θ values from 0 to the given θmax such that the section of the sphere with spherical
θ values above this θ is also removed.
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Figure 3.2: Basic setting for the sphere shape. It has a radius of r and XXX. A
partial sphere may be swept by specifying a maximum φ value.

�
Sphere Methods ���
Sphere::Sphere(const Transform &o2w, Float rad, Float z0,

Float z1, Float pm)
: Shape(o2w) {
radius = rad;
zmin = Clamp(min(z0, z1), -radius, radius);
zmax = Clamp(max(z0, z1), -radius, radius);
thetaMin = asinf(zmin/radius);
thetaMax = asinf(zmax/radius);
phiMax = Radians(Clamp(pm, 0.0f, 360.0f));

}
�
Sphere Data ���
Float radius;
Float phiMax;
Float zmin, zmax;
Float thetaMin, thetaMax;

Bounding

Computing a bounding box for a sphere is straightforward. We will use the
values of zmin and zmax provided by the user to tighten up the bound when less
than an entire sphere is being rendered. However, we won’t do the extra work to
look at θmax and see if we can compute a tighter bounding box when that is less
than 2π.�
Sphere Methods ��� �
BBox Sphere::ObjectBound() const {

return BBox(Point(-radius, -radius, zmin),
Point( radius, radius, zmax));

}

Intersection
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Because we know that the sphere is centered at the origin, our task for deriving
an intersection test is easier than it would be in a more general setting. However,
if the sphere has been transformed so that it is at another position in world space,
then we need to transform rays before intersecting them with the sphere. Given
a ray in world space, it’s necessary to apply the inverse of the transformation that
places the sphere in world space–i.e. the world to object transformation. Given a
ray in object space, we can go ahead and perform the intersection computation in
object space.1

The entire intersection method is shown below.�
Sphere Methods ��� �
bool Sphere::Intersect(const Ray &r, Float *thitp,

DifferentialGeometry *dg) const {
Float phi;
Point Phit;�
Transform Ray to object space ��
Compute quadratic sphere coefficients ��
Solve quadratic equation for t values ��
Compute sphere hit position and φ ��
Test sphere intersection against clipping parameters ��
Fill in DifferentialGeometry from sphere hit ��
Update thitp for quadric intersection �
return true;

}

We need to start by transforming the given world-space ray to the sphere’s object
space. The remainder of the intersection test will happen in that coordinate system.�
Transform Ray to object space ���
Ray ray;
WorldToObject(r, &ray);

If we have a sphere centered at the origin with radius r, its implicit representation
is

x2 � y2 � z2
� r2 � 0 �

By substituting the ray equation, 2.4.2 into the implicit sphere equation, we
have: �

o
�
r � x � td̃

�
r � x � 2 ��� o � r � y � td̃

�
r � y � 2

�

�
o
�
r � z � td̃

�
r � z � 2 � r2 �

Note that all elements of this equation besides t are known values. The t values
where the equation holds give the parametric positions along the ray where the
implicit sphere equation holds and thus the points along the ray where it intersects
the sphere.

We can expand this equation out and gather the coefficients for a general quadratic
in t:

At2 � Bt � C � 0 �
1This is something of a classic theme in computer graphics: by transforming the problem to a

particular restricted case, we can more easily and efficiently do an intersection test (i.e. lots of stuff
cancels out since the sphere is always at � 0 � 0 � 0 � . No overall generality is lost, since we can just
apply an appropriate translation to the ray to account for spheres at other positions, etc.
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where

A � d̃
�
r � 2x � d̃

�
r � 2y � d̃

�
r � 2z

B � 2
�
d̃
�
r � xo

�
r � x � d̃

�
r � yo

�
r � y � d̃

�
r � zo

�
r � z �

C � o
�
r � 2x � o

�
r � 2y � o

�
r � 2z � r2

This directly translates to this fragment of source code.�
Compute quadratic sphere coefficients ���
Float A = ray.D.x*ray.D.x + ray.D.y*ray.D.y + ray.D.z*ray.D.z;
Float B = 2 * (ray.D.x*ray.O.x + ray.D.y*ray.O.y +

ray.D.z*ray.O.z);
Float C = ray.O.x*ray.O.x + ray.O.y*ray.O.y +

ray.O.z*ray.O.z - radius*radius;

By the quadratic equation, we know there are two possible solutions to this
equation, giving zero, one, or two t values where the ray intersects the sphere:

t0 � � B ��� B2 � 4AC
2A

t1 � � B � � B2 � 4AC
2A

We will provide a utility Quadratic function that solves a quadratic equation,
returning false if there are no real solutions and returning true and setting t0 and
t1 appropriately if there are solutions.�
Solve quadratic equation for t values ���
Float t0, t1;
if (!Quadratic(A, B, C, &t0, &t1))

return false;�
Compute intersection distance along ray �

�
Global Inline Functions ���
inline bool Quadratic(Float A, Float B, Float C, Float *t0, Float *t1) {�

Find quadratic discriminant ��
Compute quadratic t values �

}

If the discriminant (B2 � 4AC) is negative, then there are no real roots and the
ray must miss the sphere.�
Find quadratic discriminant ���
Float discrim = B * B - 4.f * A * C;
if (discrim < 0.) return false;
Float rootDiscrim = sqrtf(discrim);

The usual version of quadratic equation can give poor numeric precision when
B ��� � B2 � 4AC due to cancellation error. It can be rewritten algebraically to be
in a more stable form.
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t0 � q
A

t1 � C
q

where

q ��� � � 5 � B � � B2 � 4AC � : B � 0
�

� 5 � B � � B2 � 4AC � : otherwise

�
Compute quadratic t values ���
Float q;
if (B < 0) q = -.5f * (B - rootDiscrim);
else q = -.5f * (B + rootDiscrim);
*t0 = q / A;
*t1 = C / q;
if (*t0 > *t1) swap(*t0, *t1);
return true;

Given the two intersection t values, we need to check them against the ray seg-
ment from mint to maxt. Since t0 is guaranteed to be less than t1 (and mint less
than maxt), if t0 is greater than maxt or t1 is less than mint, then it is certain that
both hits are out of the range of interest. Otherwise, t0 is the tentative hit distance.
If may be behind mint, however, in which case we ignore it and try t1. If that is
also out of range, we have no valid intersection. Otherwise thit holds the distance
to the hit.�
Compute intersection distance along ray ���
if (t0 > ray.maxt || t1 < ray.mint)

return false;
Float thit = t0;
if (t0 < ray.mint) {

thit = t1;
if (thit > ray.maxt) return false;

}

Partial Spheres

Now that we have the distance along the ray to the intersection with a full sphere,
we need to handle partial spheres, specified with clipped z or φ ranges. Intersections
that are in clipped areas need to be ignored.

We start by computing the object space position of the intersection, Phit and
the φ value for the hit point. Taking the parametric equations for the sphere,

y
x
� r sinφ cosθ

r cos φcos θ
� tan φ

so φ � arctan y � x.�
Compute sphere hit position and φ ���
Phit = ray(thit);
phi = atan2f(Phit.y, Phit.x);
if (phi < 0.) phi += 2.f*M_PI;
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We remap the result from the standard library’s atan2 function to be between 0
and 2π, to match the sphere’s original definition.

We can now test the hit point against the specified minima and maxima for z and
φ. If the intersection wasn’t actually valid intersection and we were using the t0

intersection, we try again with t1.�
Test sphere intersection against clipping parameters ���
if (Phit.z < zmin || Phit.z > zmax || phi > phiMax) {

if (thit == t1) return false;
if (t1 > ray.maxt) return false;
thit = t1;�
Compute sphere hit position and φ �
if (Phit.z < zmin || Phit.z > zmax || phiMax)

return false;
}

At this point, we are sure that the ray hits the sphere, and we can fill in the
DifferentialGeometry structure. We compute parametric u and v values by
scaling the previously-computed φ value for the hit to lie between 0 and 1 and
by computing a θ value for the hit point which is also mapped to � 0 � 1 � , based on
the range of θ values for the given sphere. Next, we compute the parametric partial
derivatives ∂P � ∂u and ∂P � ∂v, fill in the DifferentialGeometry object for the
intersection, and transform it out to world space.�
Fill in DifferentialGeometry from sphere hit ���
Float u = phi / phiMax;
Float theta = asinf(Phit.z / radius);
Float v = (theta - thetaMin) / (thetaMax - thetaMin);�
Compute sphere ∂P � ∂u and ∂P � ∂v ��
Compute sphere ∂N � ∂u and ∂N � ∂v �
*dg = DifferentialGeometry(ObjectToWorld(Phit), ObjectToWorld(dPdu),

ObjectToWorld(dPdv), ObjectToWorld(dNdu), ObjectToWorld(dNdv),
u, v, this);

Computing the partial derivatives of a point on the sphere is a short exercise in
algebra. Using the parametric definition of the sphere, we have for instance

x � r cosφ cosθ
� r cos

�
φmaxu � cos

�
θmin � v

�
θmax � θmin ���

Consider the first component of ∂P � ∂u, ∂x � ∂u:

∂x
∂u

� ∂
∂u

�
r cos φ cosθ �

� r cosθ
∂

∂u

�
cosφ �

� r cosθ
�
� φmax sinφ �

Using a substitution based on the parametric definition of the sphere’s y coordinate,
this simplifies to

∂x � ∂u � � φmaxy �
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Similarly
∂y � ∂u � φmaxx �

and
∂z � ∂u � 0 �

A similar process gives us ∂P � ∂v.

∂P
∂u

� �
� φmaxy � φmaxx � 0 �

∂P
∂v

� �
θmax � θmin �

�
� z cosφ � � z sin φ � r cosθ �

�
Compute sphere ∂P � ∂u and ∂P � ∂v ���
Float cosphi = cosf(phi), sinphi = sinf(phi);
Vector dPdu(-phiMax * Phit.y, phiMax * Phit.x, 0);
Vector dPdv = (thetaMax-thetaMin) *

Vector(-Phit.z * cosphi, -Phit.z * sinphi,
radius * cosf(thetaMin + v * (thetaMax - thetaMin)));

It can also be useful to determine how the normal changes as we move along the
surface in the u and v directions. For example, some of the anti-aliasing techniques
in Chapter 10 will use this information. The differential change in normal ∂N � ∂u
and ∂N � ∂v is given by the Weingarten equations from differential geometry. They
are:

∂N
∂u

� f F � eG
EG � F2

∂P
∂u

�
eF � f E
EG � F2

∂P
∂v

∂N
∂v

� gF � f G
EG � F2

∂P
∂u

�
f F � gE
EG � F2

∂P
∂v

where E , F , and G are coefficients of the first fundamental form and are given by

E �
�
�
�
�

∂P
∂u

�
�
�
�

2

F �
�

∂P
∂u

� ∂P
∂v �

G �
�
�
�
�

∂P
∂v

�
�
�
�

2 �

These are easily computed with the ∂P � ∂u and ∂P � ∂v values that are already avail-
abe. e, f , and g are coefficients of the second fundamental form,

e � �
N � ∂2P

∂u2 �

f � �
N � ∂2P

∂u∂v
�

g � �
N � ∂2P

∂v2 � �
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20 Cross
16 Vector

For these, we need to compute the second order partial derivatives ∂2P � ∂u2 and
friends. (The two fundamental forms have basic connections with the local curva-
ture of a surface; see any differential geometry textbook (for example, Gray (Gra93))
for details.)

For spheres, a little algebra gives the various second derivatives:

∂2P
∂u2

� � φ2
max

�
x � y � 0 �

∂2P
∂u∂v

� �
zmax � zmin � zφmax

�
sin φ � � cos φ � 0 �

∂2P
∂v2

� �
�
θmax � θmin � 2

�
x � y � z �

�
Compute sphere ∂N � ∂u and ∂N � ∂v ���
Vector d2Pduu = -phiMax * phiMax * Vector(Phit.x, Phit.y, 0);
Vector d2Pduv = (zmax - zmin) * Phit.z * phiMax *

Vector(sinphi, -cosphi, 0.);
Vector d2Pdvv = -(thetaMax - thetaMin) * (thetaMax - thetaMin) *

Vector(Phit.x, Phit.y, Phit.z);�
Compute coefficients for fundamental forms ��
Compute ∂N � ∂u and ∂N � ∂v from fundamental form coefficients �

�
Compute coefficients for fundamental forms ���
Float E = Dot(dPdu, dPdu);
Float F = Dot(dPdu, dPdv);
Float G = Dot(dPdv, dPdv);
Vector N = Cross(dPdu, dPdv);
Float e = Dot(N, d2Pduu);
Float f = Dot(N, d2Pduv);
Float g = Dot(N, d2Pdvv);

�
Compute ∂N � ∂u and ∂N � ∂v from fundamental form coefficients ���
Float invEGF2 = 1.f / (E*G - F*F);
Vector dNdu = (f*F - e*G) * invEGF2 * dPdu + (e*F - f*E) * invEGF2 * dPdv;
Vector dNdv = (g*F - f*G) * invEGF2 * dPdu + (f*F - g*E) * invEGF2 * dPdv;

Since there is an intersection at parametric distance thit along the ray, we up-
date the thitp value in the ray passed in to the intersect routine to hold the hit
distance. This will allow subsequent intersection tests to stop testing for inter-
section if they determine that the ray would hit beyond an already-found closer
intersection.�
Update thitp for quadric intersection ���
*thitp = thit;

The sphere’s IntersectP routine is almost identical to Intersect, but it does
not fill in the DifferentialGeometry structure. Because Intersect and IntersectP
are always so closely related, we will not show IntersectP for the remaining
shapes.
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�
Sphere Methods ��� �
bool Sphere::IntersectP(const Ray &r) const {

Float phi;
Point Phit;�
Transform Ray to object space ��
Compute quadratic sphere coefficients ��
Solve quadratic equation for t values ��
Compute sphere hit position and φ ��
Test sphere intersection against clipping parameters �
return true;

}

Surface Area

To compute surface area, a useful formula to use reflects the fact that if we
revolve a curve y � f

�
x � from y � a to y � b completely around the x axis, the

surface area of the resulting swept surface is

2π � b

a
f
�
x ��� 1 �

�
f

� �
x ��� 2 dx �

where f
� �

x � denotes the derivative d � dx f
�
x � . Since most of our surfaces of revo-

lution are only partially swept around the axis, we will actually use the formula:

φmax � b

a
f
�
x � � 1 �

�
f

� �
x ��� 2 dx �

Our sphere is a surface of revolution of a circular arc. Recall that the sphere
is clipped at zmin and zmax. So the function that defines the profile curve of the
sphere is

f
�
x � ��� r2 � x2 �

and its derivative is
f

� �
x � � � x

� r2 � x2
�

The surface area is therefore

A � φmax � z1

z0

� r2 � x2 1 �
x2

r2 � x2 dx

� φmax � z1

z0

� r2 � x2 � x2dx

� φmax � z1

z0

rdx

� φmaxr
�
z1 � z0 �

This makes sense, because if φmax
� 2π, zmin

� � r and zmax
� r, we have the

standard formula 4πr2.�
Sphere Methods ��� �
Float Sphere::Area() const {

return phiMax * radius * (zmax-zmin);
}
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Figure 3.3: Basic setting for the cylinder shape. It has a radius of r and is covers a
range of heights along the z-axis. A partial cylinder may be swept by specifying a
maximum φ value.

� ��� � �	!�� �	�
��� #

�
cylinder.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "shapes.h"�
Cylinder Declarations ��
Cylinder Methods �

�
Cylinder Declarations ���
class Cylinder: public Shape {
public:�

Cylinder Interface �
protected:�

Cylinder Data �
};

Construction

Another useful quadric is the cylinder; lrt provides cylinder Shapes that are
centered around the z axis. The user supplies a minimum and maximum z value for
the cylinder as well as a radius and maximum φ sweep value. In parametric form,
a cylinder is described by the equations:

φ � uφmax

x � r cosφ
y � r sinφ
z � zmin � v

�
zmax � zmin �
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�
Cylinder Methods ���
Cylinder::Cylinder(const Transform &o2w, Float rad, Float z0,

Float z1, Float pm)
: Shape(o2w) {
radius = rad;
zmin = min(z0, z1);
zmax = max(z0, z1);
phiMax = Radians(Clamp(pm, 0.0f, 360.0f));

}
�
Cylinder Data ���
Float radius;
Float zmin, zmax;
Float phiMax;

Bounding

Like the sphere, we compute a conservative bounding box for the cylinder using
the z range but without taking into account the maximum φ.�
Cylinder Methods ��� �
BBox Cylinder::ObjectBound() const {

Point p1 = Point(-radius, -radius, zmin);
Point p2 = Point( radius, radius, zmax);
return BBox(p1, p2);

}

Intersection

In a similar manner to the sphere, we can derive the algorithm for finding inter-
sections with cylinders by substituting the ray equation into the cylinder’s implicit
equation. The implicit equation for an infinitely long cylinder centered on the z
axis with radius r is

x2 � y2
� r2 � 0 �

Substituting the ray equation, 2.4.2, we have:�
o
�
r � x � td̃

�
r � x � 2 ��� o � r � y � td̃

�
r � y � 2 � r2

When we expand this and find the coefficients of the quadratic equation At 2 �
Bt � C, we get:

A � d̃
�
r � 2x � d̃

�
r � 2y

B � 2
�
d̃
�
r � xo

�
r � x � d̃

�
r � yo

�
r � y �

C � o
�
r � 2x � o

�
r � 2y � r2

�
Compute quadratic cylinder coefficients ���
Float A = ray.D.x*ray.D.x + ray.D.y*ray.D.y;
Float B = 2 * (ray.D.x*ray.O.x + ray.D.y*ray.O.y);
Float C = ray.O.x*ray.O.x + ray.O.y*ray.O.y - radius*radius;
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The solution process for the quadratic equation is the same for all quadric shapes,
so some fragments from the Sphere intersection method will be re-used below.�
Cylinder Methods ��� �
bool Cylinder::Intersect(const Ray &r, Float *thitp,

DifferentialGeometry *dg) const {
Float phi;
Point Phit;�
Transform Ray to object space ��
Compute quadratic cylinder coefficients ��
Solve quadratic equation for t values ��
Compute cylinder hit point and φ ��
Test cylinder intersection against clipping parameters ��
Fill in DifferentialGeometry from cylinder hit ��
Update thitp for quadric intersection �
return true;

}

Partial Cylinders

As with the sphere, we invert the parametric description of the cylinder to com-
pute a φ value by inverting the x and y parametric equations to solve for φ. In fact,
the result is the same as for the sphere.�
Compute cylinder hit point and φ ���
Phit = ray(thit);
phi = atan2f(Phit.y, Phit.x);
if (phi < 0.) phi += 2.f*M_PI;

We now make sure that the hit is between the specified z range, and that the
angle is acceptable. If not, we reject the hit and possibly try again with t1, if we
weren’t using it the first time through.�
Test cylinder intersection against clipping parameters ���
if (Phit.z < zmin || Phit.z > zmax || phi > phiMax) {

if (thit == t1) return false;
thit = t1;
if (t1 > ray.maxt) return false;�
Compute cylinder hit point and φ �
if (Phit.z < zmin || Phit.z > zmax || phi > phiMax)

return false;
}

Again like the sphere the u value is computed by scaling φ to lie between 0 and
1. Straightforward inversion of the parametric equation for the cylinder’s z value
gives us the v parametric coordinate.
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�
Fill in DifferentialGeometry from cylinder hit ���
Float u = phi / phiMax;
Float v = (Phit.z - zmin) / (zmax - zmin);�
Compute cylinder ∂P � ∂u and ∂P � ∂v ��
Compute cylinder ∂N � ∂u and ∂N � ∂v �
*dg = DifferentialGeometry(ObjectToWorld(Phit), ObjectToWorld(dPdu),

ObjectToWorld(dPdv), ObjectToWorld(dNdu), ObjectToWorld(dNdv),
u, v, this);

The partial derivatives for a cylinder are quite easy to derive: they are

∂P
∂u

� �
� φmaxy � φmaxx � 0 �

∂P
∂v

� �
0 � 0 � zmax � zmin �

�
Compute cylinder ∂P � ∂u and ∂P � ∂v ���
Vector dPdu(-phiMax * Phit.y, phiMax * Phit.x, 0);
Vector dPdv(0, 0, zmax - zmin);

We again use the Weingarten equations to compute the parametric change in
cylinder normal. The relevant partial derivatives are

∂2P
∂u2

� � φ2
max

�
x � y � 0 �

∂2P
∂u∂v

� �
0 � 0 � 0 �

∂2P
∂v2

� �
0 � 0 � 0 �

�
Compute cylinder ∂N � ∂u and ∂N � ∂v ���
Vector d2Pduu = -phiMax * phiMax * Vector(Phit.x, Phit.y, 0);
Vector d2Pduv(0, 0, 0), d2Pdvv(0, 0, 0);�
Compute coefficients for fundamental forms ��
Compute ∂N � ∂u and ∂N � ∂v from fundamental form coefficients �

Surface Area

A cylinder is just a rolled rectangle. The height of the rectangle is zmax � zmin,
and the width is rφmax:�
Cylinder Methods ��� �
Float Cylinder::Area() const {

return (zmax-zmin)*phiMax*radius;
}
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70 Disk

Figure 3.4: Basic setting for the disk shape. The disk has radius of r and is located
at some height along the z-axis. A partial disk may be swept by specifying a
maximum φ value.

���������
	��	
�
disk.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "shapes.h"�
Disk Declarations ��
Disk Methods �

�
Disk Declarations ���
class Disk : public Shape {
public:�

Disk Interface �
private:�

Disk Private Data �
};

The disk is an interesting quadric since it has a particularly straightforward in-
tersection routine that avoids solving the quadratic equation. In lrt, a Disk is a
circular disk of user-supplied radius at some height along the z axis. In order to
make partial disks, the user may specify a maximum φ value beyond which the disk
is cut off (see Figure 3.4). In parametric form, it is described by:

φ � uφmax

x � r
�
1 � v � cosφ

x � r
�
1 � v � sinφ

z � height

Construction
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�
Disk Methods ���
Disk::Disk(const Transform &o2w, Float ht, Float r, Float tmax)

: Shape(o2w) {
height = ht;
radius = r;
phiMax = Radians(Clamp(tmax, 0.0f, 360.0f));

}
�
Disk Private Data ���
Float height, radius, phiMax;

Bounding

The bounding method is quite straightforward; we create a bounding box cen-
tered at the height of the disk along z, with extent of radius in both the x and y
directions.�
Disk Methods ��� �
BBox Disk::ObjectBound() const {

return BBox(Point(-radius,-radius,height),
Point(radius, radius,height));

}

Intersection

Intersecting a ray with a disk is also quite easy. We intersect the ray with the

z � height

plane that the disk lies in and then see if the intersection point lies inside the disk.�
Disk Methods ��� �
bool Disk::Intersect(const Ray &r, Float *thitp,

DifferentialGeometry *dg) const {�
Transform Ray to object space ��
Compute plane intersection for disk ��
See if hit point is inside disk radius and φmax ��
Fill in DifferentialGeometry from disk hit ��
Update thitp for quadric intersection �
return true;

}

The first thing we do is compute the parametric t value where the ray intersects
the plane that the disk lies in. Using the same approach as for intersecting rays with
boxes, we want to find t such that the z component of the ray’s position is equal to
the height where the user placed the disk. Thus,

h � o
�
r � z � t � d̃

�
r � z

So t is

t � h � o
�
r � z

d̃
�
r � z
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After checking to be sure that the ray isn’t parallel to the disk’s plane, in which
case we report no intersection, we compare this t value and see if it is inside the
legal range of t values, � � ����� �����
	 � � . If not, we can return false.�
Compute plane intersection for disk ���
if (fabsf(ray.D.z) < 1e-7) return false;
Float thit = (height - ray.O.z) / ray.D.z;
if (thit < ray.mint || thit > ray.maxt)

return false;

We now compute the point where the ray intersects the plane, Phit. Once the
plane intersection is known, we check if the distance from the hit to the center of
the disk is less than radius. If it’s farther away, we return false. We optimize this
process by actually computing the squared distance to the center, taking advantage
of the fact that the x and y coordinates of the center point

�
0 � 0 � height � are zero,

and that the z coordinate of Phit is equal to height.�
See if hit point is inside disk radius and φmax ���
Point Phit = ray(thit);
Float Dist2 = Phit.x * Phit.x + Phit.y * Phit.y;
if (Dist2 > radius * radius)

return false;�
Test disk φ value against φmax �
If the distance check passes, we perform the final test, making sure that the φ

value of the hit point is between zero and φmax specified by the user. Inverting
the disk’s parameterization gives us the same expression for φ as the other quadric
shapes have.�
Test disk φ value against φmax ���
Float phi = atan2f(Phit.y, Phit.x);
if (phi < 0) phi += 2. * M_PI;
if (phi > phiMax)

return false;

If we’ve gotten this far, we know that there is an intersection with the disk. The
parameter u is scaled to reflect the partial disk specified by φmax and v is computed
by inverting the parametric equation. The equations for the partial derivatives at
the hit point can be derived with a similar process as was used for the previous
quadrics. Because the normal of a disk is the same everywhere, the partial deriva-
tives ∂N � ∂u and ∂N � ∂v are both trivially

�
0 � 0 � 0 � .�

Fill in DifferentialGeometry from disk hit ���
Float u = phi / phiMax;
Float v = 1.f - (sqrtf(Dist2) / radius);
Vector dPdu(-phiMax * Phit.y, phiMax * Phit.x, 0.);
Vector dPdv(-Phit.x / (1-v), -Phit.y / (1-v), 0.);
*dg = DifferentialGeometry(ObjectToWorld(Phit), ObjectToWorld(dPdu),

ObjectToWorld(dPdv), Vector(0,0,0), Vector(0,0,0), u, v, this);

Surface Area

Disks have trivial surface area, since they’re just portions of a circle:
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�
Disk Methods ��� �
Float Disk::Area() const {

return phiMax * 0.5f * radius * radius;
}

� ��� � �����
��� ���	� � � ��#
Filenames: cone.cc, paraboloid.cc and hyperboloid.cc.
lrt supports three more various quadrics: cones, paraboloids, and hyperboloids.

We won’t include their full implementations here, since there is little to be gained
by walking through them; the same techniques are used to derive their quadratic in-
tersection coefficients, parametric coordinates and partial derivatives as have been
used for the previous quadrics. However, we will briefly describe the implicit and
parametric forms of these shapes.

The implicit equation of a cone centered on the z axis with radius r and height h
is �

hx
r � 2

�
�

hy
r � 2

�
�
z � h � 2 � 0 �

They also have the parametric description

φ � uφmax

x � r
�
1 � v � cosφ

y � r
�
1 � v � sinφ

z � vheight

The partial derivatives are:

∂P
∂u

� �
� φmax y � φmax x � 0 �

∂P
∂v

� �
� x � � 1 � v � � y � � 1 � v � � height �

and

∂2P
∂u2

� � φ2
max

�
x � y � 0 �

∂2P
∂u∂v

� φmax
1 � v

�
y � � x � 0 �

∂2P
∂v2

� �
0 � 0 � 0 �

The implicit equation of a paraboloid centered on the z axis with radius r at z � h
is:

hx2

r2 �
hy2

r2 � z � 0

and the parametric form is

φ � uφmax

z � v
�
zmax � zmin �

r � rmax
� z � zmax

x � r cosφ
y � r sinφ
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The partial derivatives are:

∂P
∂u

� �
� φmax y � φmax x � 0 �

∂P
∂v

� �
zmax � zmin �

�
x � z � y � z � 1 �

and

∂2P
∂u2

� � φ2
max

�
x � y � 0 �

∂2P
∂u∂v

� φmax
�
zmax � zmin �

�
� y � z � x � z � 0 �

∂2P
∂v2

� � 2
�
zmax � zmin � 2

�
x � z2 � y � z2 � 0 �

Finally, the implicit form of the hyperboloid is

x2 � y2
� z2 � � 1

and the parametric form is

φ � uφmax

xr
� �

1 � v � x1 � vx2

yr
� �

1 � v � y1 � vy2

x � xr cosφ � yr sinφ
y � xr sinφ � yr cosφ
z � �

1 � v � z1 � vz2

The partial derivatives are:

∂P
∂u

� �
� φmax y � φmax x � 0 �

∂P
∂v

� ���
x2 � x1 � cosφ �

�
y2 � y1 � sin φ � � x2 � x1 � sinφ �

�
y2 � y1 � cos φ � z2 � z1 �

and

∂2P
∂u2

� � φ2
max

�
x � y � 0 �

∂2P
∂u∂v

� φmax
�
� ∂y � ∂v� ∂x � ∂v � 0 �

∂2P
∂v2

� �
0 � 0 � 0 �
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� ��� � � ���"��� !$� # �"����� � # ����#
�
trianglemesh.h* ����

Source Code Copyright �
#ifndef TRIANGLEMESH_H
#define TRIANGLEMESH_H
#include "lrt.h"
#include "shapes.h"
#include "paramset.h"�
TriangleMesh Declarations �
#endif // TRIANGLEMESH_H

�
trianglemesh.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "shapes.h"
#include "paramset.h"
#include "trianglemesh.h"�
TriangleMesh Methods �

�
TriangleMesh Declarations ���
class TriangleMesh: public Shape {
public:�

TriangleMesh Interface �
protected:�

TriangleMesh Data �
};

The triangle is one of the most commonly used shapes in computer graphics.
lrt supports triangle meshes, where a number of triangles are stored together so
that their per-vertex data can be shared among multiple triangles that reference it.
Single triangles are simply treated as degenerate meshes.

The arguments to the TriangleMesh constructor are as follows:


 nt Number of triangles in this mesh


 nv Number of vertices in this mesh


 vi Pointer to an array of vertex indices. For the ith triangle, its three vertex
positions are P[vi[3*i]], P[vi[3*i+1]], and P[vi[3*i+2]].


 P Array of nv vertex positions.


 uv An optional array of a parametric
�
u � v � value for each vertex.

We just copy the relevant information and store it in the TriangleMesh object.
In particular, must make our own copies of vi and P, since the caller retains own-
ership of the data being passed in.
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�
TriangleMesh Methods ���
TriangleMesh::TriangleMesh(const Transform &o2w, int nt, int nv,

const int *vi, const Point *P, const Float *uv)
: Shape(o2w) {
ntris = nt;
nverts = nv;
vertexIndex = new int[3 * ntris];
memcpy(vertexIndex, vi, 3 * ntris * sizeof(int));
if (uv) {

uvs = new Float[2*nverts];
memcpy(uvs, uv, 2*nverts*sizeof(Float));

}
else uvs = NULL;
p = new Point[nverts];�
Transform mesh vertices to world space �

}
�
TriangleMesh Data ���
int ntris;
int nverts;
int *vertexIndex;
Point *p;
Float *uvs;

Unlike the other primitives, where we leave the primitive description in object
space and then transform incoming rays from world space to object space, here we
do the opposite, and transform the primitive into world space. As a result, we won’t
need to transform the incoming rays or the intersection differential geometry.�
Transform mesh vertices to world space ���
for (int i = 0; i < nverts; ++i)

p[i] = ObjectToWorld(P[i]);

�
TriangleMesh Methods ��� �
TriangleMesh::˜TriangleMesh() {

delete[] vertexIndex;
delete[] p;

}

The object-space bound of a triangle mesh is easily found by computing a
bounding box that encompasses all of the vertices of the mesh. We transform the
world-space p positions back to object space before computing their bound.�
TriangleMesh Methods ��� �
BBox TriangleMesh::ObjectBound() const {

BBox bobj;
for (int i = 0; i < nverts; i++)

bobj = Union(bobj, WorldToObject(p[i]));
return bobj;

}
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The TriangleMesh shape is one of the shapes that can usually compute a better
world space bound than can be found by transforming its object-space bounding
box to world space. We just directly compute a bounding box of the world-space
vertices.�
TriangleMesh Methods ��� �
BBox TriangleMesh::WorldBound() const {

BBox worldBounds;
for (int i = 0; i < nverts; i++)

worldBounds = Union(worldBounds, p[i]);
return worldBounds;

}

The TriangleMesh shape does not directly compute intersections. Instead, it
splits itself into many separate Triangles, each representing a single triangle. This
allows all of the individual triangles to reference the shared set of vertices in p,
saving us from needing to replicate the shared data for each triangle. We override
the CanIntersect method of Shape to indicate that TriangleMeshs can not be
intersected directly.�
TriangleMesh Interface ��� �
bool CanIntersect() const { return false; }

When lrt encounters a shape that cannot be intersected directly, it calls its
Refine method. Refine is expected to produce a list of simpler shapes in the
refined vector. The implementation here is simple; we just make a new Triangle
for each of the triangles in the mesh.�
TriangleMesh Methods ��� �
void TriangleMesh::Refine(vector<RefinedShape> &refined) const {

for (int i = 0; i < ntris; ++i)
refined.push_back(RefinedShape(

new Triangle(ObjectToWorld, (TriangleMesh *)this, i)));
}

Triangle
�
TriangleMesh Declarations ��� �
class Triangle : public Shape {
public:�

Triangle Interface �
//private:�

Triangle Data �
};

The Triangle doesn’t store much data; just a pointer to the parent TriangleMesh
that it came from and a pointer to its three vertex indices in the mesh.
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�
Triangle Interface ���
Triangle(const Transform &o2w, TriangleMesh *m, int n)

: Shape(o2w) {
mesh = m;
v = &mesh->vertexIndex[3*n];

#ifndef OLD_SCHOOL
p1 = m->p[v[0]];
p2 = m->p[v[1]];
p3 = m->p[v[2]];

#endif�
Update created triangles stats �

}
�
Triangle Data ���
Reference<TriangleMesh> mesh;
int *v;
#ifndef OLD_SCHOOL
Point p1, p2, p3;
#endif�

Update created triangles stats ���
static StatsCounter trisMade("Geometry", "Triangles created");
++trisMade;

As with TriangleMeshes, we can compute better world space bounding boxes
for individual triangles by bounding the world space vertices directly.�
TriangleMesh Methods ��� �
BBox Triangle::ObjectBound() const {�

Get triangle vertices in p1, p2, and p3 �
return Union(BBox(WorldToObject(p1), WorldToObject(p2)),

WorldToObject(p3));
}

BBox Triangle::WorldBound() const {�
Get triangle vertices in p1, p2, and p3 �
return Union(BBox(p1, p2), p3);

}
�
Get triangle vertices in p1, p2, and p3 ���
#ifdef OLD_SCHOOL
const Point &p1 = mesh->p[v[0]];
const Point &p2 = mesh->p[v[1]];
const Point &p3 = mesh->p[v[2]];
#endif

Triangles have a dual role among the primitives in lrt: not only are they used
as a user-specified primitive, but other primitives may tessellate themselves into
triangle meshes; for example, subdivision surfaces end up creating a mesh of tri-
angles to approximate the smooth subdivision limit surface–ray intersections are
performed against these triangles, rather than directly against the subdivision sur-
face.
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Because of this second role, it’s important that code that creates triangle meshes
be able to specify the parameterization of the triangles. If a triangle was created by
evaluating the position of a parametric surface at three particular

�
u � v � coordinate

values, those
�
u � v � values should be interpolated to compute the

�
u � v � value at ray

intersection points inside the triangle.
The GetUVs method of the Triangle class returns the parametric coordinates

for the three vertices of a triangle. If the TriangleMesh has a non-NULL uvs
value, the appropriate values are retrieved and returned. Otherwise, we use default
coordinates of

�
0 � 0 � , � 1 � 0 � , and

�
1 � 1 � .�

Shape Method Definitions ��� �
void Triangle::GetUVs(Float uv[3][2]) const {

if (mesh->uvs) {
uv[0][0] = mesh->uvs[2*v[0]];
uv[0][1] = mesh->uvs[2*v[0]+1];
uv[1][0] = mesh->uvs[2*v[1]];
uv[1][1] = mesh->uvs[2*v[1]+1];
uv[2][0] = mesh->uvs[2*v[2]];
uv[2][1] = mesh->uvs[2*v[2]+1];

}
else {

uv[0][0] = uv[0][1] = uv[1][1] = 0.;
uv[1][0] = uv[2][0] = uv[2][1] = 1.;

}
}

Triangle Intersection

An algorithm for ray-triangle intersection can be computed using barycentric
coordinates. Barycentric coordinates provide a way to parameterize a triangle in
terms of two variables, b1 and b2:

p
�
b1 � b2 � �

�
1 � b1 � b2 � p0 � b1p1 � b2p2

The conditions on b1 and b2 are that b1 � 0, b2 � 0, and b1 � b2 � 1. This is the
parametric form of a triangle. The barycentric coordinates are also a natural way to
interpolate across the surface of the triangle; given values defined at the vertices a0,
a1, and a2 and given the barycentric coordinates for a point on the triangle, we can
compute an interpolated value of a at that point as

�
1 � b1 � b2 � a0 � b1a1 � b2a2.

(See Section 11.5 on page 331 for a texture that interpolates shading values over a
triangle mesh in this manner.)

To derive an algorithm for intersecting a ray with a triangle, we insert the para-
metric ray equation into the triangle equation.

o
�
r � � t �d � r � � �

1 � b1 � b2 � p0 � b1p1 � b2p2 (3.6.1)

Following the technique described by Möller and Trumbore(MT97), we use the
shorthand notation �e1

� p1 � p0, �e2
� p2 � p0, and �t � o

�
r � � p0. We can now
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Figure 3.5: Transforming the ray into a more convenient coordinate system for
intersection. First, a translation is applied to make a corner of the triangle coincide
with the origin. Then, the triangle is rotated and scaled to a unit right-triangle.

rearrange terms of Equation 3.6.1 to obtain the matrix equation:

�
� �d � r � �e1 �e2 �

��
t

b1

b2

��
� �t (3.6.2)

Solving this linear system will give us both the barycentric coordinates of the in-
tersection point (which can easily be used to compute the 3D intersection point) as
well as the distance along the ray.

Geometrically, we can interpret this system as a translation of the triangle to the
origin, and a transformation of the triangle to a unit triangle in y and z, keeping the
ray direction aligned with x, as shown in Figure 3.5.

Cramer’s rule gives a solution to equation 3.6.2:
XXX Need to explain the � �a �b�c � notation–determinant of a 3x3 matrix. XXX��� t

b1

b2

�	��
� 1

�
� � �d � r � �e1 �e2

�
�

���� �
� �t �e1 �e2

�
�

�
� � �d � r � �t �e2

�
�

�
� � �d � r � �e1 �t

�
�

�	���
(3.6.3)

This can be rewritten as
�
�
� �A �B �C

�
�
�
� � � �A � �C � � �B � � � �C � �B � � �A. We can

thus rewrite Equation 3.6.3 as:��
t

b1

b2

��
� 1� �d � r � � �e2 � � �e1

���
�
�t � �e1 � � �e2� �d � r � � �e2 � � �t�
�t � �e1 � � �d � r �

�	��
(3.6.4)

If we use the substitution �s1
� �d � r � � �e2 and �s2

� �t � �e1 we can make the common
subexpressions more explicit:��

t
b1

b2

��
� 1
�s1
� �e1

�� �s2
� �e2

�s1
� �t

�s2
� �d � r �

��
(3.6.5)
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In order to compute �e1, �e2, and �t we need 9 subtractions. To compute �s1 and
�s2, we need two cross products, which is a total of 12 multiplies and 6 subtrac-
tions. Finally, to compute t, b1, and b2, we need 4 dot products (12 multiplies
and 8 additions), 1 reciprocal, and 3 multiplies. Thus, the total cost of ray-triangle
intersection is 1 divide, 27 multiplies, and 17 additions (counting additions and
subtractions together). Note that some of these operations can be avoided if it is
determined mid-calculation that the ray does not intersect the triangle.�
TriangleMesh Methods ��� �
bool Triangle::Intersect(const Ray &ray, Float *thitp,

DifferentialGeometry *dg) const {�
Initialize triangle intersection statistics ��
Update triangle tests count ��
Compute �s1 ��
Compute first barycentric coordinate ��
Compute second barycentric coordinate ��
Compute t to intersection point ��
Fill in DifferentialGeometry from triangle hit �
*thitp = t;
return true;

}
�
Initialize triangle intersection statistics ���
static StatsRatio triangleHits("Geometry", "Triangle Ray Intersections");

�
Update triangle tests count ���
triangleHits.add(0, 1);

First, we compute the divisor from Equation 3.6.5. We figure out which three
mesh vertices are the ones for this particular Triangle, and then compute the edge
vectors and divisor. Note that if the divisor is zero, this triangle is degenerate and
therefore cannot intersect a ray.�
Compute �s1 ����

Get triangle vertices in p1, p2, and p3 �
Vector E1 = p2 - p1;
Vector E2 = p3 - p1;
Vector S_1 = Cross(ray.D, E2);
Float divisor = Dot(S_1, E1);
if (divisor == 0.)

return false;
Float invDivisor = 1.f / divisor;

We can now compute the desired barycentric coordinate b1. Recall that barycen-
tric coordinates that are less than zero or greater than one represent points outside
the triangle, so those are non-intersections.�
Compute first barycentric coordinate ���
Vector T = ray.O - p1;
Float b1 = Dot(T, S_1) * invDivisor;
if (b1 < 0. || b1 > 1.)

return false;



Sec. 3.6] Triangles and Meshes 81

20 Cross
47 DifferentialGeometry
19 Dot(v,v)
16 Vector

The second barycentric coordinate, b2, is computed in a similar way:�
Compute second barycentric coordinate ���
Vector S_2 = Cross(T, E1);
Float b2 = Dot(ray.D, S_2) * invDivisor;
if (b2 < 0. || b1 + b2 > 1.)

return false;

Now that we know the ray intersects the triangle, we compute the distance along
the ray at which the intersection occurs. This gives us one last opportunity to exit
the procedure early, in case the t value falls outside our mint and maxt bounds.�
Compute t to intersection point ���
Float t = Dot(E2, S_2) * invDivisor;
if (t < ray.mint || t > ray.maxt)

return false;
triangleHits.add(1, 0);

We now have all the information we need to compute the DifferentialGeometry
structure for this intersection. In contrast to previous shapes, we don’t need to
transform the partial derivatives to world-space, since the triangle’s vertices were
already transformed to world-space themselves. Like the disk, the triangles normal
partial derivatves are also both

�
0 � 0 � 0 � .�

Fill in DifferentialGeometry from triangle hit ����
Compute triangle partial derivatives ��
Interpolate

�
u � v � triangle parametric coordinates �

*dg = DifferentialGeometry(ray(t), dPdu, dPdv, Vector(0,0,0),
Vector(0,0,0), tu, tv, this);

In order to have consistent tangents and bitangents over triangle meshes we’ll
compute the partial derivatives ∂P � ∂u and ∂P � ∂v of the triangle using the para-
metric

�
u � v � values provided at the triangle vertices, if any. Although the partial

derivatives are the same at all points on the triangle, we will just recompute them
each time an intersection is found.

The triangle is the set of points

Po � u∂P � ∂u � v∂P � ∂v �

for some Po, where u and v range over the parametric coordinates of the triangle.
We also know the three vertex positions Vi, i � 0 � 1 � 2 and the texture coordinates�
ui � vi � at each vertex. From this it follows that

Vi
� Po � ui∂P � ∂u � vi∂P � ∂v �

We can write this in matrix form:�� V0

V1

V2

�� �
�� u0 v0 1

u1 v1 1
u2 v2 1

�� �� ∂P � ∂u
∂P � ∂v

Po

��
In other words, there is a unique affine mapping from the two-dimensional

�
u � v �

space to points on the triangle (such a mapping exists since although the triangle
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is specified in 3D space, it is a within a 2D plane through 3D space.) To compute
expressions for ∂P � ∂u and ∂P � ∂v, we just need to solve the matrix equation. We
subtract the bottom row of each matrix from the top two rows, giving:�

V0 � V2

V1 � V2 � �
�

u0 � u2 v0 � v2

u1 � u2 v1 � v2 � �
∂P � ∂u
∂P � ∂v �

So �
∂P � ∂u
∂P � ∂v � �

�
u0 � u2 v0 � v2

u1 � u2 v1 � v2 � � 1 �
V0 � V

�
2 �

V
�
1 � � V

�
2 � �

�
Compute triangle partial derivatives ���
Vector dPdu, dPdv;
Float uvs[3][2];
GetUVs(uvs);�
Compute deltas for triangle partial derivatives �
Float determinant = du1 * dv2 - dv1 * du2;
if (determinant == 0) {�

Handle zero determinant for triangle partial derivative matrix �
}
else {

Float invdet = 1.f / determinant;
dPdu = Vector((dx1 * dv2 - dv1 * dx2) * invdet,

(dy1 * dv2 - dv1 * dy2) * invdet,
(dz1 * dv2 - dv1 * dz2) * invdet);

dPdv = Vector((du1 * dx2 - dx1 * du2) * invdet,
(du1 * dy2 - dy1 * du2) * invdet,
(du1 * dz2 - dz1 * du2) * invdet);

}
�
Compute deltas for triangle partial derivatives ���
Float du1 = uvs[1][0] - uvs[0][0];
Float du2 = uvs[2][0] - uvs[0][0];
Float dv1 = uvs[1][1] - uvs[0][1];
Float dv2 = uvs[2][1] - uvs[0][1];
Float dx1 = p2.x - p1.x;
Float dx2 = p3.x - p1.x;
Float dy1 = p2.y - p1.y;
Float dy2 = p3.y - p1.y;
Float dz1 = p2.z - p1.z;
Float dz2 = p3.z - p1.z;

Just do something arbitrary... Make sure they are all orthonormal, though..�
Handle zero determinant for triangle partial derivative matrix ���
CoordinateSystem(Cross(E2, E1).Hat(), &dPdu, &dPdv);

To compute the
�
u � v � parametric coordinates at the hit point, we just apply the

barycentric interpolation formula to the
�
u � v � parametric coordinates at the ver-

tices.
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Figure 3.6: The area of a triangle with two edges given by vectors v1 and v2 is
one half of the area of the parallelogram, which is given by the length of the cross
product of v1 and v2.

�
Interpolate

�
u � v � triangle parametric coordinates ���

Float b0 = 1 - b1 - b2;
Float tu = b0*uvs[0][0] + b1*uvs[1][0] + b2*uvs[2][0];
Float tv = b0*uvs[0][1] + b1*uvs[1][1] + b2*uvs[2][1];

Surface Area

Recall from Section 2.1 that the area of a parallelogram is given by the length
of the cross product of the two vectors along its sides. From this, it’s easy to see
that given the vectors for two edges of a triangle, its area is 1 � 2 of the area of the
parallelogram given by those two vectors–see Figure 3.6.�
TriangleMesh Methods ��� �
Float Triangle::Area() const {�

Get triangle vertices in p1, p2, and p3 �
return 0.5f * Cross(p2-p1, p3-p1).Length();

}

� ���  ������� � ��# ��� �  �"� � �	��� #

�
subdiv.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "shapes.h"
#include "paramset.h"
#include "dynload.h"
#include "texture.h"
#include <set>
#include <map>
using std::set;
using std::map;�
SubdivisionMesh Macros ��
SubdivisionMesh Local Structures ��
SubdivisionMesh Declarations ��
SubdivisionMesh Inline Functions ��
SubdivisionMesh Methods �
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Figure 3.7: tetra control mesh and 4 levels of subdivision.

We will wrap up this chapter by defining a shape that implements subdivision
surfaces, a type of surface that is particularly well-suited to describing complex
smooth shapes. A subdivision surface is defined by a mesh of control vertices; the
surface that results from repeatedly subdividing the faces of the mesh into more
faces and applying rules that compute new positions for the mesh vertices based on
weighted combinations of vertex positions at the previous level gives the subdivi-
sion surface for that mesh.

For appropriately chosen subdivision rules, this process converges to give a
smooth limit surface as the number of subdivision steps goes to infinity. (In prac-
tice, just a few levels of subdivision typically suffice to give a good approximation
to the limit surface.) Figure 3.7 shows the effect of applying one set of subdivision
rules to a tetrahedron; on the left is the original control mesh–one, two, three, and
four levels of subdivision are shown moving from left to right.

Though originally developed in the 1970s, subdivision surfaces have receitnly
received a fair amount of attention in computer graphics thanks to their advantages
over polygonal and spline-based representations of surfaces. The advantages of
subdivision include:


 Subdivision surfaces are smooth (as opposed to polygon meshes, which ap-
pear faceted when viewed sufficiently closely, regardless of how finely they
are modeled); subdivision surface are a generally compact way to represent
smooth surfaces.


 The classic toolbox of techniques for modeling polygon meshes can be ap-
plied to modeling subdivision control meshes–a lot of existing infrastructure
in modeling systems can be retargeted to subdivision.


 Subdivision methods are often generalizations of spline-based surface repre-
sentations, so spline surfaces can often just be run through general subdivi-
sion surface renderers.


 Subdivision surfaces naturally describe objects with complex topology, since
control meshes with complex topology can be modeled. Parametric surface
models generally don’t handle complex topology well.


 It is easy to add detail to a localized region of a subdivision surface, simply
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Figure 3.8: Basic refinement process for Loop subdivision: the control mesh on the
left has been subdivided once to create the new mesh on the right. Each triangular
face of the mesh has been subdivided into four new faces by splitting each of the
edges and connecting the new vertices with new edges.

by adding faces to appropriate parts of the control mesh. This is much less
easily done with spline representations.

Here, we will describe an implementation of Loop subdivision surfaces. The
Loop rules are based on triangular faces in the control mesh; faces with more than
three vertices are just triangulated at the start. At each subdivision step, each face
splits into four child faces– see Figure 3.8. New vertices are added along all of the
edges of the original mesh; their positions are computed with weighted averages
of nearby vertices. Furthermore, the position of each vertex in the previous step
is also updated with a weighted average of its previous position and its neighbors’
positions.

Mesh Representation
�
SubdivisionMesh Declarations ���
class LoopSubdiv : public Shape {
public:�

LoopSubdiv Method Declarations �
private:�

LoopSubdiv Private Methods ��
LoopSubdiv Private Data �

};

We will start by describing the data structures used for representing the subdi-
vision mesh; they need to be carefully designed in order to support all of the oper-
ations necessary to cleanly implement the subdivision algorithm. The parameters
to the LoopSubdiv constructor specify a triangle mesh in exactly the same format
as is passed to the TriangleMesh constructor (see Section 3.6 on page 74.): each
face is described by three integer vertex indices, giving offsets into the vertex ar-
ray P for the face’s three vertices. We will need to process this data to compute
a representation of which faces are adjacent to which other faces, which faces are
adjacent to each vertex, etc., in order to implement subdivision efficiently.
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�
SubdivisionMesh Methods ���
LoopSubdiv::LoopSubdiv(const Transform &o2w, int nfaces,

int nvertices, const int *vertexIndices,
const Point *P, int nl)

: Shape(o2w) {
nLevels = nl;�
Allocate LoopSubdiv vertices and faces ��
Set face to vertex pointers ��
Set neighbor pointers in faces ��
Finish vertex initialization �

}

We will shortly define SDVertex and SDFace structures, which hold data for
vertices and faces in the subdivision mesh, respectively. We start by allocating one
instance of the SDVertex class for each vertex in the mesh and an SDFace for each
face. For now, these are mostly uninitialized, except for the position stored in each
vertex.�
Allocate LoopSubdiv vertices and faces ���
int i;
SDVertex *verts = new SDVertex[nvertices];
for (i = 0; i < nvertices; ++i) {

verts[i] = SDVertex(P[i]);
vertices.push_back(&verts[i]);

}
SDFace *fs = new SDFace[nfaces];
for (i = 0; i < nfaces; ++i)

faces.push_back(&fs[i]);

The LoopSubdiv destructor, which we won’t include here, just deletes all of the
faces and vertices allocated above.�
LoopSubdiv Private Data ���
int nLevels;
vector<SDVertex *> vertices;
vector<SDFace *> faces;

The Loop subdivision scheme, like most other subdivision schemes, assumes
that the control mesh is manifold; no more than two faces share any given edge.
Such a mesh may be closed or open: a closed mesh has no boundary–all faces
have other faces adjacent to them across all of their edges. An open mesh has
some faces that do not have all three neighbors. The LoopSubdiv implementation
supports both closed and open meshes.

It can be shown that in the interior of a triangle mesh, most vertices are adjacent
to six faces and have six neighbor vertices directly connected to them with edges.
On the boundaries of a non-closed mesh, most vertices are adjacent to three faces
and four vertices. The number of vertices directly adjacent to a vertex is called the
vertex’s valence. Interior vertices with valence other than six, or boundary vertices
with valence other than four are called extraordinary vertices; otherwise they are
called regular. Loop subdivision surfaces are smooth everywhere except at their
extraordinary vertices.
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Each vertex stores its position P, a boolean that records if it’s a regular or ex-
traordinary vertex, and a boolean that records if it lies on the boundary of the mesh.
It also holds a pointer to one of the faces adjacent to it; later, we will be able to
use this pointer to start an iteration over all of the faces adjacent to the vertex by
following pointers that faces store to record which faces are adjacent to them. Fi-
nally, we have a pointer to store the new SDVertex for this vertex at the next level
of subdivision, if any.�
SubdivisionMesh Local Structures ��� �
struct SDVertex {�

SDVertex Constructor ��
SDVertex Methods �
Point P;
SDFace *startFace;
SDVertex *child;
bool regular, boundary;

};

The constructor for SDVertex does the obvious initialization; we won’t include
it here.

The SDFace structure is were we maintain most of the topological information
about the mesh. Because all faces are triangular, we always store three pointers to
the vertices for this face and three pointers to the faces adjacent to this one. (The
face neighbor pointers may be NULL.)

The face neighbor pointers are indexed such that if we label the edge from v[i]
to v[(i+1)%3] as the ith edge, then the neighbor face across that edge is stored in
f[i]–see Figure 3.9. This labeling convention is important to keep in mind; later
when we are updating the topology of a newly subdivided mesh, we will make
extensive use of it to navigate around the mesh. Similarly to the SDVertex class,
we also store pointers to child faces at the next level of subdivision.�
SubdivisionMesh Local Structures ��� �
struct SDFace {�

SDFace Constructor ��
SDFace Methods �
SDVertex *v[3];
SDFace *f[3];
SDFace *children[4];

};

The SDFace constructor is similarly straightforward–setting pointers to NULL,
etc.–so we will also elide it here.

In order to simplify navigation of the SDFace data structure, we’ll provide macros
that make it easy to determine the vertex and face indices after or before a particular
index. These macros add appropriate offsets and compute the result modulus three
to handle cycling around properly. Rather than subtracting 1 and taking the modu-
lus for PREV, we add 2, which avoids taking the modulus of a negative number, the
result of which isn’t well-defined in C++.�
SubdivisionMesh Macros ���
#define NEXT(i) (((i)+1)%3)
#define PREV(i) (((i)+2)%3)
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Figure 3.9: Each triangular faces stores three pointers to SDVertex objects v[i]
and three pointers to neighboring faces f[i]. Neighbor faces are indexed using
the convention that the ith edge is the edge from v[i] to v[(i+1)%3] such that the
neighbor across the ith edge is in f[i].

Figure 3.10: All of the faces in the input mesh must be specified so that each shared
edge is given once in one direction and the other time in the other direction. Here,
the edge from v0 to v1 is traversed from v0 to v1 by face number one, and from
v1 to v0 by face number two. Another way to think of this is in terms of face
orientation: all faces’ vertices should be given consisdently in either clockwise or
counter-clockwise order, as seen from outside the mesh.
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In addition to requiring a manifold mesh, the LoopSubdiv class expects that the
control mesh specified by the user will be well-behaved in one additional important
way: the mesh must be consistently ordered–each directed edge in the mesh can
be present only once. Consider two vertices, v0 and v1, with an edge between then.
For the edge from v0 to v1, we expect that one of the triangular faces that has that
edge will specify its three vertices so that v0 is before v1, and that the other face
will specify its vertices so that v1 is before v0–Figure 3.10. Thus, no more than two
faces may have this edge. A Möbius strip is an example of a surface that cannot be
consistently ordered. In practice, however, this requirement is rarely troublesome.

Given this assumption about the input data, we will initialize this mesh’s topo-
logical data structures. We’ll first loop over all of the faces and set their v pointers
to point to their adjacent vertices. This is just simple indexing from the vertex in-
dices passed in to describe each face. We also set each vertex’s startFace pointer
to point to one of the faces adjacent to it. It doesn’t matter which of its incident
faces we point to, so we just keep re-setting it each time we come across another
face that it is incident to, ensuring that all vertices have some non-NULL face
pointer by the time we’re done.�
Set face to vertex pointers ���
const int *vp = vertexIndices;
for (i = 0; i < nfaces; ++i) {

SDFace *f = faces[i];
for (int j = 0; j < 3; ++j) {

SDVertex *v = vertices[vp[j]];
f->v[j] = v;
v->startFace = f;

}
vp += 3;

}

Now we need to set the face neighbor pointers for each face. This is a bit trickier,
since face adjacency information isn’t directly given in the mesh specification from
the user. We’ll loop over the faces and store a SDEdge object for each of their three
edges; when we come to another face that shares the same edge, we can update
both faces’ neighbor pointers for that edge.�
SubdivisionMesh Local Structures ��� �
struct SDEdge {�

SDEdge Constructor ��
SDEdge Comparison Function �
SDVertex *v[2];
SDFace *f[2];
SDFace **fptr;

};

The constructor takes pointers to the two vertices at each end of the edge. It
orders them so that v[0] holds the one that is first in memory; this way we properly
recognize that the edge

�
va � vb � is the same as the edge

�
vb � va � , regardless of the

order the vertices are given in.



max 513
min 513

SDEdge 89
SDFace 87

SDVertex 87

90 Shapes [Ch. 3

�
SDEdge Constructor ���
SDEdge(SDVertex *v0 = NULL, SDVertex *v1 = NULL) {

v[0] = min(v0, v1);
v[1] = max(v0, v1);
f[0] = f[1] = NULL;
fptr = NULL;

}

We also define an ordering operation for edges so that we can store SDEdges in
data structures that depend on being able to compute an ordering for them.�
SDEdge Comparison Function ���
bool operator<(const SDEdge &e2) const {

if (v[0] == e2.v[0]) return v[1] < e2.v[1];
return v[0] < e2.v[0];

}

Now we can get to work, looping over the edges in all of the faces and updating
the neighbor pointers as we go. We use an STL set<> to store the edges where
we’re still looking for the face on the other side of it; the set<> uses the comparison
function above to provide O

�
log n � searches in the SDEdges.�

Set neighbor pointers in faces ���
set<SDEdge> edges;
for (i = 0; i < nfaces; ++i) {

SDFace *f = faces[i];
for (int edge = 0; edge < 3; ++edge) {�

Update neighbor pointer for edge �
}

}

For each edge in each face, we create an edge object and see if the same edge
was seen previously. If so, we initialize both faces’ neighbor pointers across the
edge. If not, we add the edge to the set of edges.�
Update neighbor pointer for edge ���
int v0 = edge, v1 = NEXT(edge);
SDEdge e(f->v[v0], f->v[v1]);
if (edges.find(e) == edges.end()) {�

Handle new edge �
}
else {�

Handle previously-seen edge �
}

Given an edge that we haven’t seen before, we store the current face’s pointer in
the edge object’s f[0] member. When we come across the other face that shares
this edge (if any), we can thus know what the neighboring face is. Also, so that the
current face’s neighbor pointer can be set to point to the other, not-yet-found face,
we store a pointer to the relevant neighbor pointer in the edge as well.
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Figure 3.11: Given a vertex v[i] and a face that it is incident to, f, we define the
next face as the face adjacent to f across the edge from v[i] to v[NEXT(i)]. The
previous face is defined analogously.

�
Handle new edge ���
e.f[0] = f;
e.fptr = &(f->f[edge]);
edges.insert(e);

After the other edge is found, we can set the neighbor pointers for each of the
two faces. We then remove the edge from the edge set, since we are assuming
assume that no edge is shared by more than two faces.�
Handle previously-seen edge ���
e = *edges.find(e);
*e.fptr = f;
f->f[edge] = e.f[0];
edges.erase(e);

Now that all faces have proper neighbor pointers, we can set the boundary and
regular flags in each of the vertices. In order to deterime if a vertex is a boundary
vertex, we’ll introduce the idea of an ordering of faces around a vertex; see Fig-
ure 3.11. For a vertex v[i] on a face f, we define the vertex’s next face as the face
across the edge from v[i] to v[NEXT(i)] and the previous face as the face across
the edge from v[PREV(i)] to v[i].

By successively going to the next face around v, f=f->nextFace(v), we can
iterate over the faces adjacent to it. If we eventually return to the face we started
at, then we are at an interior vertex; if we come to an edge with a NULL neighbor
pointer, then we’re at a boundary vertex–see Figure 3.12. Once we’ve determined
if we have a boundary vertex, we compute to valence of the vertex and set the
regular flag if the valence is 6 for an interior vertex or 4 for a boundary vertex.
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Figure 3.12: We can determine if a vertex is a boundry vertex by starting from the
adjacent face startFace and following next face pointers around the vertex. If we
come to a face that has no next neighbor face, then the vertex is on a boundary. If
we return to startFace, it’s an interior vertex.

�
Finish vertex initialization ���
for (i = 0; i < nvertices; ++i) {

SDVertex *v = vertices[i];
SDFace *f = v->startFace;
do {

f = f->nextFace(v);
} while (f && f != v->startFace);
v->boundary = (f == NULL);
v->regular = (!v->boundary && (v->valence() == 6) ||

(v->boundary && (v->valence() == 4)));
}

Since the next face for a vertex v on a face f is over the ith edge, where i is
the vertex index such that f->v[i]==v (recall Figure 3.11 and the mapping of
edge neighbor pointers, Figure 3.9), we can find the appropriate face neighbor
pointer easily given he index for the vertex, which the vnum() utility function
provides. Since the previous face is across the edge from PREV(i) to i, we return
f[PREV(i)] for the previous face.�
SDFace Methods ���
SDFace *nextFace(SDVertex *vert) {

return f[vnum(vert)];
}

�
SDFace Methods ��� �
SDFace *prevFace(SDVertex *vert) {

return f[PREV(vnum(vert))];
}

Here is the utility function that finds which vertex number a given vertex is on
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one of the faces adjacent to it. It’s a fatal error to pass a pointer to a vertex that isn’t
one of the vertices of the given face–this case would represent a bug elsewhere in
the subdivision code.�
SDFace Methods ��� �
int vnum(SDVertex *vert) const {

for (int i = 0; i < 3; ++i)
if (v[i] == vert) return i;

Assert(1 == 0);
return -1;

}
�
SubdivisionMesh Inline Functions ���
inline int SDVertex::valence() {

SDFace *f = startFace;
if (!boundary) {�

Compute valence of interior vertex �
}
else {�

Compute valence of boundary vertex �
}

}

To compute the valence of a non-boundary vertex, we count the number of of the
adjacent faces to the vertex by following neighbor pointers for the faces around it
until we reach the original face we started at. The valence is equal to as the number
of faces visited.�
Compute valence of interior vertex ���
int nf = 1;
while ((f = f->nextFace(this)) != startFace)

++nf;
return nf;

For boundary vertices we use the same approach, though in this case, the va-
lence is one more than the number of adjacent faces. The loop over adjacent faces
is slightly more complicated here: we follow pointers to the next face around the
vertex until we reach the boundary, counting the number of faces seen. We then
start again at startFace and follow previous face pointers until we hit the bound-
ary going the other way.�
Compute valence of boundary vertex ���
int nf = 1;
while ((f = f->nextFace(this)) != NULL)

++nf;
f = startFace;
while ((f = f->prevFace(this)) != NULL)

++nf;
return nf+1;

Bounds
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Loop subdivision surfaces have the convex hull property: the limit surface is
guaranteed to be inside the convex hull of the original control mesh. Thus, for the
bounding methods, we can just bound the original control vertices. The bounding
methods are essentially equivalent to those in TriangleMesh, so we won’t include
them here.�
LoopSubdiv Method Declarations ��� �
BBox ObjectBound() const;
BBox WorldBound() const;

Subdivison

Now we can show how subdivision proceeds with the Loop rules. The LoopSubdiv
shape doesn’t support intersection directly, but will apply subdivision a fixed num-
ber of times to generate a TriangleMesh for rendering. An exercise at the end of
the chapter discussed how adaptive subdivision might be implemented, such that
each original face is subdivided just enough so that the result looks smooth from
the particular viewpoint.�
SubdivisionMesh Methods ��� �
bool LoopSubdiv::CanIntersect() const {

return false;
}

The Refine method handles all of the subdivision. We repeatedly apply the
subdivision rules to the mesh, each time generating a new mesh to be used as the
input to the next step. After each subdivision step, the f and v arrays in the Refine
function below will be updated to point to the faces and vertices from the level
of subdivision just computed. After we are done subdividing, a TriangleMesh
representation of the surface will be created and returned to the caller.�
SubdivisionMesh Methods ��� �
void LoopSubdiv::Refine(vector<RefinedShape> &refined) const {

vector<SDFace *> f = faces;
vector<SDVertex *> v = vertices;
MemoryArena<SDVertex> vertexArena;
MemoryArena<SDFace> faceArena;
u_int i;
for (i = 0; i < nLevels; ++i) {�

Update f and v for next level of subdivision �
}�
Push vertices to limit surface ��
Compute vertex tangents on limit surface ��
Create TriangleMesh from subdivision mesh �

}

Here are the contents the main loop of a subdivision step. We create vectors
for all of the vertices and faces at this level of subdivision and then proceed to
compute new vertex positions and update the topological representation for the
refined mesh. Figure 3.13 shows the basic refinement rules for faces in the mesh.
Each face is split into four children faces, such that the ith child face is next to the
ith vertex of the input face. Three new vertices need to be computed along the split
edges of the face.
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Figure 3.13: Basic Loop subdivision of a single face: four child faces are created,
ordered such that the ith child face is adjacent to the ith vertex of the original face
and the third child face is in the center of the subdivided face. Three edge vertices
need to be computed; they are numbered so that the ith edge vertex is along the ith
edge of the original face.

�
Update f and v for next level of subdivision ���
vector<SDFace *> newFaces;
vector<SDVertex *> newVertices;�
Allocate next level of children in mesh tree ��
Update vertex positions and create new edge vertices ��
Update new mesh topology ��
Prepare for next level of subdivision �
First, we allocate storage for the updated vertices for the vertices in the input

mesh and for the subdivided faces at the next level. We don’t yet do any initial-
ization of the new vertices and faces, though we do go ahead and set the regular
and boundary flags for the vertices; subdivision leaves boundary vertices on the
boundary and interior vertices in the interior. Furthermore, it doesn’t change the
valence of vertices in the mesh.�
Allocate next level of children in mesh tree ���
u_int j;
for (j = 0; j < v.size(); ++j) {

v[j]->child = new (vertexArena) SDVertex;
v[j]->child->regular = v[j]->regular;
v[j]->child->boundary = v[j]->boundary;
newVertices.push_back(v[j]->child);

}
for (j = 0; j < f.size(); ++j)

for (int k = 0; k < 4; ++k) {
f[j]->children[k] = new (faceArena) SDFace;
newFaces.push_back(f[j]->children[k]);

}
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Computing new vertex positions

Before we worry about the topology of the subdivided mesh, we compute positions
for all of the vertices in the mesh. First, we will consider the problem of computing
updated positions for all of the vertices that were present in the mesh after the
previous subdivision step; these vertices are called even vertices. We will then
compute the new vertices for the split edges–these are called odd vertices.�
Update vertex positions and create new edge vertices ����

Update vertex positions for even vertices ��
Compute new odd edge vertices �
Different techniques are used to compute the updated positions for each of the

different types of even vertices–regular and extraordinary, boundary and interior.
The cross product of these two possibilities gives us four cases to handle.�
Update vertex positions for even vertices ���
for (j = 0; j < v.size(); ++j) {

if (!v[j]->boundary) {�
Apply one-ring rule for even vertex �

}
else {�

Apply boundary rule for even vertex �
}

}

For both types interior vertices, we take the set of vertices adjacent to each vertex
(called the one-ring around it, reflecting the fact that it’s a ring of neighbors) and
weight each of them by a weight β. (See Figure 3.14.) The vertex we are updating,
in the center, is weighted by 1 � nβ, where n is the valence of the vertex. Thus, the
new position v

�

for a vertex v is:

v
� � �

1 � nβ � v �
N

∑
i � 1

βvi
�

This formulation ensures that the sum of weights is one, which is what guarantees
the convex hull property we used above for bounding the surface. The fact that
only vertices nearby the a vertex being updated affect its new position is called
local support; Loop subdivision is particularly efficient to implement since its sub-
division rules all have this property.

The particular weight β used for this step is a key component of the subdivision
method: it must be chosen carefully in order to ensure smoothness of the limit
surface among other desirable properties. In the Loop scheme, for regular interior
vertices, a β value of 1 � 16 should be used; for extraordinary interior vertices, the
beta function below computes a value based on the vertex’s valence that ensures
smoothness.�
Apply one-ring rule for even vertex ���
if (v[j]->regular)

v[j]->child->P = weightOneRing(v[j], 1.f/16.f);
else

v[j]->child->P = weightOneRing(v[j], beta(v[j]->valence()));
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Figure 3.14: The new position v
�

for a vertex v is computed by weighting the
adjacent vertices vi by a weight β and weighting v by

�
1 � nβ � , such that v

� � �
1 �

nβ � v � ∑i βvi, where n is the valence of v. The adjacent vertices vi are collectively
referred to as the one ring around v.

The beta() function computes the weight β to use to weight the neighbors of
an extraordinary vertex with given valence. Note that the implementation below
returns β � 1 � 16 for regular vertices, though we only call it for extraordinary ver-
tices.�
LoopSubdiv Private Methods ���
static Float beta(int val) {

if (val == 3) return 3.f/16.f;
else return 3.f / (8.f * val);

}

The weightOneRing function loops over the one-ring of vertices adjacent to a
given vertex and applies the given weight to compute a new vertex position. It uses
the oneRing function, defined below, which returns the positions of the vertices
around the vertex vert.�
SubdivisionMesh Methods ��� �
Point LoopSubdiv::weightOneRing(SDVertex *vert, Float beta) {�

Put vert one-ring in Pring �
Point P = (1 - val * beta) * vert->P;
for (int i = 0; i < val; ++i)

P += beta * Pring[i];
return P;

}
�
Put vert one-ring in Pring ���
int val = vert->valence();
Point *Pring = (Point *)alloca(val * sizeof(Point));
vert->oneRing(Pring);
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�
SubdivisionMesh Methods ��� �
void SDVertex::oneRing(Point *P) {

if (!boundary) {�
Get one ring vertices for interior vertex �

}
else {�

Get one ring vertices for boundary vertex �
}

}

It’s relatively easy to get the one-ring around an interior vertex: we loop over
the faces adjacent to the vertex, and for each one, grab the next vertex around the
face from the center vertex.�
Get one ring vertices for interior vertex ���
SDFace *face = startFace;
do {

*P++ = face->nextVert(this)->P;
face = face->nextFace(this);

} while (face != startFace);

The one-ring around a boundary vertex is a bit more tricky. We will carefully
store the one ring in the given Point array so that the 0th and valence-1st entries
are the vertices adjacent to the vertex along the boundary. This requires that we
first loop around neighbor faces until we reach a face on the boundary and then
loop around the other way, grabbing vertices one by one.�
Get one ring vertices for boundary vertex ���
SDFace *face = startFace, *f2;
while ((f2 = face->nextFace(this)) != NULL)

face = f2;
*P++ = face->nextVert(this)->P;
do {

*P++ = face->prevVert(this)->P;
face = face->prevFace(this);

} while (face != NULL);

The oneRing() function uses these face, the nextVert() and prevVert()
methods, which return the next and previous vertices around the face, respectively.
(See Figure 3.15.)�
SDFace Methods ��� �
SDVertex *nextVert(SDVertex *vert) {

return v[NEXT(vnum(vert))];
}

�
SDFace Methods ��� �
SDVertex *prevVert(SDVertex *vert) {

return v[PREV(vnum(vert))];
}

For vertices on the boundary, the new vertex’s position is only based on the
two neighboring vertices on the boundary (see Figure 3.16); by not depending on
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Figure 3.15: Given a vertex v on a aface f, the method f->prevVert(v) returns
the previous vertex around the face from v and f->nextVert(v) returns the next
vertex. The ordering of vertices about the faces, as originally specified in the input
mesh, determines this ordering.

Figure 3.16: Subdivision on a boundary edge: the new position for the vertex in
the center is computed by weighting it and its two neighbor vertices by the weights
shown.

interior vertices, we ensure that two abutting surfaces that share the same vertices
on the boundary will have abutting limit surfaces. The weightBoundary utility
function applies the given weighting on the two neighbor vertices v1 and v2 to
compute the new position v � for v as

v � � � 1 � 2β � v 	 βv1 	 βv2 �

The same weight, 1 � 8, is used for both regular and extraordinary vertices.
�
Apply boundary rule for even vertex ���
v[j]->child->P = weightBoundary(v[j], 1.f/8.f);

The weightBoundary() function applies the given weights at a boundary ver-
tex. Because the oneRing() function ordered the boundary vertex’s one ring such
that the first and last entries are the boundary neighbors, the implementation here
is particularly straightforward.
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Figure 3.17: Subdivision rule for edge split: the position of the new odd vertex,
marked with an “x”, is found by weighting the two vertices at the end of the edge
and the two vertices opposite it on the adjacent triangles. On the left are the weights
for an interior vertex; on the right are the weights for a boundary vertex.

�
SubdivisionMesh Methods ��� �
Point LoopSubdiv::weightBoundary(SDVertex *vert, Float beta) {�

Put vert one-ring in Pring �
Point P = (1-2*beta) * vert->P;
P += beta * Pring[0];
P += beta * Pring[val-1];
return P;

}

Now we’ll compute the positions of the new odd vertices, the vertices along the
split edges of the mesh. We loop over each edge of each face in the mesh, com-
puting the new vertex that splits the edge. Figure 3.17 shows the general setting.
For interior edges, the new vertex, marked by an “x”, is found by weighting the
two vertices as the ends of the edge, v0 and v1 and the two vertices across from the
edge on the adjacent faces, v2 and v3. For each edge on each face, the first time
we come to the edge, we compute and store the new odd vertex in the splitEdges
associative array.�
Compute new odd edge vertices ���
map<SDEdge, SDVertex *> splitEdges;
for (j = 0; j < f.size(); ++j) {

SDFace *face = f[j];
for (int k = 0; k < 3; ++k) {�

Compute odd vertex on kth edge �
}

}

As when we were originally setting the neighbor pointers in the faces of the
original mesh, we’ll create an SDEdge object for the edge and see if we’ve already
visited that edge. If we haven’t, we compute the new vertex and add it to the map.
The map is an associative array structure that performs efficient lookups.
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�
Compute odd vertex on kth edge ���
SDEdge edge(face->v[k], face->v[NEXT(k)]);
SDVertex *vert = splitEdges[edge];
if (!vert) {�

Create and initialize new odd vertex ��
Apply edge rules to compute new vertex position �
splitEdges[edge] = vert;

}

In Loop subdivision, the new vertices added by subdivision are always regular.
(Thus, the number of extraordinary vertices as a fraction of all vertices decreases
with each level of subdivision.) This fact lets us immediately initialize the regular
member of the new vertex. The boundary member can be similarly easily initial-
ized by checking to see if there is a neighbor face across the edge that we’re split-
ting. Finally, we’ll go ahead and set the vertex’s startFace pointer here; for all
odd vertices on the edges of a face, the inner child face of that face, number three,
is guaranteed to be adjacent to the new vertex.�
Create and initialize new odd vertex ���
vert = new (vertexArena) SDVertex;
newVertices.push_back(vert);
vert->regular = true;
vert->boundary = (face->f[k] == NULL);
vert->startFace = face->children[3];

For odd boundary vertices, the new vertex is just the average of the two adja-
cent vertices. For interior odd vertices, the two vertices at the end of the edge are
given weight 3 � 8, and the two vertices opposite the edge are given weight 1 � 8 (Fig-
ure 3.17). We have all the information handy that we need to apply these weights;
the otherVert() utility function helps out by returning the vertex on a face that is
opposite a given edge.�
Apply edge rules to compute new vertex position ���
if (vert->boundary) {

vert->P = 0.5f * edge.v[0]->P;
vert->P += 0.5f * edge.v[1]->P;

}
else {

vert->P = 3.f/8.f * edge.v[0]->P;
vert->P += 3.f/8.f * edge.v[1]->P;
vert->P += 1.f/8.f *

face->otherVert(edge.v[0], edge.v[1])->P;
vert->P += 1.f/8.f *

face->f[k]->otherVert(edge.v[0], edge.v[1])->P;
}

The otherVert function loops through the face’s three vertices until it finds the
one that isn’t equal to either of the two given vertices.
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Figure 3.18: Carefully set up the children of the subdivided face...

�
SDFace Methods ��� �
SDVertex *otherVert(SDVertex *v0, SDVertex *v1) {

for (int i = 0; i < 3; ++i)
if (v[i] != v0 && v[i] != v1)

return v[i];
Assert(1 == 0);
return NULL;

}

Updating mesh topology

In order to keep the details of the topology update as straightforward as possible,
the numbering scheme for the subdivided faces and their vertices has been chosen
carefully–see Figure 3.18 for a summary. Each face is split int four child faces,
such that the ith child is adjacent to the ith vertex of the original face, and such that
the ith child face’s ith vertex is the child of the ith vertex of the original face. The
vertices of the center child are oriented such that the ith vertex is the odd vertex
along the ith edge of the parent face. Review the figure and re-read this paragraph;
these conventions are key to the next few pages.

There are four main tasks to take care of in order to update the topological
pointers of the refined mesh:

1. The new even vertices need to store a pointer to one of their adjacent faces
in startFace.

2. Similarly, the odd vertices startFace pointers need to be set.

3. The new faces’ neighbor f[i] pointers need to be initialized.

4. The new faces’ v[i] pointers need to point to their incident vertices.
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We went ahead and set the startFace pointers of the odd vertices when we first
created them; we’ll handle the other three tasks in order here.�
Update new mesh topology ����

Update even vertex face pointers ��
Update face neighbor pointers ��
Update face vertex pointers �
We will first set the startFace pointer for the children of the even vertices.

Because the vertex and face numbers of the child vertices and faces were carefully
chosen, if a vertex is the ith vertex of its startFace, then it is guaranteed that it
will be adjacent to the ith child face of startFace. Therefore, we just need to loop
through the parent vertices of the new even vertices and find their vertex index in
their startFace.�
Update even vertex face pointers ���
for (j = 0; j < v.size(); ++j) {

SDVertex *vert = v[j];
int vertNum = vert->startFace->vnum(vert);
vert->child->startFace = vert->startFace->children[vertNum];

}

Next we update the face neighbor pointers for the newly-created faces. We break
this into two steps: one to update neighbors among children of the same parent, and
one to do neighbors across children of different parents. This involves some tricky
pointer setting.�
Update face neighbor pointers ���
for (j = 0; j < f.size(); ++j) {

SDFace *face = f[j];
for (int k = 0; k < 3; ++k) {�

Update children f pointers for siblings ��
Update children f pointers for neighbor children �

}
}

First we’ll do the easy bits. Recall that the interior child face is always stored in
children[3]. Furthermore, the k � 1st child face (for k � 0 � 1 � 2) is across the kth
edge of the interior face, and the interior face is across the k � 1st edge of the kth
face.�
Update children f pointers for siblings ���
face->children[3]->f[k] = face->children[NEXT(k)];
face->children[k]->f[NEXT(k)] = face->children[3];

We’ll now update the childrens’ face neighbor pointers that point to children of
the faces adjacent to the parent face. Only the first three children point to children
of their parent’s neighbors; the interior child’s neighbor pointers have already been
fully initialized. Inspection of Figure 3.18 reveals that the ith and

������� �
i � th edges

of the ith child need to be set. We find the vertex of the ith vertex’s parent on the
neighbor (if this isn’t a boundary edge); that index is also the face child number on
the parent’s neighbor that is adjacent to the vertex, which gives us the child over
the edge.
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�
Update children f pointers for neighbor children ���
SDFace *f2 = face->f[k];
face->children[k]->f[k] =

f2 ? f2->children[f2->vnum(face->v[k])] : NULL;
f2 = face->f[PREV(k)];
face->children[k]->f[PREV(k)] =

f2 ? f2->children[f2->vnum(face->v[k])] : NULL;

Finally, we handle the fourth step in the topological updates: setting the face
v[i] vertex pointers.�
Update face vertex pointers ���
for (j = 0; j < f.size(); ++j) {

SDFace *face = f[j];
for (int k = 0; k < 3; ++k) {�

Update child vertex pointer to new even vertex ��
Update child vertex pointer to new odd vertex �

}
}

For the ith child face, the ith vertex corresponds to the even vertex that is ad-
jacent to it. (For the non-interior children faces, there is one even vertex and two
odd vertices; for the interior child face, there are three odd vertices). We can get a
pointer to this vertex by following the child pointer of the parent vertex, available
from the parent face.�
Update child vertex pointer to new even vertex ���
face->children[k]->v[k] = face->v[k]->child;

To update the face vertex pointers to the new odd vertices, we re-use the splitEdges
associative array to find the odd vertex for each split edge of the parent face. Three
child faces have that vertex as an incident vertex. Fortunately, the vertex indices for
the three faces are easily found, again based on the numbering scheme established
in Figure 3.18.�
Update child vertex pointer to new odd vertex ���
SDVertex *vert = splitEdges[SDEdge(face->v[k], face->v[NEXT(k)])];
face->children[k]->v[NEXT(k)] = vert;
face->children[NEXT(k)]->v[k] = vert;
face->children[3]->v[k] = vert;

After the geometric and topological work has been done for a subdivision step,
we copy the newly-created vertices and faces into the v and f arrays, first deleting
the old ones, since we no longer need them. We only do these deletions after the
first time through the loop, however; the original faces and vertices of the control
mesh are left intact.
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Figure 3.19: To push a boundary vertex onto the limit surface, we apply the weights
shown to the vertex and its neighbors along the edge.

�
Prepare for next level of subdivision ���
#if 0
if (i != 0) {

for (u_int j = 0; j < f.size(); ++j)
delete f[j];

for (u_int j = 0; j < v.size(); ++j)
delete v[j];

}
#endif
f = newFaces;
v = newVertices;

To the limit surface and output

One of the remarkable properties of subdivision surfaces is that there are special
subdivision rules that let us take the vertices of the mesh and compute the positions
they would have if we continued subdividing infinitely. We apply these rules here
to initialize an array of limit surface positions, Plimit. Note that it’s important
to store the limit surface positions away somewhere other than in the vertices until
all of them have been computed–otherwise we would be incorrectly limit surface
positions from previously-processed vertices when applying the limit surface rules
for other vertices.

The limit rule for a boundary vertex weights the two neighbor vertices by 1 � 5
and the center vertex by 3 � 5 (Figure 3.19); the rule for interior vertices is based
on a function gamma(), which comuptes appropriate vertex weights based on the
valence of the vertex.
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�
Push vertices to limit surface ���
Point *Plimit = new Point[v.size()];
for (i = 0; i < v.size(); ++i) {

if (v[i]->boundary)
Plimit[i] = weightBoundary(v[i], 1.f/5.f);

else
Plimit[i] = weightOneRing(v[i], gamma(v[i]->valence()));

}
for (i = 0; i < v.size(); ++i)

v[i]->P = Plimit[i];

�
LoopSubdiv Private Methods ��� �
static Float gamma(int val) {

return 1.f / (val + 3.f / (8.f * beta(val)));
}

In order to generate a smooth-looking triangle mesh with per-vertex surface nor-
mals, we’ll also compute a pair of non-parallel tangent vectors at each vertex. As
with the limit rule for positions, this is also an analytic comuptation that gives the
precise tangents on the actual limit surface.�
Compute vertex tangents on limit surface ���
vector<Normal> Ns;
Ns.reserve(v.size());
for (i = 0; i < v.size(); ++i) {

SDVertex *vert = v[i];
Vector S(0,0,0), T(0,0,0);�
Put vert one-ring in Pring �
if (!vert->boundary) {�

Compute tangents of interior face �
}
else {�

Compute tangents of boundary face �
}
Ns.push_back(Normal(Cross(S, T)));

}

Figure 3.20 shows the setting for computing tangents in the mesh interior. The
center vertex is given a weight of zero and the neighbors are given weights w i. To
compute the first tangent vector, S, the weights are

wi
� cos

�
2πi
n � �

where n is the valence of the vertex. The second tangent, T , is computed with
weights

wi
� sin

�
2πi
n � �
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Figure 3.20: To compute tangents for interior vertices, the one-ring vertices are
weighted with weights wi. The center vertex, where the tangent is being computed,
always has a weight of 0.

�
Compute tangents of interior face ���
for (int k = 0; k < val; ++k) {

S += cosf(2.f*M_PI*k/val) * Vector(Pring[k]);
T += sinf(2.f*M_PI*k/val) * Vector(Pring[k]);

}

Tangents on boundary vertices are a bit trickier; Figure 3.21 shows the expected
ordering of vertices in the one ring that we’ll assume in the discussion below.

The first tangent, S, known as the across tangent is given by the vector between
the two neighboring boundary vertices:

S � vn � 1 � v0
�

The second tangent, known as the transverse tangent is computed differently based
on the vertex’s valence. The center vertex is given a (possibly zero) weight wc and
the one-ring vertices are given weights specified by a vector

�
w0 � w1 � � � � � wn � 1 � .

The transverse tangent rules we will use are:

valence wc wi

2 -2 (1, 1)
3 -1 (0,1,0)

4 (regular) -2 (-1, 2, 2, -1)

For valences of 5 and higher, wc
� 0 and

w0
� wn � 1

� sinθ
wi

� �
2cos θ � 2 � sin

�
θi �

where
θ � π

n � 1
�
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Figure 3.21: Tangents at boundary vertices are also computed as weighted averages
of the adjacent vertices. Some of the boundary tangent rules also incorporate the
value of the center vertex as well, however.

�
Compute tangents of boundary face ���
S = Pring[val-1] - Pring[0];
if (val == 2)

T = Vector(Pring[0] + Pring[1] - 2 * vert->P);
else if (val == 3)

T = Pring[1] - vert->P;
else if (val == 4) // regular

T = Vector(-1*Pring[0] + 2*Pring[1] + 2*Pring[2] +
-1*Pring[3] + -2*vert->P);

else {
Float theta = M_PI / float(val-1);
T = Vector(sinf(theta) * (Pring[0] + Pring[val-1]));
for (int k = 1; k < val-1; ++k) {

Float wt = (2 * cosf(theta) - 2) * sinf((k) * theta);
T += Vector(wt * Pring[k]);

}
T = -T;

}

Finally, the fragment
�
Create TriangleMesh from subdivision mesh � creates

the triangle mesh object and adds it to the refined vector passed to the refinement
method. We won’t include it here, since it’s just straightforward transformation of
the subdivided mesh into an indexed triangle mesh.

���"� ������� � � ����� ���

Introduction to Ray Tracing has an extensive survey of algorithms for ray-shape
intersection (Gla89a). Heckbert has written a technical report that discusses the
mathematics of quadrics for graphics applications in detail, with many citations to
literature in mathematics and other fields (Hec84). The ray-triangle intersection
test in Section 3.6 was developed by Möller and Trumbore(MT97).
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The notion of shapes that repeatedly could refine themselves into collections
of other shapes until ready for rendering was first introduced in the REYES ren-
derer (CCC87).

An excellent introduction to differential geometry is Gray’s book (Gra93); Sec-
tion 14.3 of it presents the Weingarten equations. Turkowski’s technical report
has expressions for first and second derivatives of a handful of parametric primi-
tives (Tur90).

The Loop subdivision method was originally developed by Charles Loop (Loo87).
Our implementation here uses improved rules for subdivision and tangents along
boundary edges developed by Hoppe et al (HDD � 94). There has been extensive
work in subdivision recently; the SIGGRAPH course notes give a good summary
of the state-of-the-art and also have extensive references (ZSD � 00).

� � ��� ����# � #

3.1 One nice property of mesh-based shapes like triangle meshes and subdivision
surfaces is that we can transform the shape’s vertices into world space, so that
it isn’t necessary to transform rays into object space before performing ray
intersection tests. Interestingly enough, it is possible to do the same thing
for ray-quadric intersections.

The implicit forms of the quadrics in this chapter were all of the form

Ax2 � Bxy � Cxz � Dy2 � Eyz � Fz2 � G � 0 �
where some of the constants A � � � G were zero. More generally, we can define
quadric surfaces by the equation

Ax2 � By2 � Cz2 � 2Dxy � 2Eyz � 2Fxz � 2Gz � 2Hy � 2Iz � J � 0 �
(where most of the parameters A � � � J don’t directly correspond to the A � � � G
above.) In this form, the quadric can be represented by a four by four matrix
Q:

�
x y z 1 �

���� A D F G
D B E H
F E C I
G H I J

�	��� ���� x
y
z
1

�	���
� PT � Q � P � 0

Given this representation, first show that the matrix Q
�

representing a quadric
transformed by the matrix M is:

Q
� � �

MT � � 1QM
� 1 �

To do so, show that for any point p where pT Qp � 0, if we apply a transfor-
mation M to p to compute p

� � Mp, we’d like to find Q
�

so that
�
p

� � T Q
�

p
� �

0
�

.

Next, substitute the ray equation into the more general quadric equation
above to compute a, b, and c values for the quadratic equation in terms of
entries of the matrix Q to pass to the Quadratic function.

Now implement this approach in lrt and use it instead of the original quadric
intersection routines. Note that you will still need to transform the resulting
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Figure 3.22: Polygon projection onto plane for intersection.

world-space hit points into object space to test against θmax, if it is not 2π,
etc. How does performance compare to the original scheme?

3.2 Implement a general polygon primitive. lrt currently transforms polygons
with more than three vertices into a collection of triangles by XXX. This is
actually only correct for convex polygons without holes. Support all kinds
of polygons as as first-class primitive. How to compute plane equation from
a normal and a point on the plane.... Then intersect ray with the plane the
polygon sits in. Project that point and the polygon vertices to 2D. Then apply
a 2D point in polygon test; easy one is to essentially ray-trace in 2d–intersect
the ray with each of the edge segments, count how many it goes through. If
odd number, are inside the polygon and have an intersection. Figure 3.22.

Haines (Hai94).

3.3 subdiv extensions: ”crease”, n integer vertices to specify chain of edges, one
float, infinity, giving sharpness. for crease, use boundary subdivision rules
along the edges, giving a sharp feature there.

”hole” face property, inherit to children, just don’t output at end

3.4 Implement adaptive subdivision for the subdivision surface Shape. A weak-
ness of the basic implementation is that each face is always refined a fixed
number of times: this may mean that some faces are under-refined, leading to
visible faceting in the triangle mesh, and some faces are over-refined, lead-
ing to excessive memory use and rendering time. Instead, stop subdividing
faces once a particular error threshold has been reached.

An easy error threshold to implement computes the face normals of each
face and its directly adjacent faces. If they are sufficiently close to each
other (e.g. as tested via dot products), then the limit surface for that face will
be reasonably flat.
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The trickiest part of this exercise is that some faces that don’t need subdivi-
sion due to the flatness test will still need to be subdivided in order to provide
vertices so that neighboring faces that do need to subdivide can get their ver-
tex one-rings. In particular, adjacent faces can differ by no more than one
level of subdivision.

3.5 Use the triangular face refinement infrastructure from the LoopSubdiv shape
to implement displacement mapping. Displacement mapping is a technique
related to bump mapping, where an offset function is defined over the entire
surface. Rather than just adjusting the surface normal as in bump mapping,
the actual surface shape is modified by displacement mapping. The usual
approach to displacement mapping is to finely tessellate the geometric shape
and to then evaluate the displacement function at its vertices, moving each
vertex the given distance along its normal.

Because displacement mapping may make the extent of the shape larger, the
bounding box of the un-displaced shape will need to be expanded by the
maximum displacement distance that a particular displacement function will
ever generate.

Refine each face of the mesh until it is roughly the size of a pixel. To do
this, you will need to be able to estimate the image pixel-based length of an
edge in the scene when it is projected onto the screen. After you have done
this, use the texturing infrastructure in Chapter 11 to evaluate displacement
functions.

3.6 Ray-tracing point-sampled geometry: Schaufler and Jensen (SJ00)...

3.7 Implicit functions. More general functions, sums of them to define complex
surface. Good for molecules, water drops, etc. Introduced by Blinn (Bli82a).
Wyvill and Wyvill give new falloff function with a number of advantages (WW89).
Kalra and Barr (KB89) and Hart (Har96) give methods for ray-tracing them.
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��� � � � � � � � ��� � � � ��� � � ��� ��� � �

�
primitives.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "primitives.h"
#include "light.h"�
Primitive Methods ��
GeometricPrimitive Methods ��
PrimitiveList Methods ��
Surf Method Definitions �

�
primitives.h* ����

Source Code Copyright �
#ifndef PRIMITIVES_H
#define PRIMITIVES_H
#include "lrt.h"
#include "geometry.h"
#include "shapes.h"
#include "transform.h"
#include "color.h"
#include "materials.h"�
Primitive Declarations ��
PrimitiveList Declarations �
#endif // PRIMITIVES_H

� ���
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�
scene.h* ����

Source Code Copyright �
#ifndef SCENE_H
#define SCENE_H
#include "lrt.h"
#include "primitives.h"
#include "transport.h"�
Scene Declarations �
#endif // SCENE_H

�
scene.cc* ����

Source Code Copyright �
#include "scene.h"
#include "camera.h"
#include "film.h"
#include "sampling.h"
#include "dynload.h"
#include "transport.h"
#include "volume.h"�
Scene Methods �
One of the keys to making ray-tracing efficient is having algorithms that re-

duce the cost of finding intersetions of rays with shapes in the scene. Since a ray
throught a scene will generally only intersect a handful of the primitives in it, there
is substantial room for improvement compared to naively performing an intersec-
tion test with each primitive. A variety of approaches to this problem have been
developed; in this chapter, we will describe a number of them and then show the
implementation of two: grids and kd-trees.

� �
� � � � � �
��� �	� #�� � � ��� �	��� � � ��������� # ��� � ��� ��#

Given a scene with a million primitives in it, it’s clearly quite wasteful to perform
one million ray–primitive intersections for each ray traced–the ray will generally
be nowhere near most of the primitives, so we should be able to avoid doing most
of those intersection tests while still finding any intersections. In the absence of
a mechanism to cull the primitives down to a small set of candidates for each ray,
ray tracing would be an inordinately expensive algorithm. This section will survey
general techniques used to approach this problem.

The BBox class that we introduced previously in Section 2.5 is one building
block for reducing intersection tests. We can test a ray for intersection with the
bounding box of a primitive or collection of geometry first, and only try to find an
intersection with the geometry if the ray intersects the box. As long as the bounding
box is a good fit for the geometry and computing the actual intersection with the
geometry is significantly more expensive than testing the ray against the box, we
can save a lot of time in this manner.

Ray-Box Intersections

One way to think of bounding boxes is as the intersection of three slabs. A slab
is simply the region of space between two parallel planes. To intersect a ray against
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tnear

t far

N = (1,0,0)

Figure 4.1: Intersecting a ray with a pair of axis-aligned slabs. Each of the slabs
shown here is a plane given by x � c, for some constant value c. The normal of
each slab is

�
1 � 0 � 0 � .

a box, we intersect the ray against each of the box’s three slabs in turn. Because
we know that the slabs are aligned with the three coordinate axes, we can make a
number of optimizations in a ray-bounding box intersection routine.

XXX is this discussion duplicated in the disk primitive?? XXX
We will first describe the basic geometry of planes and how to compute the

intersection point of a ray with a plane. A plane in 3-space can be specified in a
number of ways; here, we will define a plane by a point on the plane p and the
plane normal n̂. Given a ray r, we’d like to find the parametric point t along r that
gives the point along r that lies on the plane. We write an equation that describes
the set of points p

�

that lie on the plane: this is just is the set of all points such that
the vector from p to p

�

is perpendicular to n̂. Because perpendicular vectors have
a dot product of zero, we have:

���
p

�

� p � � n̂ � � 0

Thus, given a ray r defined by r � o
�
r � � t �d � r � , we substitute the ray equation for

p
�

to find the point where the ray intersects the plane:

���
o
�
r � � t �d � r � � p � � n̂ � � 0 �

Using basic definitions of the dot product, we have

���
o
�
r � � p � � n̂ � � �

t �d � r � � n̂ � � 0���
o
�
r � � p � � n̂ � � t

� �d � r � � n̂ � � 0

t
� �d � r � � n̂ � � �

���
o
�
r � � p � � n̂ �

t � �

���
o
�
r � � p � � n̂ �� �d � r � � n̂ �

As long as
� �d � r � � n̂ � is not zero (which would indicate that the ray is parallel to the

plane), t is defined. If t is less than zero, the ray faces away from the plane and
never intersects it. See Figure 4.1 for the basic geometry of the situation.

The basic ray–bounding box intersection algorithm works as follows: we start
with a parametric interval that covers that range of positions t along the ray where
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Figure 4.2: Intersecting a ray with an axis-aligned bounding box. We compute
intersection points with each pair of slabs, progressively narrowing the pair of in-
tersection points. Here, we see that the intersection of the x and y extents along the
ray gives the extent where the ray is inside the box.

we’re interested in finding intersections; typically, this is � 0 � ∞ � . We will then suc-
cessively compute the two parametric positions where the ray intersects each pair
of axis-aligned slabs. We successively compute the set-intersection of this interval
with our original interval, returning failure if we find that the resulting interval is
degenerate, which indicates that there are no points t along the ray where it is be-
tween all of the slabs, and thus the ray does not intersect the box. If after checking
all three slabs, the interval is non-degenerate, we have the parametric range of the
ray that is inside the box. Figure 4.2 illustrates this process.

The routine to compute the intersection is called IntersectP . IntersectP is
a predicate function, meaning that its main purpose is to return a boolean value. If
the function returns true, the intersection parametric range can be returned in the
optional arguments hitt0and hitt1. Intersections outside of the mint/maxt range
of the ray that is passed in are not considered.�
BBox Method Definitions ��� �
bool BBox::IntersectP(const Ray &ray, Float *hitt0,

Float *hitt1) const {�
Initialize parametric interval ��
Check X slab ��
Check Y slab ��
Check Z slab �
if (hitt0) *hitt0 = t0;
if (hitt1) *hitt1 = t1;
return true;

}
�
Initialize parametric interval ���
Float t0 = ray.mint, t1 = ray.maxt;

For each pair of slabs, we need to compute two ray–plane intersections, giving
the parametric t values where the intersections occur. Consider the pair of slabs
along the x axis: they are can be described by the two planes through the points�
x1 � 0 � 0 � and

�
x2 � 0 � 0 � , each with normal

�
1 � 0 � 0 � . We need to compute two t values,

one for each plane. Consider the first one, t1. From the ray–plane equation above,
we have:

t1 � �
���

o
�
r � � � x1 � 0 � 0 ��� �

�
1 � 0 � 0 ���� �d � r � � � 1 � 0 � 0 ���
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513 max
513 min
28 pMax
28 pMin

513 swap

Because the y and z components of the normal are zero, we can use the definition
of the dot product to simplify this substantially:

t1 � � o
�
rx � � x1

�d � rx �
� x1 � o

�
rx �

�d � rx �
The code implementing this equation for the x slab is shown here; the code

for the y and z slabs is nearly identical and is omitted. We start by computing
the reciprocal of the x component of the ray direction. We will then multiply by
this factor when we would otherwise divide by the x direction component; this
saves a potentially-expensive divide. We do not need to verify that the x direction
component is not zero; if it is, then invRayDir will hold an infinite value, either
� ∞ or ∞1, and the rest of the algorithm works correctly.�
Check X slab ���
Float invRayDir = 1.f / ray.D.x;
Float tNear = (pMin.x - ray.O.x) * invRayDir;
Float tFar = (pMax.x - ray.O.x) * invRayDir;�
Update parametric interval �
We then swap the two distances, so that tnear holds the closer intersection and

tfar the farther one. This gives us a parametric range � tnear � tfar � . We compute the
intersection of this with the current range � t0 � t1 � to compute a new range. If this
new range is empty (i.e. t0 � t1), then we return failure.�
Update parametric interval ���
if (tNear > tFar) swap(tNear, tFar);
t0 = max(tNear, t0);
t1 = min(tFar, t1);
if (t0 > t1) return false;

Any shape that can bound a more complex shape and can easily be intersected
with a ray can be used in place of axis-aligned bounding boxes. Bounding spheres
and oriented bounding boxes, which aren’t necessarily aligned with the coordinate
axes, are notable examples. Placing a single bounding volume around all of the ob-
jects in the scene only helps for simple scenes. For more complex scenes, we need
more complex spatial data structures to partition the scene geometry into smaller
subsets so that we can only consider the subsets that the ray actually approaches.
If we can roughly order these subsets from near to far, all the better: we can stop
performing intersection tests once we have found an intersection and know that it’s
not possible to have any closer intersections.

Regular Grid

The regular grid divides a rectangular region of space into equal-sized voxels
that store references to the primitives that overlap them. (see Figure 4.3). Each
Given a ray to trace, we step through each of the voxels that it passes through in
turn, checking for intersections only with the primitives in the voxel that the ray is
currently in.

1This assumes that the architecture being used supports IEEE floating-point arithmetic; this is
universal on modern systems. The relevant properties of IEEE floating-point arithmetic are that for
all v ��� 0, v � ��� 0 � ∞ and for all v �	� 0, v � � 0 �
� ∞, where ∞ is a special value such that any
positive number multiplied by ∞ gives ∞, any negative number multiplied by ∞ gives � ∞, etc.
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Figure 4.3: References to primitives in the scene (such as the sphere shown here)
are stored in all of the voxels that they overlap in the grid. Typically, the primitive’s
bounding box is used to determine which voxels it overlaps. In this case, the sphere
is inaccurately stored in the upper-right voxel since its bounding box overlaps the
voxel even though the primitive does not.

The regular grid usually performs reasonably well. It can be initialized from a
collection of geometry relatively quickly, and it takes relatively little computation
to compute the sequence of voxels that a ray passes through. However, due to this
simplicity, it can suffer from performance problems when the data in the scene
isn’t distributed regularly; if there’s a small region of space with a lot of geometry
in it such that all of that geometry is in a single voxel, performance suffers greatly
when a ray reaches that voxel as many intersection tests are performed. The basic
problem is that the data structure doesn’t adapt well to the distribution of the data.

Hierarchical bounding volumes

An approach that better adapts to the distribution of geometry in the scene is the
hierarchical bounding volume (HBV). Given some method of bounding primitives
(e.g. axis aligned bounding boxes), a hierarchy of these bounding primitives is
built. The top node of the hierarchy encompasses all of the primitives in the scene
(see Figure 4.4). It has two or more children nodes, each of which bounds a subset
of the scene. This continues recursively until the bottom of the tree, at which point
a single primitive is bound. The hierarchical bounding volume is traversed by first
intersecting the ray with the top-level bounding volume. If it misses the volume, it
cannot possibly intersect any geometry in the scene, so we’re done. Otherwise we
“open up” that volume and test the ray against the children bounding volumes. For
any of those that are hit, the recursion continues throughout the tree. In order to
ensure that the primitives are intersected in roughly front-to-back order, a priority
queue is often used to sort the sub-volumes that the ray intersects by the parametric
distance to the intersection.

HBVs can work well for a wide variety of scenes because they are naturally
adaptive to the distribution of primitives. They can be difficult to construct, how-
ever, since when they’re being built, the algorithm needs to repeatedly partition the
primitives into sets and try to simultaneously minimize the amount of overlap be-
tween the sets as well as the size of the bounding volumes that encompass groups
of geometry.

BSP trees and friends
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Figure 4.4: A set of primitives are stored in a bounding volume hierarchy. When a
ray is being traced, we first see if it intersects the top-level bounding volume. If so,
we recursively process the children bounding volumes, continuing on with those
that are intersected, until we reach the geometric primitives.

Figure 4.5: Structure of a bounding volume hierarchy. The top node of the tree
holds the bounding box of the entire scene and then pointers to children nodes that
hold subsets of the scene. This continues recursively until the leaf nodes, which
hold pointers to geometric primitives in the scene.
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Sitting somewhere between HBVs and grids are BSP trees, which adaptively
subdivide space, so that they work well for irregular collections of geometry, but
in a more constrained fashion, so that they are easier to traverse. A BSP tree starts
with a bounding box that encompasses the entire scene. If the number of primitives
in the box is greater than some threshold, it is split in half by a plane that separates
the bounding box into two pieces. Primitives are then redistributed to either one
or both of the halves, depending if they overlap one or both sides of the splitting
plane. This process continues recursively until either a small enough number of
primitives is in each box or a maximum depth is reached.

Because the BSP tree adaptively divides up space in an irregular manner, it takes
longer to traverse the tree than more regular structures, like uniform grids.

Two variations of BSP trees are k-d trees and octrees. A k-d tree adds the restric-
tion that the splitting plane must be aligned perpendicular to one of the coordinate
axes; this makes traversal and construction of the tree more efficient. The octree
also splits along coordinate axes, but splits the bound into eight equal-sized regions
at each step.

Meta-Hierarchies

The idea of using spatial data structures can be generalized to include spatial
data structures that themselves hold other spatial data structures, rather than just
primitives. Not only could we have a grid that has sub-grids inside the grid cells
that have many primitives in them (thus partially solving the adaptive refinement
problem), but we could also have the scene organized into a HBV where the leaf
nodes are grids that hold smaller collections of spatially-nearby primitives. Such
hybrid techniques can bring the best of a variety of spatial data structure-based ray
intersection acceleration methods. In lrt, because both geometric primitives and
intersection accelerators inherit from the Primitive base class and thus provide
the same interface, it’s easy to mix and match in this way.

Refinements to basic approaches

There are a number of other important optimizations that can reduce the number
of intersection tests made; some of them are implemented in lrt and some are left
as exercises.


 Shadow rays can be processed more efficiently than camera rays, since we
only need to find any intersection along the ray–it’s not necessary to find the
closest intersection. Once we have found anything that blocks the ray, we can
immediately stop testing ray intersections and return. Furthermore, we don’t
need to compute the differential geometry at the hit point. Therefore, we can
use the more efficient IntersectP routines of the Shapes and Primitives
to do these tests.


 Another technique that takes advantage of this property of shadow rays is
the shadow cache; for each light source in the scene, we keep a pointer to
the last primitive that occluded light from the emitter. Subsequent shadow
rays are fist checked against this blocker–since the blocking object will often
block a number of shadow rays in a row, this can make it much faster to find
the blocker.
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 For non-shadow rays, after we have found an intersection we keep track of
the parametric distance to that hit. We have effectively turned our semi-
infinite ray into a line segment, and we can cull from testing any primitives
that are further along the ray than the hit point. We use this optimization in
lrt; in Section 4.3 we will describe how this is used to reduce work in the
grid accelerator.


 Shaft culling....


 A last technique has been dubbed mailboxes. Because a primitive may over-
lap multiple cells in grid or octree-type accelerators, we can keep track of
which primitives have already been tested against the ray and void testing
them multiple times as the ray goes through multiple cells that they overlap.
Our grid implementation below will use this optimization.

� ���  � ��� ��� � � � � ��#���#
In addition to GeometricPrimitives, the type of Primitive that we have in

lrt is a PrimitiveList. This is simply a collection of Primitives that can be
iterated through. Although not generally used by itself, it will form the basis for
our acceleration structures. This encapsulation leads naturally to being able to have
nested acceleration structures, such as grids within grids.�
PrimitiveList Methods ���
PrimitiveList::PrimitiveList(const vector<Reference<Primitive> > &p)

: prims(p) {
for (u_int i = 0; i < prims.size(); ++i)

bounds = Union(bounds, prims[i]->WorldBound());
}

A PrimitiveList maintains an internal vector of Primitives. It also main-
tains a bounding box that is the union of the bounds of all the primitives it contains.�
PrimitiveList Protected Data ���
vector<Reference<Primitive> > prims;
BBox bounds;

We provide a simple method to query the number of Primitives currently being
stored:�
PrimitiveList Public Interface ��� �
int NumPrims() const { return (int) prims.size(); }

Finally, a simple method to get the bounding box of the collection of primitives.�
PrimitiveList Public Interface ��� �
BBox WorldBound() const { return bounds; }�

PrimitiveList Methods ��� �
bool PrimitiveList::CanIntersect() const {

for (u_int i = 0; i < prims.size(); ++i)
if (!prims[i]->CanIntersect())

return false;
return true;

}
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�
PrimitiveList Methods ��� �
bool PrimitiveList::Intersect(const Ray &r, Surf *s) const {

bool hit = false;
for (u_int i = 0; i < prims.size(); ++i)

if (prims[i]->Intersect(r, s))
hit = true;

return hit;
}

�
PrimitiveList Methods ��� �
bool PrimitiveList::IntersectP(const Ray &r) const {

for (u_int i = 0; i < prims.size(); ++i)
if (prims[i]->IntersectP(r))

return true;
return false;

}
�
PrimitiveList Methods ��� �
void PrimitiveList::Refine(vector<Reference<Primitive> > &refined) const {

for (u_int i = 0; i < prims.size(); ++i)
if (prims[i]->CanIntersect())

refined.push_back(prims[i]);
else

prims[i]->Refine(refined);
}

� ��� � � � �"!$�	� � � � � � � ����!$�
� �����
�

�
grid.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "primitives.h"
#include "geometry.h"�
GridAccelerator Declarations ��
GridAccelerator Method Definitions �
Here we will describe the implementation of lrt’s regular grid accelerator. It

chooses a resolution for the grid based on the number of primitives it has to bound.
Though the regular grid is not robust to very irregularly-distributed geometry, it
usually works well in practice and is relatively easy to implement.�
GridAccelerator Declarations ���
class GridAccelerator : public Primitive {�

GridAccelerator Forward Declarations �
public:�

GridAccelerator Method Declarations �
private:�

GridAccelerator Private Data �
};
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Creation
�
GridAccelerator Method Definitions ���
GridAccelerator::GridAccelerator(

const vector<Reference<Primitive> > &prims) {�
Compute grid bounds ��
Choose grid resolution ��
Compute voxel widths and allocate voxels ��
Add primitives to grid voxels ��
Initialize mailbox �

}
�
Compute grid bounds ���
for (u_int i = 0; i < prims.size(); ++i)

bounds = Union(bounds, prims[i]->WorldBound());

�
GridAccelerator Private Data ���
BBox bounds;

�
GridAccelerator Method Declarations ��� �
BBox WorldBound() const { return bounds; }
bool CanIntersect() const { return true; }

Given the set of primitives to bound, we need to choose a resolution for the
grid. We take the cube root of the number of primitives and use that to set the
grid resolution in whichever of the x, y or z dimensions that has the largest extent.
The sizes in the other directions are set such that they are proportional to the sizes
in the maximum dimension, according to the ratio of the grid extents in the two
directions, in an effort to create voxels that are as square as possible.�
Choose grid resolution ����

Expand grid bounds by small factor �
Vector diag = bounds.pMax - bounds.pMin;
Float invmaxWidth = 1.0f/max(diag.x, max(diag.y, diag.z));
Assert(invmaxWidth > 0.f);
if (prims.size() < 5)

XVoxels = YVoxels = ZVoxels = 1;
else {

Float cubeRoot = powf(Float(prims.size()), 1.f/3.f);
Float voxScale = 8.f * cubeRoot * invmaxWidth;
XVoxels = Clamp(Round2Int(diag.x * voxScale), 1, 100);
YVoxels = Clamp(Round2Int(diag.y * voxScale), 1, 100);
ZVoxels = Clamp(Round2Int(diag.z * voxScale), 1, 100);

}
�
GridAccelerator Private Data ��� �
int XVoxels, YVoxels, ZVoxels;

We’ll expand the bounding box of all the primitives by a small factor, propor-
tional to the grid’s maximum extent. This helps avoid numerical error when prim-
itives abut the sides of the voxel grids.
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�
Expand grid bounds by small factor ���
Float delta = max(fabsf(bounds.pMin.x),

max(fabsf(bounds.pMin.y), fabsf(bounds.pMin.z)));
delta = max(delta, max(fabsf(bounds.pMax.x),

max(fabsf(bounds.pMax.y), fabsf(bounds.pMax.z))));
bounds.pMin -= 1e-4f * Vector(delta, delta, delta);
bounds.pMax += 1e-4f * Vector(delta, delta, delta);

We now use the chosen voxel resolutions to set XWidth and friends, which
are the world-space widths of a voxel in each direction. We also precompute
InvXWidth et al, so that routines that would otherwise divide by XWidth can be
that much faster by multiplying rather than dividing.�
Compute voxel widths and allocate voxels ���
XWidth = diag.x / XVoxels;
YWidth = diag.y / YVoxels;
ZWidth = diag.z / ZVoxels;
InvXWidth = (XWidth == 0.f) ? 0.f : 1.f / XWidth;
InvYWidth = (YWidth == 0.f) ? 0.f : 1.f / YWidth;
InvZWidth = (ZWidth == 0.f) ? 0.f : 1.f / ZWidth;
int nVoxels = XVoxels * YVoxels * ZVoxels;
voxels = (Voxel **)AllocL1CacheAligned(nVoxels * sizeof(Voxel *));
memset(voxels, 0, nVoxels * sizeof(Voxel *));

Small structure to hold informaiton needed for each voxel...�
GridAccelerator Private Data ��� �
struct Voxel {

Voxel() { allCanIntersect = false; }
vector<MailboxPrim *> primitives;
bool allCanIntersect;

};
�
GridAccelerator Private Data ��� �
Float XWidth, YWidth, ZWidth;
Float InvXWidth, InvYWidth, InvZWidth;
Voxel **voxels;

We make a small MailboxPrim structure for each Primitive in the grid. It
stores both a pointer to the primitive as well as the integer mailbox id tag of the last
ray that was tested against the primitive.

Each ray that comes into the GridAccelerator::Intersect routine is given
a new, unique mailbox id number. After we test the ray against a primitive, we set
the primitive’s lastMailboxId value to the ray’s id. Then, if the ray advances to
another voxel that the primitive also overlaps, we can skip re-testing the primitive
with the ray by just seeing if the ids match.
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�
GridAccelerator Private Data ��� �
struct MailboxPrim {

MailboxPrim() {
primitive = NULL;
lastMailboxId = -1;

}
Reference<Primitive> primitive;
int lastMailboxId;

};

To add primitives to the grid, we loop through the primitives in turn, adding each
one to the vectors of pointers to MailboxPrims in the cells that its bounding box
overlaps.�
Add primitives to grid voxels ���
nMailboxes = prims.size();
mailboxes = (MailboxPrim *)AllocL1CacheAligned(prims.size() * sizeof(MailboxPrim));
for (u_int i = 0; i < prims.size(); ++i) {

new (&mailboxes[i]) MailboxPrim;�
Find cell extent of primitive ��
Add primitive to overlapping cells �

}�
Update fraction of empty voxels �
We store a pointer to the array of MailboxPrims allocated above so that the

grid’s destructor can free this memory.�
GridAccelerator Private Data ��� �
u_int nMailboxes;
MailboxPrim *mailboxes;

We find the world space bounds of the primitive and compute the integer set of
voxels that it overlaps. We use the utility functions x2v et al, which turn a world
space x, y, or z coordinate into voxel offsets. For safety in case of small numerical
errors, these values are then clamped to the range of valid voxel addresses.�
Find cell extent of primitive ���
BBox primBounds = prims[i]->WorldBound();
int x0 = max(x2v(primBounds.pMin.x), 0);
int x1 = min(x2v(primBounds.pMax.x), XVoxels-1);
int y0 = max(y2v(primBounds.pMin.y), 0);
int y1 = min(y2v(primBounds.pMax.y), YVoxels-1);
int z0 = max(z2v(primBounds.pMin.z), 0);
int z1 = min(z2v(primBounds.pMax.z), ZVoxels-1);

These utility functions turn coordinates in world space into integer voxel coordi-
nates and integer voxel coordinates into the coordinates of their lower-left corners.
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�
GridAccelerator Method Declarations ��� �
int x2v(Float x) const { return Float2Int((x - bounds.pMin.x) *

InvXWidth); }
int y2v(Float y) const { return Float2Int((y - bounds.pMin.y) *

InvYWidth); }
int z2v(Float z) const { return Float2Int((z - bounds.pMin.z) *

InvZWidth); }
Float v2x(int x) const { return x * XWidth + bounds.pMin.x; }
Float v2y(int y) const { return y * YWidth + bounds.pMin.y; }
Float v2z(int z) const { return z * ZWidth + bounds.pMin.z; }

After initializing the MailboxPrim for the Primitive, we just loop over the
voxel addresses that the primitive covers, compute the offset into the array of voxel
vectorss, and add the pointer to the end of it.�
Add primitive to overlapping cells ���
MailboxPrim *mp = mailboxes + i;
mp->primitive = prims[i];
for (int z = z0; z <= z1; ++z)

for (int y = y0; y <= y1; ++y)
for (int x = x0; x <= x1; ++x) {

int offset = z*XVoxels*YVoxels + y*XVoxels + x;
if (!voxels[offset])

voxels[offset] = new (voxelArena) Voxel;
voxels[offset]->primitives.push_back(mp);�
Update grid voxel statistics �

}�
Update grid/primitive statistics �

�
GridAccelerator Private Data ��� �
MemoryArena<Voxel> voxelArena;

It’s useful to keep a number of statistics about the grid and how well it’s working.
First, we’ll track the maximum number of primitives in any one voxel. If there
are voxels with many tens of primitives in them, then our acceleration structure
probably isn’t working too well.�
Update grid voxel statistics ���
static StatsCounter maxPrimsInVoxel("Acceleration",

"Max # of primitives in a grid voxel");
maxPrimsInVoxel.stat_max(voxels[offset]->primitives.size());

We’ll also keep track of ratio of the total number of voxels overlapped by a prim-
itive to the total number of primitives (i.e. the average number of voxels covered
by a primitive.) Very fine grid resolutions will give a high number here, which may
be indicative of wasted memory.�
Update grid/primitive statistics ���
static StatsRatio nPrimitiveVoxels("Acceleration",

"Voxels covered vs # / primitives");
nPrimitiveVoxels.add((1 + x1-x0) * (1 + y1-y0) * (1 + z1-z0), 1);
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Finally, we keep track of how many voxels ended up not having any primitives
at all overlap them. This statistic is only computed after all primitives have been
added to voxels, whereas the above statistics are updated per-primitive.�
Update fraction of empty voxels ���
static StatsRatio nEmptyVoxels("Acceleration", "Empty voxels");
nEmptyVoxels.add(0, XVoxels * YVoxels * ZVoxels);
for (int i = 0; i < XVoxels * YVoxels * ZVoxels; ++i)

if (!voxels[i]) nEmptyVoxels.add(1, 0);

The grid needs to keep track of the next valid, not-previously-used mailbox id
value; the last thing we do in the constructor is initialize it.�
Initialize mailbox ���
curMailboxId = 0;

�
GridAccelerator Private Data ��� �
mutable int curMailboxId;

The destructor just has to free up the array of voxels that we made and the array
of MailboxPrims allocated. The primitives themselves are deleted when no other
objects are holding references to them, which is likely (but not certain) to be when
the grid accelerator is destroyed.�
GridAccelerator Method Definitions ��� �
GridAccelerator::˜GridAccelerator() {

for (u_int i = 0; i < nMailboxes; ++i)
mailboxes[i].˜MailboxPrim();

FreeCacheAligned(voxels);
FreeCacheAligned(mailboxes);

}

Traversal

We now come to the most interesting part of the grid, where we have a ray to
compute primitive intersections with. We need to step through all of the cells that
the ray passes through in order, first to last, and bail out as soon as we have found
an intersection and can guarantee that there is no closer intersection (or, for shadow
rays, any intersection will do.)�
GridAccelerator Method Definitions ��� �
bool GridAccelerator::Intersect(const Ray &ray,

Surf *surf) const {�
Check ray against overall grid bounds ��
Set up 3D DDA for this ray ��
Walk grid �

}

We first check to see at what point the ray enters the grid. We first check the
ray’s origin with the grid’s bounding box: if it’s inside, then that’s our starting
point. Otherwise we try to intersect the ray with the grid’s bounding box; if it hits,
the parametric hit distance along the ray is our starting point. Otherwise, there can
be no intersection with any of the geometry in the grid, so we return immediately.



Inside 30
Intersection 29

Point 21
StatsRatio 501

128 Intersection Acceleration [Ch. 4

�
Check ray against overall grid bounds ���
Float rayT = ray.maxt;
if (bounds.Inside(ray(ray.mint)))

rayT = ray.mint;
else if (!bounds.IntersectP(ray, &rayT))

return false;
Point gridIntersect = ray(rayT);

Next, we set up the initial
�
x � y � z � integer voxel coordinates for this ray, and set

up difference values for stepping along. Our basic strategy will be to keep track of
four important things (see Figure 4.6):

1. Which voxel we’re currently in.

2. The parametric position along the ray where we make our next crossing in
each of the x, y, and z directions.

3. How much farther we’ll have to go parametrically along the ray after step-
ping to a new voxel in some direction before we step in the same direction
again.

4. The
�
x � y � z � coordinates of the last voxel we pass through before we exit the

grid.

The first two items will be updated as we step through the grid, while the last
two remain constant. We’ll describe these computations for the x direction and
won’t include the y and z implementations here, as they are essentially identical.�
Set up 3D DDA for this ray ����

Update statistics for ray inside grid ��
Set up X stepping ��
Set up Y stepping ��
Set up Z stepping �
Two additional useful statistics are the average number of ray-primitive tests

performed per-ray and the average number of intersections found. Here, we just
increment the count for the number of rays that entered the grid.�
Update statistics for ray inside grid ���
static StatsRatio rayTests("Acceleration", "Intersection tests per ray", false);
static StatsRatio rayHits("Acceleration", "Intersections found per ray", false);
rayTests.add(0, 1);
rayHits.add(0, 1);
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Figure 4.6: Stepping a ray through a voxel grid. We first compute rayT, the dis-
tance along the ray to the first intersection with the grid. We then compute dis-
tances along the ray to the next time we cross into the next voxel in the x direction,
NextXCrosing, and in the y and z (not shown) directions. When we cross into the
next x voxel, for example, we can immediately update the value of NextXCrossing
by adding a fixed value, the voxel width in x divided by the ray’s x direction, to it.

�
Set up X stepping ����

Compute current x voxel �
Float NextXCrossing, DeltaX;
int StepX, OutX;
if (fabsf(ray.D.x) < 1e-6) {�

Handle ray perpendicular to x �
}
else if (ray.D.x > 0) {�

Handle ray with positive x direction �
}
else {�

Handle ray with negative x direction �
}

Computing the voxel address that we start out in is pretty easy–we take the posi-
tion where we enter the grid and compute its voxel number, being careful to handle
the case where we’ve computed it to be outside the set of valid voxels (this may
happen due to floating-point error, if gridIntersect is actually slightly outside
of the grid).�
Compute current x voxel ���
int x = x2v(gridIntersect.x);
if (x == XVoxels) x--;
else if (x < 0) ++x;
Assert(x >= 0 && x < XVoxels);

Now for each of x, y, and z, we compute crossing distances, changes in crossing
distances when we step in that direction, and the exiting voxel numbers. If the
ray’s x component is nearly zero, then we’ll never step in the x direction. We set
the x crossing distance to infinity, so that we always decide that one of the other
directions has the shortest parametric distance to the next voxel. As such, the values
of DeltaX and OutX won’t be used, but we’ll set them to silence over-aggressive
compiler warnings about uninitialized variables.
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�
Handle ray perpendicular to x ���
NextXCrossing = INFINITY;
DeltaX = 0;
OutX = -1;

Things are more interesting in the common case. For a ray with a positive x di-
rection component, the parametric value along the ray where we cross into the next
voxel in x, NextXCrossing is our parametric starting point, rayT plus the x dis-
tance to the next voxel, divided by the x direction component. Similarly, dividing
the width of a voxel in x by the ray’s direction component gives us the parametric
distance along the ray that we have to travel to get from one side of a voxel to the
other, in the x direction.

StepX just tells us that when we leave a voxel in the x direction, we move 1
voxels. OutX says that when we reach a voxel with component XVoxels, we’ve
left the grid and are done.�
Handle ray with positive x direction ���
NextXCrossing = rayT + (v2x(x+1) - gridIntersect.x)/ray.D.x;
DeltaX = XWidth / ray.D.x;
StepX = 1;
OutX = XVoxels;

Similar computations compute these values for rays with negative x components.�
Handle ray with negative x direction ���
NextXCrossing = rayT + (v2x(x) - gridIntersect.x)/ray.D.x;
DeltaX = - XWidth / ray.D.x;
StepX = -1;
OutX = -1;

This leads us to the code that walks through the grid. Starting with the first
voxel, we check for intersection with the primitives inside that voxel. If we find a
hit, hitSomething is set to true. Since we may have found a hit that is outside of
the current voxel, however, we don’t immediately return when through processing
a voxel with an intersection. Instead, since the primitive’s intersection routine will
update the maxt variable, setting it to the parametric hit distance, we’ll leave the
grid stepping code to detect when we’ve walked into a voxel that’s past an already-
found hit.

If no hit is found in the current voxel, we step forward to the next voxel that the
ray enters.
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�
Walk grid ���
bool hitSomething = false;�
Get mailbox id for the ray �
for (;;) {

int offset = z*XVoxels*YVoxels + y*XVoxels + x;
Voxel *voxel = voxels[offset];
if (voxel != NULL) {�

Check single voxel �
}�
Advance to next voxel �

}
return hitSomething;

We grab a unique mailbox id number for the ray here. As we step through the
grid, if e find a primitive that has a mailbox id number equal to the current ray’s
id, then we know that the ray has already tested for intersection with the primitive
while in a previous voxel.�
Get mailbox id for the ray ���
int rayId = curMailboxId++;

To check the primitives in a voxel, we first call Refine() methods if needed
until we have primitives that are all able to test for ray intersections. We then loop
through the primitives and call their intersection routines.�
Check single voxel ���
vector<MailboxPrim *> &primitiveList = voxel->primitives;�
Refine primitives in voxel if needed �
for (u_int i = 0; i < primitiveList.size(); ++i) {

MailboxPrim *mp = primitiveList[i];�
Do mailbox check between ray and primitive ��
Check for ray-primitive intersection �

}

A boolean value for each voxel is stored in the allCanIntersect array; it
records whether all of the primitives in the voxel are known to be intersectable.
If this value is false, we need to check them, calling their refinement routines until
we have intersectable geometry.�
Refine primitives in voxel if needed ���
if (!voxel->allCanIntersect) {

for (u_int i = 0; i < primitiveList.size(); ++i) {
MailboxPrim *mp = primitiveList[i];�
Refine primitive if needed �

}
voxel->allCanIntersect = true;

}

Handling primitives that need refinement is quite easy; we just get the vector
of refined primitives from them and create a new GridAccelerator to hold the
returned primitives all if more than one was returned. We then update the pointer
in mp->primitive appropriately and continue. The Intersect call in

�
Check

for ray-primitive intersection � will then call the intersect routine of the refined
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primitive or of the newly-created grid. Note that we may need to repeatedly refine
the resulting primitives, since shapes are allowed to refine themselves into shapes
that aren’t themselves intersectable, so long as continued refinement eventually
gives intersectable shapes.�
Refine primitive if needed ���
while (!mp->primitive->CanIntersect()) {

vector<Reference<Primitive> > p;
mp->primitive->Refine(p);
Assert(p.size() > 0);
if (p.size() == 1)

mp->primitive = p[0];
else

mp->primitive = new GridAccelerator(p);
}

We do the mailbox check before calling the Primitive’s actual intersection
routine; if we’ve already intersected this ray against this primitive in a previous
voxel that this primitive was also stored in that the ray has already passed through,
we can trivially skip doing a redundant intersection test.�
Do mailbox check between ray and primitive ���
if (mp->lastMailboxId == rayId)

continue;

If we are going to do the ray intersection test, we first update the mailbox for
the primitive. We can then call the Primitive::Intersect method, recording
whether any intersection has been found along the ray.�
Check for ray-primitive intersection ���
mp->lastMailboxId = rayId;
rayTests.add(1, 0);
if (mp->primitive->Intersect(ray, surf)) {

rayHits.add(1, 0);
hitSomething = true;

}

We now have the code to step to the next voxel. We see which direction is the
first where we step into a new voxel; whichever of these has the lowest Next?Crossing
value is the one. We then do the appropriate computations to step as needed. If we
determine that we’ve stepped out of the voxel grid, or if we’ve stepped beyond
the t distance of an intersection we’ve already found, then we’ll break out of the
traversal loop.



Sec. 4.4] Kd Tree 133

129 DeltaX
129 NextXCrossing
129 OutX
26 Ray

129 StepX

�
Advance to next voxel ���
if (NextXCrossing < NextYCrossing &&

NextXCrossing < NextZCrossing) {�
Step in X �

}
else if (NextZCrossing < NextYCrossing) {�

Step in Z �
}
else {�

Step in Y �
}

We first see if an intersection has been found that is inside the current voxel. If
so, we’re done and can exit. This is the case if maxt is less than the parametric
distance at which we enter the next x voxel, NextXCrossing Otherwise we update
the variable that holds the current voxel address by adding StepX (which is either
-1 or 1) to it. If we have left the grid (x == OutX), then we also break. Otherwise
we increment the value of NextXCrossing to the DeltaX value, so that we know
how far we need to go parametrically before stepping in x again.�
Step in X ���
if (ray.maxt < NextXCrossing)

break;
x += StepX;
if (x == OutX)

break;
NextXCrossing += DeltaX;

The cases for stepping in y and z are equivalent and are omitted.
We also provide a specialized version of GridAccelerator::IntersectP()

that is optimized for checking for intersection along shadow rays, where we only
are interested if there is an intersection, rather than knowing the full details of the
closest intersection. It is almost completely identical to the normal GridAccelerator::Intersect()
routine, except that it calls the Primitive::IntersectP() method of the prim-
itives, rather than Primitive::Intersect(), and it immediately stops traversal
when any intersection is found. Because of the small number of differences, we
won’t include the implementation here.�
GridAccelerator Method Declarations ��� �
bool IntersectP(const Ray &ray) const;

� ����� � � � � �
�
kdtree.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "primitives.h"
#include "geometry.h"�
KdTreeAccelerator Declarations ��
KdTreeAccelerator Method Definitions �
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Figure 4.7: The kd-tree is built by recursively splitting the scene’s bound along
one of the coordinate axes. Here, we start by splitting along the x axis; all of the
primitives still overlap the resulting left region, though only the triangle overlaps
the right region. Therefore, we stop refining the right region any further. Contin-
uing along, we split the left region along the y axis, giving a region with only two
primitives in it in the bottom left. We split the upper left one more time, again
along the y axis, before terminating. The details of the refinement criteria: which
axis we split along, at which position we split, and at what point we stop, can all
substantially affect the performance of the tree in practice.

To complement the GridAccelerator, lrt also has an accelerator based on kd-
trees. Recall that the kd-tree recursively splits up space with axis-aligned planes;
splitting stops when the region of space that a node represents has a small number
of primitives in it or when we reach a maximum depth. Each leaf of the tree
holds a list of the primitives that overlap the region of space that it represents; see
Figure 4.7 for an overview of how the tree is built. Because the kd-tree adaptively
splits up 3D space based on the spatial distribution of primitives in the scene, It can
have better performance than uniform grids for scenes with irregular distributions
of primitives, where a grid might have an enormous number of empty cells in order
to ensure that the cells in the dense regions don’t have too many primitives in them.�
KdTreeAccelerator Declarations ��� �
class KdTreeAccelerator : public Primitive {
public:�

KdTreeAccelerator Method Declarations �
private:�

KdTreeAccelerator Private Data ��
KdTreeAccelerator Private Methods �

};

For simplicity of implementation, the KdTreeAccelerator requires that all of
its primitives be intersectable. We leave as an exercise the task of improving the
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implementation to do lazy refinement like the GridAccelerator does. Therefore,
the constructor starts out by refining all primitives until we only have intersectable
primitives. We then do some general preparation and build the tree.�
KdTreeAccelerator Method Definitions ���
KdTreeAccelerator::KdTreeAccelerator(const vector<Reference<Primitive> > &prims) {�

Refine all prims until they are intersectable ��
Initialize mailboxes for KdTreeAccelerator ��
Set up memory pools for kd tree nodes ��
Build kd tree for accelerator �

}

Because the new Primitives returned from the Primitive::Refine() method
may themselves need to be refined before we have intersectable primitives, we
maintain both a vector of known intersectable primitives, prefined, as well as a
vector of primitives yet to be processed–some may be intersectable, and some may
yet need more refinement. For those that do need refinement, we take advantage of
the fact that Primitive::Refine() adds new primitives to the end of the vector
that is passed in.�
Refine all prims until they are intersectable ���
vector<Reference<Primitive> > prefined, todo = prims;
while (todo.size()) {

Reference<Primitive> prim = todo.back();
todo.pop_back();
if (prim->CanIntersect())

prefined.push_back(prim);
else

prim->Refine(todo);
}

As with the GridAccelerator, we’ll use mailboxing to avoid repeated inter-
sections with primitives that straddle splitting planes and overlap multiple regions
of the tree. In fact, we’ll use the exact same MailboxPrim structure.�
Initialize mailboxes for KdTreeAccelerator ���
curMailboxId = 0;
mailboxPrims = new MailboxPrim[prefined.size()];
for (u_int i = 0; i < prefined.size(); ++i)

mailboxPrims[i].primitive = prefined[i];

�
KdTreeAccelerator Private Data ���
KdAccelNode *root;
MailboxPrim *mailboxPrims;
mutable int curMailboxId;
BBox bounds;

Tree construction

At each step of building the tree, we choose a splitting plane and classify the
remaining primitives with respect to the plane. We then recursively build trees for
each of the children of the current node, processing the primitives that overlapped
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each one. Because we will be repeatedly referring to the bounding boxes of the
primitives along the way, we precompute them and store them in a vector so that we
don’t repeatedly call primitives’ potentially-slow WorldBound() methods. So that
we don’t need to repeatedly build vectors for the bounds of the sets of primitives
on each side of the splitting plane, we pass a vector of integers, recording which
primitive numbers overlapped each side of the split. Just recording integers in this
manner improves tree building efficiency by reducing the amount of data to be
copied along the way.

XXX need to make clear that we’ve got this bound that is the volume of interest–
it will either be split in half or it will store a list of the primitives that overlap it...
XXX�
Build kd tree for accelerator ���
vector<BBox> primBounds;
vector<int> primNums;
primBounds.reserve(prefined.size());
primNums.reserve(prefined.size());
for (u_int i = 0; i < prefined.size(); ++i) {

BBox b = prefined[i]->WorldBound();
bounds = Union(bounds, b);
primBounds.push_back(b);
primNums.push_back(i);

}
buildTree(&root, bounds, mailboxPrims, primBounds, primNums, 0);

buildTree() is called for each node of the tree as we’re building it. Given the
integer primitive numbers to be considered and the bounding box of the current
region, it decides if the recursive splitting should continue or if we’ve reached a
leaf node, updating the tree appropriately.�
KdTreeAccelerator Method Definitions ��� �
void KdTreeAccelerator::buildTree(KdAccelNode **node, const BBox &nodeBounds,

MailboxPrim *mailboxPrims, const vector<BBox> &allPrimBounds,
const vector<int> &primNums, int depth) {

if (!primNums.size()) {
*node = NULL;
return;

}�
Initialize leaf node if termination criteria met ��
Initialize interior node and continue recursion �

}

We stop building the tree if we’ve either got a sufficently small number of prim-
itives in the region or if we’ve reached a maximum depth. We relax the “small
number of primitives” test as the tree gets deeper because deep trees take longer
to traverse for intersection tests–it’s not necessarily worth increasing the tree depth
substantially versus doing a few more intersection tests while traversing it.
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Figure 4.8: A case where splitting along the axis with the largest extent isn’t nec-
essarily the optimal choice: an x split, shown with the solid line, leaves all of the
primitives overlapping both sides of the splitting plane, while a split along the y
axis, shown with a dotted line, would cleanly split the primitives into independent
sets.

�
Initialize leaf node if termination criteria met ���
if (primNums.size() == 1 ||

(primNums.size() < 5 && depth > 10) ||
depth > 20) {
*node = allocNode(depth, primNums, nodeBounds);
return;

}

Otherwise, we choose a splitting plane, classify the primitives, and work on
down the tree.�
Initialize interior node and continue recursion ����

Choose split axis for interior node ��
Compute node split position and allocate interior KdAccelNode ��
Classify primitives with respect to split ��
Recursively initialize children nodes �
Which axis to split along is determined by the coordinate axis along which the

node’s bounds have the largest extent. Other reasonable approaches include cycling
through x, y, and z at successive levels of the tree, or trying each axis and choosing
the one that gives the smallest number of primitives that straddle both sides of the
splitting plane. Figure 4.8 shows a situation where this case may lead to a sub-
optimal tree.�
Choose split axis for interior node ���
int nextAxis;
Vector diag = nodeBounds.pMax - nodeBounds.pMin;
if (diag.x > diag.y && diag.x > diag.z) nextAxis = SPLIT_X;
else if (diag.y > diag.z) nextAxis = SPLIT_Y;
else nextAxis = SPLIT_Z;

�
KdTreeAccelerator Declarations ��� �
#define SPLIT_X 0
#define SPLIT_Y 1
#define SPLIT_Z 2
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Figure 4.9: Splitting along the center of the bounds (solid line) may lead to an ex-
cessive number of primitives overlapping both children of the tree. Here, splitting
along the dotten line would create a tree without any overlapping primitives at this
split.

We always split down the middle of the node’s bounds. Here also we could try
to choose more carefully based on primitive bounds to reduce number of primitives
that straddle the splitting plane and overlap both children. Figure 4.9 shows a case
where a different spliting strategy could be more effective.

Having chosen the split position, it’s straightforward to compute the bounding
boxes of the child nodes. We then allocate the interior node of the tree to hold
pointers to the children before continuing onward.�
Compute node split position and allocate interior KdAccelNode ���
BBox bounds0 = nodeBounds, bounds1 = nodeBounds;
Float tsplit;
if (nextAxis == SPLIT_X) {

tsplit = Lerp(.5f, nodeBounds.pMin.x, nodeBounds.pMax.x);
bounds0.pMax.x = bounds1.pMin.x = tsplit;

}
else if (nextAxis == SPLIT_Y) {

tsplit = Lerp(.5f, nodeBounds.pMin.y, nodeBounds.pMax.y);
bounds0.pMax.y = bounds1.pMin.y = tsplit;

}
else {

tsplit = Lerp(.5f, nodeBounds.pMin.z, nodeBounds.pMax.z);
bounds0.pMax.z = bounds1.pMin.z = tsplit;

}
*node = allocNode(depth, nextAxis, tsplit);

And we can now build the vectors that record which primitives overlap each side
of the split. Because we classify the primitives using their bounding boxes, we may
sometimes think that a primitive overlaps a region of space that it actually doesn’t,
leading to a tree that will require unnecessary ray–primitive intersection tests when
it is traversed. Figure 4.10 shows an example of this problem. The excess work
usually isn’t too much in practice; an exercise at the end of the chapter outlines one
approach to improving the classificaiton of primitives in the tree.
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Figure 4.10: Using the bounding box to classify primitives with respect to the
kd tree means that sometimes we will incorrectly believe that they overlap regions
that they actually don’t. Here, the triangle shown doesn’t actually overlap the upper
right region of the tree, even though the bounding box test says that it does.

�
Classify primitives with respect to split ���
vector<int> prims0, prims1;
for (u_int i = 0; i < primNums.size(); ++i) {

int primNum = primNums[i];
if (bounds0.Overlaps(allPrimBounds[primNum]))

prims0.push_back(primNum);
if (bounds1.Overlaps(allPrimBounds[primNum]))

prims1.push_back(primNum);
}

�
Recursively initialize children nodes ���
buildTree(&((*node)->u.children[0]), bounds0, mailboxPrims, allPrimBounds,

prims0, depth+1);
buildTree(&((*node)->u.children[1]), bounds1, mailboxPrims, allPrimBounds,

prims1, depth+1);

Each node of the kd tree–leaf or interior–is represented by a KdAccelNode struc-
ture. Assuming Floats and pointers are four bytes large, each node uses 16 bytes
of storage, thanks to careful use of bitfields and a union that lets us overlap mem-
ory used by leaf and interior nodes, since we won’t need to store both leaf-related
and interior node-related data in the same node. Keeping the structure this size
lets two nodes fit exactly in a 32 byte cache line, which improves performance at
traversal time by limiting cache misses to no more than one each time a node is
accessed.
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�
KdTreeAccelerator Declarations ��� �
struct KdAccelNode {�

KdAccelNode Constructors ��
KdAccelNode Destructor �
u_int axis:2;
u_int isLeaf:1;
u_int nPrimitives:24;
Float split;
union {

MailboxPrim **primitives;
KdAccelNode *children[2];

} u;
};

There are two KdAccelNode constructors; the first one is for interior nodes,
where the split axis and position are passed in.�
KdAccelNode Constructors ���
KdAccelNode(int a, Float s) {

axis = a;
isLeaf = 0;
split = s;
u.children[0] = u.children[1] = NULL;

}

The second constructor is for leaf nodes; it takes the overlapping primitives and
the bounding box for the node.�
KdAccelNode Constructors ��� �
KdAccelNode(MailboxPrim *allPrimitives, const vector<int> &primNums,

const BBox &nodeBound) {
nPrimitives = u_int(primNums.size());
u.primitives = new MailboxPrim *[nPrimitives];
for (u_int i = 0; i < nPrimitives; ++i)

u.primitives[i] = &allPrimitives[primNums[i]];
isLeaf = 1;

}
�
KdAccelNode Destructor ���
˜KdAccelNode() {

if (isLeaf)
delete[] u.primitives;

}

Cache-friendly memory allocation

Because acceleration data structure traversal is at the heart of lrt’s inner loop,
it’s worth going through some effort to ensure cache-friendly layout of KdAccelNodes
in memory. Applying the techniques in this section sped up lrt by 3–5% for a
handful of test scenes, thanks to reduced cache misses. While this isn’t an enor-
mous speedup, it’s a relatively easy one to take advantage of. For a review of
principles of cache-friendly programming issues, see Section XXX.
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We provide two allocNode() functions, one for allocating and initializing inte-
rior KdAccelNodes and one for leaf nodes. Both use the same key fragment,

�
Get

pointer to new KdAccelNode � to get a pointer to uninitialized memory in node;
they then use C++’s placement new operator to construct a KdAccelNode at the
given memory location.�
KdTreeAccelerator Method Definitions ��� �
KdAccelNode *KdTreeAccelerator::allocNode(int depth, int axis,

Float split) {�
Update kd interior node allocation statistics ��
Get pointer to new KdAccelNode �
new (node) KdAccelNode(axis, split);
return node;

}�
KdTreeAccelerator Method Definitions ��� �
KdAccelNode *KdTreeAccelerator::allocNode(int depth,

const vector<int> &primNums, const BBox &nodeBound) {�
Update kd leaf node allocation statistics ��
Get pointer to new KdAccelNode �
new (node) KdAccelNode(mailboxPrims, primNums, nodeBound);
return node;

}

Our strategy for improving the cache layout of KdAccelNodes has two main
components. First, rather than allocating nodes one at a time as needed, we al-
locate large contiguous blocks of them and parcel them out as needed. Doing
this ensures that our careful work to keep KdAccelNodes at 16 bytes doesn’t go
to waste–dynamic memory allocation typically adds an overhead of four to eight
bytes per allocation request, which would mean that two nodes would no longer
exactly fit into a 32 byte cache line. Further, allocating these chunks with the
aligned AllocL2CacheAligned() function ensures that none of the individual
nodes straddles more than one cache entry (as long as the size of cache lines is
an even multiple of the size of KdAccelNodes.)

Second, we make sure that the nodes at the top few levels of the tree won’t map
to the same cache entries, ensuring that there won’t be any cache misses due to
conflicts among high nodes in the tree. Our assumption here is that the nodes in
the top part of the tree will be the most frequently accessed ones, so minimizing
conflicts among them is worthwhile. We can easily do this by allocating a large
contiguous chunk of memory for all of the top levels of the tree–so long as the size
of this chunk is less than or equal to the cache size, no two locations inside the
chunk will map to the same cache entry.�
Get pointer to new KdAccelNode ���
KdAccelNode *node;
if (depth < MAX_TOP_DEPTH) {�

Allocate kd tree node for top part of tree �
}
else {�

Allocate kd tree node for bottom part of tree �
}
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Nodes up to depth MAX_TOP_DEPTH re allocated from the contiguous chunk of
memory for nodes at the top of the tree. numTop is initialized to hold the total
number of such nodes. Memory for these nodes is handed out in breadth-first
order–the root node of the tree is given the first node in the chunk, the two nodes
at the next level are given the next two, and so forth. The topNodeOffset[] array
is used to record how many nodes have been allocated so far at each depth.�
Allocate kd tree node for top part of tree ���
int offset = (1 << depth) - 1 + topNodeOffset[depth];
Assert(offset < (1 << MAX_TOP_DEPTH) - 1);
++topNodeOffset[depth];
node = topNodes + offset;

For the bottom levels of the tree, we just hand out nodes as needed from a chunk
of memory for LOWER_NODE_ALLOC_SIZE nodes. Whenever we need to allocate a
new chunk, we add its starting address to the allocedNodeBlocks vector, so that
we can free all of the allocated memory when we’re done.�
KdTreeAccelerator Private Data ��� �
#define LOWER_NODE_ALLOC_SIZE 2048

�
Allocate kd tree node for bottom part of tree ���
if (lowerNodePos == LOWER_NODE_ALLOC_SIZE) {

lowerNodePos = 0;
lowerNodes = (KdAccelNode *)AllocL2CacheAligned(

LOWER_NODE_ALLOC_SIZE*sizeof(KdAccelNode));
allocedNodeBlocks.push_back(lowerNodes);

}
node = lowerNodes + lowerNodePos;
++lowerNodePos;

�
Set up memory pools for kd tree nodes ���
int numTop = (1 << MAX_TOP_DEPTH) - 1;
topNodes = (KdAccelNode *)AllocL2CacheAligned(numTop * sizeof(KdAccelNode));
allocedNodeBlocks.push_back(topNodes);
for (int i = 0; i < MAX_TOP_DEPTH; ++i)

topNodeOffset[i] = 0;
lowerNodes = NULL;
lowerNodePos = LOWER_NODE_ALLOC_SIZE;

�
KdTreeAccelerator Private Data ��� �
KdAccelNode *topNodes;
#define MAX_TOP_DEPTH 10
int topNodeOffset[MAX_TOP_DEPTH];
KdAccelNode *lowerNodes;
int lowerNodePos;
vector<KdAccelNode *> allocedNodeBlocks;

XXX need to run destructors for the ones that we constructed...�
Free memory pools for KdTreeNodes ���
for (u_int i = 0; i < allocedNodeBlocks.size(); ++i)

FreeCacheAligned(allocedNodeBlocks[i]);
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the bounds of the tree, giving an initial parametric � tmin � tmax � range to consider.
Because this range is non-empty, we need to consider the two children of the root
node, here. The ray first enters the child on the right, labeled “near”, where it has
a parametric range � tmin � tsplit � . If the near node is a leaf with primitives in it,we
intersect the ray with the primitives; otherwise we process its children nodes. If
no hit is found, or if a hit is found beyond � tmin � tsplit � , then the far node, on the
left, is processed. This sequence continues–processing tree nodes in a depth-first,
front-to-back traversal–until the closest intersection is found or the ray exits the
tree.

Traversal

Figure 4.11 shows the basic process of ray traversal through the tree; if the ray
intersects the tree’s bounds, we “open up” the root node, first processing the child
of the root that the ray enters first and then processing the other child only after
processing of the near node and its children is done. We stop traversal either when
the ray exits the tree or when we find the closest intersection.�
KdTreeAccelerator Method Declarations ��� �
BBox WorldBound() const { return bounds; }
bool CanIntersect() const { return true; }

Traversal walks the tree in the order that the ray passes through tis nodes; see
Figure 4.11. We start by intersecting the ray with the tree’s overall obunds, giving
us initial tmin and tmax values, marked with “x”s in the figure. Because the ray
does intersect the top-level bounds, ...
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�
KdTreeAccelerator Method Definitions ��� �
bool KdTreeAccelerator::Intersect(const Ray &ray, Surf *surf) const {�

Compute initial parametric range of ray inside kd tree extent ��
Prepare to traverse kd-tree for ray �
bool hit = false;
while (node != NULL) {�

Process kd tree node node for ray traversal �
}
return hit;

}

We start by finding the overall parametric range � tmin � tmax � of the ray overlapping
the tree, exiting immediately if there is no overlap.�
Compute initial parametric range of ray inside kd tree extent ���
Float tmin, tmax;
if (!bounds.IntersectP(ray, &tmin, &tmax))

return false;
tmax *= 1.001f;

Before traversal starts, we get a new mailbox id for the ray and precompute the
inverse of the components of the direction vector, in order to replace divides with
multiplies in the main traversal loop. We also set up an array of KdToDo structures,
which are used to record the nodes yet to be processed for the ray. These are
ordered so that the last active entry in the array is the next node to be considered.
It can be shown that the maximum number of entries needed in this array is the
maximum depth of the kd tree; the array size used below should be more than
enough in practice.�
Prepare to traverse kd-tree for ray ���
int rayId = curMailboxId++;
const KdAccelNode *node = root;
Vector invDir(1.f/ray.D.x, 1.f/ray.D.y, 1.f/ray.D.z);
#define MAX_TODO 64
KdToDo todo[MAX_TODO];
int todoPos = 0;

�
KdTreeAccelerator Declarations ��� �
struct KdToDo {

const KdAccelNode *node;
Float tmin, tmax;

};

For each node of the tree that we process, we first see if we can stop traversing
due to having found an intersection that is closer along the ray than the ray’s overlap
with the node. If this is not so, we either do ray–primitive intersections, for a leaf
node, or determine which of an interior node’s children the ray overlaps.



Sec. 4.4] Kd Tree 145

125 lastMailboxId
125 MailboxPrim
131 mp
579 primitives

6 prims
501 StatsCounter

�
Process kd tree node node for ray traversal ����

Update kd-tree traversal statistics ��
Bail out if we found a hit closer than the current node �
if (node->isLeaf) {�

Check for intersections inside leaf node ��
Grab next node to process from todo list �

}
else {�

Process kd tree interior node �
}

�
Update kd-tree traversal statistics ���
static StatsCounter nodesTraversed("Acceleration",

"Number of kd-tree nodes traversed by normal rays");
++nodesTraversed;

We may have previously found an intersection in a primitive that overlaps mul-
tiple nodes; if the intersection was outside the current node when first detected,
we need to keep traversing the tree until we come to a node where the node entry-
point tmin is beyond the intersection; only then do we know that there is no closer
intersection.�
Bail out if we found a hit closer than the current node ���
if (ray.maxt < tmin) break;

If the current node is a leaf, we loop over the primitives in the leaf, using the
mailbox test to avoid re-testing primitives that have already been processed for this
ray.�
Check for intersections inside leaf node ���
u_int nPrimitives = node->nPrimitives;
MailboxPrim **prims = node->u.primitives;
for (u_int i = 0; i < nPrimitives; ++i) {

MailboxPrim *mp = prims[i];
if (mp->lastMailboxId != rayId) {

mp->lastMailboxId = rayId;
if (mp->primitive->Intersect(ray, surf))

hit = true;
}

}

After doing the intersection tests, we find the next node to process from the todo
array. If there are no more nodes, we break out of the traversal loop.�
Grab next node to process from todo list ���
if (todoPos > 0) {

--todoPos;
node = todo[todoPos].node;
tmin = todo[todoPos].tmin;
tmax = todo[todoPos].tmax;

}
else

break;



146 Intersection Acceleration [Ch. 4

Figure 4.12: The position of the origin of the ray with respect to the splitting plane
can be used to determine which of the node’s children should be processed first.
Because the child on the “below” side of the splitting plane is always stored in
children[0] and the “above” side in children[1], if the ray is on the below
side of the split plane, we should process children[0] before children[1] and
vice versa.

For interior tree nodes, we intersect the ray with the node’s splitting plane and
determine if one or both of the children nodes needs to be processed and in what
order to do so.�
Process kd tree interior node ����

Compute distance along ray to split plane ��
Get near and far child pointers for ray ��
Advance to next child node, possibly enqueue far child �
The parametric distance to the split plane is computed in the same manner as

was done in the ray–bounding box test, for example.�
Compute distance along ray to split plane ���
Float tplane;
if (node->axis == SPLIT_X)

tplane = (node->split - ray.O.x) * invDir.x;
else if (node->axis == SPLIT_Y)

tplane = (node->split - ray.O.y) * invDir.y;
else

tplane = (node->split - ray.O.z) * invDir.z;

We also need to determine which of the node’s children should be processed
first, so that we traverse the tree in front-to-back order along the ray. Figure 4.12
shows the geometry of this computation.
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140 KdAccelNode

Figure 4.13: Two cases where both children of a node don’t need to be processed
because the ray doesn’t overlap them. On the left, the top ray intersects the splitting
plane beyond the ray’s tmax position and thus doesn’t enter the far child. The bottom
ray is facing away from the splitting plane, indicated by a negative tsplit value. On
the right, the ray intersects the ray before the ray’s tmin value, indicating that the
near plane doesn’t need processing.

�
Get near and far child pointers for ray ���
KdAccelNode *nearChild, *farChild;
bool zeroIsNear;
if (node->axis == SPLIT_X)

zeroIsNear = (ray.O.x <= node->split);
else if (node->axis == SPLIT_Y)

zeroIsNear = (ray.O.y <= node->split);
else

zeroIsNear = (ray.O.z <= node->split);
if (zeroIsNear) {

nearChild = node->u.children[0];
farChild = node->u.children[1];

}
else {

nearChild = node->u.children[1];
farChild = node->u.children[0];

}

However, we don’t necessarily need to process both children of this node; the
details of this are slightly tricky. Figure 4.13 shows some configurations that we
handle here. The first if test below corresponds to the left side of the figure: only
the near node needs to be processed if it can be shown that the ray doesn’t overlap
the far node because it faces away from the far node or doesn’t overlap it. The
right side of the figure shows the case tested in the second if test: the near node
may not need processing if the ray doesn’t overlap it. Otherwise, the else clause
handles the case of both children needing processing; we process the near node
and enqueue the far node. However, because one (but not both!) of an inner node’s
children pointers may be NULL, we go directly to the far node if the near node is
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NULL and we don’t enqueue the far node if it is NULL. After all this, we make sure
that node isn’t NULL (as would happen with a NULL near or far child for the first
two cases, respectively). If it is, we get the next node from the todo array.�
Advance to next child node, possibly enqueue far child ���
if (tplane > tmax || tplane < 0)

node = nearChild;
else if (tplane < tmin)

node = farChild;
else {

if (!nearChild) {
node = farChild;
tmin = tplane;

}
else {

if (farChild) {�
Enqueue farChild in todo list �

}
node = nearChild;
tmax = tplane;

}
}
if (!node) {�

Grab next node to process from todo list �
}�

Enqueue farChild in todo list ���
todo[todoPos].node = farChild;
todo[todoPos].tmin = tplane;
todo[todoPos].tmax = tmax;
++todoPos;
Assert(todoPos < MAX_TODO);

Basically just like the usual intersect method, just calls the Primitive’s IntersectP()
method and returns true as soon as it finds any intersection–doesn’t need to worry
about waiting for the closest one... (Worth a 3-5% speedup on typical scenes...)�
KdTreeAccelerator Method Declarations ��� �
bool IntersectP(const Ray &ray) const;

���"� ������� � � ����� ���

After the introduction of the ray-tracing algorithm, an enormous amount of re-
search was done to try to find effective ways to speed it up, primarily by developing
improved ray-tracing acceleration structures. Arvo and Kirk’s chapter in An Intro-
duction to Ray Tracing summarizes the state of the art as of 1989.

Rubin and Whitted developed the first hierarchical data structures for scene rep-
resentation for fast ray tracing (RW80). Fujimoto et al were the first to intorduce
uniform voxel grids, similar to what we describe in this chapter (FTI86).

Glassner introduced octrees for ray intersection acceleration (Gla84); this ap-
proach was more robust to scenes with non-uniform distributions of geometry. An-
other adaptive approach was the hierarchial bounding volumes of Goldsmith and
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Salmon (GS87).
Arvo and Kirk introduced the unifying principle of meta-hierarchies (AK87);

they showed that by implementing acceleration data structures to conform to the
same interface as is used for primitives in the scene, it’s easy to mix and match mul-
tiple intersection schemes in a scene without needing to have particular knowledge
of it.

Sung and Shirley describe the implementation of a BSP tree accelerator in in
Graphics Gems III (SS92); our KdTreeAccelerator is loosely based on their im-
plementation.

Revelles octree traversal, including pointers to previous approaches (RUL).
Kay Kajiya (KK86).
Snyder and Barr nested grids, various improvements like ray bounding box (SB87).
Papers by Woo, Pearce, etc. with additional clever tricks
Ray Tracing News full of discussion, tricks of the trade.
Who came up with mailboxing?

� � ��� ����# � #

4.1 try using bounding box tests to improve the grid’s performace. what about
testing the ray against an object’s world-space bound before testing it against
the object? or transform to object space and then test against object-space
bound (likely to be a better test). can avoid the transformation in the first
case, but will generally reject more in the second.

general trade-off in these sorts of culling schemes of how successful is the
extra test and how much time does it take, versus how much time does it take
to just test against the object anyway.

4.2 implement ray bound in each voxel; then check for overlap of ray bound with
world bound of the objects first–very cheap test...

4.3 when sub-grids, we finish isecting in subgrid before continuing current cell:
may spend time on unneeded way far away isections!

4.4 discuss statistics above; number of intersection tests per ray and number of
intersections found per ray are the big key ones. general tradeoff, though, of
improving those values at the expense of more complex traversal schemes,
etc.

4.5 explain teapot in a stadium problem.. then,

Extend the grid accelerator so that it is hierarchical: for any grid cell that
has more than a fixed number of primitives, generate a new grid inside that
cell and re-grid the overlapping primitives. Investigate the performance of
this scheme.

note that if child grids have power of 2 size with respect to parent, can re-use
DDA values just by scaling them appropriately.

4.6 Implement additional ray intersection acceleration schemes. How does per-
formance compare to the regular grid?
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4.7 smarter overlap tests for bounding structures–bounding box slop causes in-
efficiency for both grids and kd-trees. For to handle both of those, could
add a bool Shape::Overlaps(const BBox &) const method that takes
a world-space bounding box. Default could get world bound from primitive,
do overlap, smarter ones could be smarter. Would work well for both of the
ones here...

4.8 fix the kd tree so that it doesn’t refine all primitives immediately. easy is to
build sub kd-trees as needed, though this isn’t optimal, since same problem
of finding far away intersections before checking closer stuff. Better is to
re-build sub-trees as needed when refinement is done.

4.9 smarter splitting axis/split position selection for kd trees?
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In order to set the stage for describing how light ing the scene is represented and
sampled to compute images, we will first establish some background in radiometry.
Radiometry is the area of study of the propagation of electromagnetic radiation
in environments. The wavelengths of electromagnetic radiation between roughly
370nm and 730nm account for light visible to the human visual system and are
of particular interest in rendering. The lower wavelengths, λ � 400nm are the
blue-ish colors, the middle wavelengths λ � 550nm are the greens, and the upper
wavelengths λ � 650nm are the reds.

We will introduce four key radiometric quantities–flux, intensity, irradiance,
and radiance–that describe electromagnetic radiation. By evaluating the amount
of radiation arriving on the camera’s image plane, we can model the process of
image formation. These radiometric quantities generally vary according to wave-
length. Such quantities are generally described by a spectral power distribution
(SPD), which is a function of wavelength, λ. This chapter starts by describing the
Spectrum class, including its operations, that lrt uses to represent SPDs through-
out the system. We will then introduce basic concepts of radiometry and some
theory behind light scattering from surfaces.

For now, we will ignore the effects of smoke, fog, and atmospheric scattering
and assume that the scene is a collection of surfaces in a vacuum. Radiometric
principles for the more general case will be introduced in Chapter 13.

��� �
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Figure 5.1: Spectral power distributions of a fluorescent light (top) and the re-
flectance of lemon skin (bottom). Wavelengths around 400nm are blue-ish colors,
greens and yellows are in the middle range of wavelengths, and reds have wave-
lengths around 700nm. The fluorescent light’s SPD is even spikier than shown
here, where the SPDs have been binned into 10nm ranges; it emits much of its
illumination at single frequencies.

���������
	������������	�����	���	������� "!#�
$
color.h* %'&$

Source Code Copyright %
#ifndef COLOR_H
#define COLOR_H
#include "lrt.h"$
Color Declarations %
#endif // COLOR_H

$
color.cc* %'&$

Source Code Copyright %
#include "color.h"$
Spectrum Method Definitions %
The SPDs of real-world objects can be quite complex; Figure 5.1 shows a graph

of the spectral distribution of emission from a fluorescent light and the spectral
distribution of the reflectance of lemon skin. Given such complex functions, we
would like a compact, efficient, and accurate way to represent them. A number
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of approaches have been developed that are based on finding good basis func-
tions to represent complex SPDs. The idea behind basis functions is to map the
infinite-dimensional space of possible SPD functions to a low-dimensional space
of coefficients ci �

�
. For example, a trivial basis function is the constant function

B
�
λ � � 1. An arbitrary SPD would be represented by a single coefficient c equal

to its average value, so that its basis function approximation would be cB
�
λ � � c.

This is obviously a poor approximation, since it has no chance to account for the
SPD’s possible complexity.

It is often convenient to limit ourselves to linear basis functions; this means that
the basis functions are pre-determined functions of wavelength and aren’t them-
selves parameterized. For example, if we were using Gaussians as basis functions
and wanted to have a linear basis, we need to set their respective widths and central
wavelengths ahead of time. If we allowed the widths and center positions to vary
based on the SPD we were trying to fit, the basis would be non-linear. Though
non-linear basis functions can naturally adapt to the complexity of SPDs, they are
in general less computationally efficient. Because it is not a primary goal of lrt to
provide the most comprehensive spectral representations, we will only implement
infrastructure for linear basis functions.

Given a set of linear basis functions Bi, coefficients ci for a SPD S
�
λ � can be

computed by

ci
� �

λ
Bi
�
λ � S � λ � dλ � (5.1.1)

so that
S
�
λ � � ∑

i

ciBi
�
λ � �

Measured SPDs of real-world objects are often given in 10nm increments; this
corresponds to basis functions that are step functions:

B
�
λ � a � b ��� 1 : a � λ � b

0 : otherwise

Another common basis function is the delta function that evaluates the SPD at
single wavelengths. Others that have been investigated include polynomials and
Gaussians.

Given an SPD and its associated set of linear basis function coefficients, a num-
ber of operations on the spectral distributions can be easily expressed directly in
terms of the coefficients. For example, to compute the coefficients c

�

i for the SPD
given by multiplying a scalar k with a SPD S

�
λ � , where the coefficients for S

�
λ �

are ci, we have:

c
�

i
� �

λ
Bi
�
λ � � kS

�
λ ��� dλ

c
�

i
� k �

λ
Bi
�
λ � S � λ � dλ

c
�

i
� kci

Such a multiplication might be used to adjust the brightness of a light source. Sim-
ilarly, for two SPDs S1

�
λ � and S2

�
λ � represented by coefficients c1

i and c2
i , the sum

S1
�
λ � � S2

�
λ � can be shown to be

c
�

i
� ∑c1

i � c2
i

�
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Thus, by converting to a basis function representation, a number of otherwise
potentially-tricky operations with SPDs are made straightforward.

We will often need to multiply two SPDs together; for example, the product
of the SPD of light arriving from a light with the SPD for a surface’s reflectance
gives the SPD of light reflected from the surface. In general, the coefficients for
the SPD representing product of two SPDs doesn’t work out quite so cleanly, even
with linear basis functions:

ci
� �

λ
Bi
�
λ � � S1

�
λ � S2

�
λ ��� dλ

� �
λ

Bi
�
λ �

�
∑

j

c1
j B j

�
λ ��� �

∑
k

c2
kBk

�
λ ��� dλ

� ∑
j
∑
k

c1
jc

2
k �

λ
Bi
�
λ � B j

�
λ � Bk

�
λ � dλ

The integrals of the product of the three basis functions can be precomputed and
stored in n matrices of size n2 each, where n is the number of basis functions. Thus,
n3 multiplications are necessary to compute the new coefficients. Alternatively, If
one of the colors is known ahead of time (e.g. a surface’s reflectance), we can
precompute an matrix S defined so that the Si � j element is

Si � j � �
λ

S1
�
λ � Bi

�
λ � B j

�
λ � �

Then, multiplication with another SPD is just a matrix-vector multiply with S and
the vector c2

i , requiring n2 multiplications.
In lrt, we will choose computational efficiency over generality and further limit

the supported basis functions to be orthonormal. This means that for i �� j,

�
λ

Bi
�
λ � B j

�
λ � dλ � 0

and �
λ

Bi
�
λ � Bi

�
λ � dλ � 1 �

Under these assumptions, the coefficients for the product of two SPDs is just the
produce of their coefficients

ci
� c1

i c2
i �

requiring n multiplications.
XXX need to note, though, that the coefficients for the product of two SPDs will

not in general have the same values as the products of their coefficients:

�
λ

Bi
�
λ � S1

�
λ � S2

�
λ � dλ �� �

λ
Bi
�
λ �

�
∑

j

c1
j B j

�
λ ��� �

∑
k

c2
kBk

�
λ ��� dλ �

This is a natural consequence of both the error introduced i nthe original transfor-
mation to a basis functino representatino as well as the need to reproject the result
of the multiplication onto the basis functions..

Other than requiring that the basis functions used be linear and orthonormal, lrt
places no further restriction on them. In fact, lrt operates purely on basis function
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coefficients: colors are specified in input files and texture maps as coefficients and
lrt can write out images of coefficients–almost no knowledge of the form of the
particular basis functions being used is needed by the system.

Spectrum Class

The Spectrum class holds a compile-time fixed number of basis function coef-
ficients, given by COLOR_SAMPLES.�
Global Constants ��� �
#define COLOR_SAMPLES 3

�
Color Declarations ���
class Spectrum {
public:�

Spectrum Constructor Declarations ��
Spectrum Method Declarations ��
Spectrum Public Data �

private:�
Spectrum Private Data �
Float c[COLOR_SAMPLES];

};

Two Spectrum constructors are provided, one initializing a spectrum with the
same value for all coefficients, and one initializing it with COLOR_SAMPLES given
coefficients.�
Spectrum Constructor Declarations ���
Spectrum(Float intens = 0.) {

for (int i = 0; i < COLOR_SAMPLES; ++i)
c[i] = intens;

}
�
Spectrum Constructor Declarations ��� �
Spectrum(Float cs[COLOR_SAMPLES]) {

for (int i = 0; i < COLOR_SAMPLES; ++i)
c[i] = cs[i];

}

A variety of arithmetic operations on Spectrum objects are supported; the im-
plementations are all quite straightforward. First are operations to add pairs of
spectral distributions.�
Spectrum Method Declarations ��� �
Spectrum &operator+=(const Spectrum &s2) {

for (int i = 0; i < COLOR_SAMPLES; ++i)
c[i] += s2.c[i];

return *this;
}
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�
Spectrum Method Declarations ��� �
Spectrum operator+(const Spectrum &s2) const {

Spectrum ret = *this;
for (int i = 0; i < COLOR_SAMPLES; ++i)

ret.c[i] += s2.c[i];
return ret;

}

Similarly, subtraction, multiplication and division of spectra is defined component-
wise. We won’t include all of the code for those cases, or for multiplying or divid-
ing them by scalar values, since there’s little additional value to seeing it all.

We also provide the obvious equality test.�
Spectrum Method Declarations ��� �
bool operator==(const Spectrum &sp) const {

for (int i = 0; i < COLOR_SAMPLES; ++i)
if (c[i] != sp.c[i]) return false;

return true;
}

�
Spectrum Method Declarations ��� �
bool Black() const {

for (int i = 0; i < COLOR_SAMPLES; ++i)
if (c[i] != 0.) return false;

return true;
}

Also useful are functions that take the square-root of a spectrum and raise the
components of a Spectrum to a given power, also given as a Spectrum. Because
the product of two spectra is computed with products of their coefficients, taking
the square root of the coefficients gives the square root of the SPD.

Needed for Fresnel formulas..�
Spectrum Method Declarations ��� �
Spectrum Sqrt() const {

Spectrum ret;
for (int i = 0; i < COLOR_SAMPLES; ++i)

ret.c[i] = sqrtf(c[i]);
return ret;

}

Needed for some BRDF models...�
Spectrum Method Declarations ��� �
Spectrum Pow(const Spectrum &e) const {

Spectrum ret;
for (int i = 0; i < COLOR_SAMPLES; ++i)

ret.c[i] = c[i] > 0 ? powf(c[i], e.c[i]) : 0.f;
return ret;

}
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� ��� � ��# � � � ������� � ��� � �
Radiometry gives us a set of ideas and mathematical tools to describe light prop-

agation and reflection in environments; it forms the basis of the derivation of the
rendering algorithms that will be used throughout the rest of this book. Interest-
ingly enough, radiometry wasn’t originally directly derived from first principles
using the basic physics of light, but was based on an abstraction of light based on
particle flows. As such, effects like polarization of light aren’t naturally a part of
it, though connections have since been made between it and Maxwell’s equations,
giving it a solid basis in physics.

Radiative transfer is the phenomenological study of the transfer of radiant en-
ergy. It is based on radiometric principles and operates at the geometrical optics
level, where macroscopic properties of light suffice to describe how light interacts
with objects much larger than the wavelength of light, it is not at all uncommon
to incorporate results from wave optics models. These results just need to be ex-
pressed in the language of radiative transfer’s basic abstractions.1 In this manner,
it is possible describe interactions of light with objects close to the wavelength
and this describe effects like dispersion and interference. At an even finer level
of detail, quantum mechanics is needed to describe light’s interaction with atoms;
as direct simulation of quantum mechanical principles is unnecessary for solving
rendering problems in computer graphics, the problem of the intractability of such
an approach is avoided anyway.

In lrt, we will assume that geometrical optics are an adequate basis for the
description of light and light scattering. As such, we will make following assump-
tions about how the behavior of light.


 Linearity: the combined effect of two inputs to an optical system is always
equal to the sum of the effects of each of the inputs individually.


 Energy conservation: more energy is never produced by a scattering event
than there was to start with.


 No polarization: we will ignore polarization of the electromagnetic field;
as such, the only relevant property of light particles is their wavelength (or
frequency). While the radiative transfer framework has been extended to
include the effects of polarization, we will ignore this effect for simplicity.


 No fluorescence or phosphorescence: we make the assumption that the be-
havior of light at one wavelength is completely independent of light’s behav-
ior at other wavelengths. As with polarization, it is relatively straightforward
to include these effects in this work, but largely serves to make the presenta-
tion more complex, with little practical advantage.


 Steady state: light in the environment is assumed to have reached equlibrium,
such that its radiance distribution ins’t changing with time. This happens
nearly instantaneously with light in realistic scenes.

1Preisendorfer has connected radiative transfer theory to Maxwell’s classical equations describing
electromagnetic fields (Pre65, Chapter 14); his framework both demonstrates their equivalence and
makes it easier to apply results from one world-view to the other. More recent work was done in this
area by Fante (?).
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Figure 5.2: Radiant flux, Φ, measures energy passing through a surface or region
of space. Here, flux from a point light source is being measured at a sphere that
surrounds the light.

The most significant loss from assuming geometrical optics is that diffraction
and interference effects cannot easily be accounted for. As noted by Preisendorfer,
this is hard to fix given these assumptions because, for example, the total flux
over two areas isn’t necessarily equal to sum of flux over each individually (Pre65,
p. 24).

Basic quantities

There are four radiometric quantities that are central to rendering:


 flux


 irradiance


 intensity


 radiance

All of these quantities are generally functions that vary by wavelength, λ. For
the remainder of this chapter, we will not make this dependence explicit, but it’s
important to keep in mind.

Radiant flux, also known as power, is the total amount of energy passing through
a surface or region of space per unit time. Its units are Joules/second and it is
normally signified by the symbol Φ. Total emission from light sources is generally
described in terms of flux; Figure 5.2 shows flux from a point light measured by
the total amount of energy passing through the imaginary sphere around the light.
Note that the amount of flux measured on either of the two spheres in Figure 5.2 is
the same–although less energy is passing through any local part of the large sphere
than the small sphere, the greater area of the large sphere accounts for this.

Irradiance (E) is the area density of flux, flux/square meter. For the point light
example in Figure 5.2, irradiance on the outer sphere is less than the irradiance on
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Figure 5.3: Irradiance (E) arriving at a surface varies according to the cosine of
the angle of incidence of illumination, since illumination is over a larger area at
lower incident directions. This effect was first described by Lambert; it is known
as Lambert’s Law.

the inner sphere, since the area on the outer sphere is larger. In particular, for a
sphere in this configuration that has radius r,

E � Φ
4πr2 �

This falloff with distance explains why received energy from a light falls off with
the squared distance from the light.

The irradiance equation can also help us understand the origin of Lambert’s Law,
which says that the amount of light arriving at a surface is related to the cosine
of the angle between the light direction and the surface normal–see Figure 5.3.
Consider a light source with area A and flux Φ that is shining on a surface. If the
light is shining directly down on the surface (left), then the area on the surface
receiving light A1 is equal to A and irradiance at any point inside A1 is

E1
� Φ

A
�

However, if the light is at an angle to the surface (right), the total area on the
surface receiving light is larger. If the area of the light source is small, then the
area receiving flux, A2, is roughly A � cos θ. For points inside A2, the irradiance is
therefore

E2
� Φ cos θ

A
�

This is the origin of the cosine law for radiance.
More formally, to cover the cases like when the emitted flux distribution isn’t

constant, irradiance at a point is actually defined as

E � dΦ
dA
� (5.2.2)
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p s
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Figure 5.4: The plane angle of an object c as seen from a point p is equal to the
angle it subtends as seen from p, or equivalently as the length of the arc s on the
unit sphere.

c

s

Figure 5.5: The solid angle s subtended by an object c in three dimensions is
similarly computed by projecting c onto the unit sphere and measuring its area
there.

where the differential flux from the light is computed at the differential point re-
ceiving flux.

In order to define the radiometric quantity intensity, we first need to define the
notion of the solid angle. Solid angles are just the extension of two-dimensional
angles in a plane to angle on a sphere. The plane angle is the total angle subtended
by some object with respect to some position; see Figure 5.4. Consider the unit
circle around the point p; if we project the shaded object on to that circle, some
length of the circle s will be covered by its projection. The arc-length of s (which is
the same as the angle θ) is the angle subtended by the object. Plane angle is given
the unit radians.

The solid angle extends the unit circle in two-dimensions to a unit sphere in
three-dimensions (Figure 5.5). The total area s is the solid angle subtended by the
object. Solid angle is given the unit steradians. The entire sphere subtends a solid
angle of 4π and a hemisphere subtends 2π.

We will use the symbol �ω to describe directions on the unit sphere centered
around some point. (These directions can thus also be thought of as point on the
unit sphere around p. We will therefore follow use the convention that �ω is always
a normalized vector). We can now define intensity, which is flux density per solid



Sec. 5.3] Working with Radiometric Integrals 161

dA
dA

dω

Figure 5.6: Radiance L is defined at a point by the ratio of the differential flux
incident along a direction �ω to the differential solid angle d �ω times the differential
projected area of the receiving point.

angle,

I � dΦ
d �ω

� (5.2.3)

Intensity is generally only used when describing the distribution of light by direc-
tion from point light sources.

Finally, radiance (L) is the flux density per unit area, per unit solid angle. In
terms of flux, it is

L � d2Φ
d �ω dA �

(5.2.4)

where dA � is the projected area of dA on a hypothetical surface perpendicular to
�ω–see Figure 5.6. All those differential terms don’t need to be as confusing as they
initially appear–just think of radiance as the limit of the measurement of incident
light at the surface as a small cone of incident directions of interest d �ω becomes
very small, and as the local area of interest on the surface dA also becomes very
small.

Now that we have defined these various units, it’s easy to derive relations be-
tween them. For instance, irradiance at a point x due to radiance over a set of
directions Ω is

E
�
x � � �

Ω
L
�
x � �ω � cosθd �ω � (5.2.5)

where L
�
x � �ω � denotes the arriving radiance at position x as seen along direction

�ω (see Figure 5.7). (The cosθ term in this integral is due to the dA � term in the
definition of radiance.) We are often interested in irradiance over the hemisphere
of directions about a given surface normal H 2 or the entire sphere of directions S 2.

� ����� �"� ��� � � � � ��� � �	��� � � ��� � � � ������� � � �"!$#

One of the main tasks in rendering is integrating information about the values of
particular radiometric quantities to compute information about other radiometric
quantities. There are a few important tricks that can be used to make this task
easier.

Integrals over projected solid angle

The various cosine terms in integrals for radiometric quantities can clutter things
up and distract from what is being expressed in the integral. There is an different
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Figure 5.7: Irradiance at a point x is given by the integral of radiance times the
cosine of the incident direction over the entire upper hemisphere above the point.
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Figure 5.8: The projected solid angle subtended by an object c is the cosine-
weighted solid angle that it subtends. It can be computed by finding the object’s
solid angle s, projecting it down to the plane, and measuring its area there. Thus,
the projected solid angle depends on the surface normal where it is being measured,
since the normal orients the plane of projection.

way that the integrals can be written that removes this distraction. The projected
solid angle subtended by an object is determined by projecting the object on to the
unit sphere, as is done for solid angle, but then projecting the resulting shape down
on to the unit disk–see Figure 5.8. Integrals over hemispheres of directions with
respect to solid angle can equivalently be written as integrals over projected solid
angles.

The projected solid angle measure is related to the solid angle measure by

d �ω � � cosθd �ω �
so the irradiance-from-radiance integral can be written more simply as

E �
�

H 2
L
� �ω � d �ω � �

For the rest of this book, we’ll write integrals over directions in terms of solid
angle, rather than projected solid angle. When reading rendering integrals in other
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Figure 5.9: A given direction vector can be written in terms of spherical coordinates�
θ � φ � if the x, y, and z basis vectors are given as well. The spherical angle formulae

make it easy to convert between the two representations.

contexts, however, be sure to be aware of the measure of the space that is being
integrated over to disambiguate these cases.

Integrals over spherical coordinates

It is often convenient to transform integrals over solid angle into integrals over
spherical coordinates

�
θ � φ � . Recall that an

�
x � y � z � direction vector can be alterna-

tively written in terms of spherical angles (see Figure 5.9):

x � sinθ cosφ
y � sinθ sinφ
z � cosθ

For convenience, we’ll define two functions that turn θ and φ values into
�
x � y � z �

direction vectors. The first applies the equations above directly.�
Geometry Inline Functions ��� �
inline Vector SphericalDirection(Float sintheta, Float costheta,

Float phi) {
return Vector(sintheta * cosf(phi),

sintheta * sinf(phi), costheta);
}

The second function takes three basis vectors to replace the x, y and z axes and
returns the appropriate direction vector with respect to the coordinate frame that
they define.�
Geometry Inline Functions ��� �
inline Vector SphericalDirection(Float sintheta, Float costheta,

Float phi, const Vector &x, const Vector &y,
const Vector &z) {

return sintheta * cosf(phi) * x +
sintheta * sinf(phi) * y + costheta * z;

}
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Figure 5.10: The differential area dA subtended by a differential solid angle is the
product of the differential lengths of the two edges sinθdφ and dθ. The resulting
relationship, d �ω � sinθdθdφ, is the key to converting between integrals over solid
angles and integrals over spherical angles.

The spherical angles for a direction can be found by:

θ � arccos z

φ � arctan
y
z

Corresponding functions are below. Note that SphericalTheta() assumes that
the vector v has been normalized before being passed in.�
Geometry Inline Functions ��� �
inline Float SphericalTheta(const Vector &v) {

return acosf(v.z);
}

�
Geometry Inline Functions ��� �
inline Float SphericalPhi(const Vector &v) {

return atan2f(v.y, v.x) + M_PI;
}

In order to write an integral over solid angle in terms of an integral over
�
θ � φ � ,

we need to be able to express the relationship between the differential area of a
set of directions d �ω and the differential area of a

�
θ � φ � pair–see Figure 5.10. The

differential area d �ω is the product of the differential lengths of the sides of d �ω,
sinθdφ and dθ. Therefore,

d �ω � sin θdθ dφ �
We can thus see that the irradiance integral over the hemisphere (Equation 5.2.5

with Ω � H 2) can equivalently be written

E � � 2π

0
� π � 2

0
L
�
x � θ � φ � cos θ sinθdθ dφ

So if the radiance is the same from all directions, this simplifies to E � πL.
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Figure 5.11: The differential solid angle subtended by a differential area dA is
equal to dA cos θ � r2, where θ is the angle between dA’s surface normal and the
vector to the point x and r is the distance from x to dA.

Just as we found irradiance in terms of incident radiance, we can also compute
the total flux emitted from some object over the hemisphere about the normal by
integrating over the object’s surface area A:

Φ � �
A
�

H 2
L
�
x � �ω � cosθd �ω dA

Integrals over area

One last transformation of integrals that can be simplify computation is to turn
integrals over directions into integrals over area. Consider the irradiance integral,
5.2.5 again, where there is a quadrilateral with constant outgoing radiance and
where we’d like to compute the resulting irradiance at a point x. The easiest way to
write this integral is as an integral over the area of the quadrilateral; writing it as an
integral over directions is less straightforward, since given a particular direction,
the computation to determine if the quadrilateral is visible in that direction is non-
trivial.

Differential area is related to differential solid angle by

d �ω � dA cos θ
r2 (5.3.6)

where θ is the angle between the surface normal of dA and r2 is the squared distance
from x to dA. See Figure 5.11.

We will not derive this result here, but it can be understood intuitively: if dA is
distance 1 from x and is aligned exactly so that it is facing down d �ω, then d �ω � dA,
θ � 0, and Equation 5.3.6 holds. As dA moves farther away from x, or as it rotates
so that it’s not aligned with the direction of d �ω, the r2 and cosθ terms compensate
accordingly to reduce d �ω.

Therefore, we can write the irradiance integral for the quadrilateral source as

E
�
x � � �

A
L cosθi

cosθo dA
r2

where θi is the angle between the surface normal at x and the direction from x to
the point x

�

on the light, and θo is the angle between the surface normal at x
�

on the
light and the direction from x

�

to x (see Figure 5.12.)
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Figure 5.12: To compute irradiance at a point x from a quadrilateral source, it’s eas-
ier to integrate over the surface area of the source than to integrate over the irregular
set of directions that it subtends. The relationship between solid angles and areas
given by Equation 5.3.6 lets us go back and forth between the two approaches.

� ���  �"� � �	��� � ��� ��� � ��� �

When light in an environment is incident on a surface, the surface scatters the
light, re-reflecting some of it back into the environment. For example, the skin of a
lemon mostly absorbs light in the blue wavelengths, but reflects most of light in the
red and green wavelengths (recall the lemon skin reflectance SPD in Figure 5.1.)
Therefore, when it is illuminated with white light, its color is yellow. The skin
has pretty much the same color no matter what direction it’s being observed from,
although for some directions a highlight is visible, where it is more white than
yellow.

In contrast, the color seen in a mirror depends almost entirely on the viewing
direction. At a fixed point on the mirror, as the viewing angle changes, the object
that is reflected in the mirror changes accordingly. Furthermore, mirrors generally
don’t change the color of the object they are reflecting very much.

The BRDF

There are a few concepts in radiometry that give formalisms for describing these
types of reflection. One of the most important is the bidirectional reflectance dis-
tribution function, (BRDF). Consider the setting in Figure 5.13: we’d like to know
how much radiance is leaving the surface in the direction �ωo toward the viewer,
Lo
� �ωo � as a result of incident radiance along the direction �ωi, Li

� �ωi � .
If the direction �ωi is considered a differential cone of directions, we can compute

the resulting differential irradiance at x by

dE
� �ωi � � L

� �ωi � cosθi d �ωi
�

A differential amount of radiance will be reflected in the direction �ωo. An im-
portant assumption made in radiometry is that the system is linear: doubling the
amount of energy going into it will lead to a doubling of the amount going out of
it. This is a reasonable assumption as long energy levels are not extreme.

Therefore, the reflected differential radiance is

dLo
� �ωo � ∝ dE

� �ωi � �
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Figure 5.13: The bidirectional reflectance distribution function (BRDF) is a four-
dimensional function over pairs of directions �ωi and �ωo that describes how much
incident light along �ωi is scattered from the surface in the direction �ωo.

The constant proportionality for the particular pair of directions �ωi and �ωo is de-
fined to be the surface’s BRDF:

fr
� �ωi � �ωo ��� dL

� �ωo �
dE

� �ωi � �
dL

� �ωo �
L
� �ωi � cos θid �ωi

(5.4.7)

Real-world BRDFs have two important qualities:

1. Reciprocity: for all pairs of directions �ωi and �ωo, fr
� �ωi � �ωo ��� fr

� �ωo � �ωi � .
2. Energy conservation: the total energy of light reflected is less than or equal to

the energy of incident light. For all directions �ω, � S2 f
� �ωi � �ω � cosθid �ωi � 1.

The surface’s bidirectional transmittance distribution function (BTDF) can be
defined in a similar manner to the BRDF. The BTDF is generally denoted by
ft
� �ωi � �ωo � , where �ωi and �ωo are in opposite hemispheres around x. Interestingly

enough, the BTDF does not obey reciprocity; we will discuss this in detail in Sec-
tion 9.2.

For convenience in equations, we will denote the BRDF and BTDF considered
together as f

� �ωi � �ωo � ; we will call this the bidirectional scattering distribution
function (BSDF). Chapter 9 is entirely devoted to describing BSDFs that are used
in graphics.

Using the definition of the BSDF, we have

dLo
� �ωo ��� Li

� �ωi � f
� �ωi � �ωo � cosθid �ωi 	

We can integrate this over the sphere of incident directions around x to compute
the outgoing radiance in direction �ωo due to the incident illumination at x:

Lo
� �ωo ���



S2

Li
� �ωi � f

� �ω i � �ωo ��� cos θi � d �ωi (5.4.8)

This is a fundamental equation in rendering; it describes how an incident distribu-
tion of light at a point is transformed into an outgoing distribution, based on the
scattering properties of the surface. It is often called the reflectance equation, when
just the upper hemisphere H 2 is being integrated over, or the scattering equation
when the sphere S 2 is the domain, as it is here.
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Hall’s book summarizes the state-of-the-art in spectral representations through
1989 (Hal89) and Glassner’s Principles of Digital Image Synthesis covers the topic
through the mid-90s (Gla95). Meyer was the one of the first researchers to closely
investigate spectral representations in graphics; XXX. Later, Raso and Fournier
proposed a polynomial representation for spectra (RF91).

Our discussion of SPD representation with basis functions is based on Peercy’s
1993 SIGGRAPH paper (Pee93). In that paper, Peercy chose particular basis func-
tions in a scene-dependent manner: by looking at the SPDs of the lights and reflect-
ing objects in the scene, a small number of basis functions that could accurately
represent the scene’s SPDs were found using characteristic vector analysis.

Another approach to spectral representation was investigated by Sun et al; they
partitioned SPDs into a smooth base SPD and a set of spikes (SFDC01). Each
part was represented differently, using basis functions that worked well for each
particular type of function.

He and Stam have use wave optics stuff in graphics (HTSG91; Sta99). Also cite
appropriate part of Preisendorfer and Chandrasekhar.

Arvo has investigated the connection between rendering algorithms in graphics
and previous work in transport theory, which applies classical physics to parti-
cles and their interactions to predict their overall behavior and global illumination
algorithms (?; ?).

XXX where to get real-world SPD data
McCluney’s book on radiometry (McC94) is an excellent introduction to the

topic. Preisendorfer also covers radiometry in an accessible manner and delves
into the relationship between radiometry and the physics of light (Pre65). Moon
and Spencer’s books (MS36; ?) and Gershun’s article (Ger39) are classic early
introductions to radiometry. Lambert’s seminal early writings about photometry
from the mid-186h Century were recently translated by DiLaura (Lam01).

� � ��� ����# � #

5.1 Experiment with different basis functions for spectral representation. How
many coefficients are needed for accurate rendering of tricky situations like
fluorescent lighting? How much does the particular choice of basis affect the
number of coefficients needed?

5.2 Generalize the Spectrum class so that it’s not limited to orthonormal basis
functions. Implement Peercy’s approach of choosing basis functions based
on the main SPDs in the scene. Does the improvement in accuracy make
up for the additional computational expense of computing the products of
spectra.

5.3 Generalize the Spectrum class further to support non-linear basis functions.
Compare the results to more straightforward spectral representations.

5.4 Compute the irradiance at a point due to a square quadrilateral with outgoing
radiance of 10 J/m2 sr that has sides of length 1 that is 5 units directly above
it along its surface normal.
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5.5 Similarly, compute irradiance at a point due to a unit-radius disk 3 units
directly above its normal with constant outgoing radiance of 10 J/m2 sr. Do
the computation twice, once as an integral over solid angle and once as an
integral over area. (Hint: if the results don’t match and you write the integral
over the disks’ area as an integral over radius r and an integral over angle θ,
see Section XXX in the Monte Carlo chapter for a hint about XXXXXX.)
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In addition to describing the objects that make up the scene, we also need to
describe how the scene is viewed and how its three-dimensional representation is
imaged into a two-dimensional image. We will start by presenting the Camera
class, which generates of rays from the camera that sample the scene to generate
the image. By generating these rays in various ways, we can create many types
of images of the same 3D scene. We will then show a few implementations of
different particular types of cameras, each of which generates rays in a different
way.

The point of the camera is to generate an image of the scene, so we next de-
scribe the Film class that handles storage of the resulting image. We wrap up by
describing the imaging pipeline, which handles conversion of image pixel values
stored by the film into final output values for display or storage in a file.

� �
� � � � �
� � � � �
��!
�
camera.h* ����

Source Code Copyright �
#ifndef CAMERA_H
#define CAMERA_H
#include "lrt.h"
#include "color.h"
#include "sampling.h"
#include "geometry.h"
#include "transform.h"�
Camera Declarations �
#endif // CAMERA_H ��� �
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Figure 6.1: The camera’s clipping planes give the range of space along the z axis
that will be images; objects in front of the hither plane or beyond the yon plane will
not be visible in the image. Setting the clipping planes to tightly encompass the
objects in the scene is important for many scanline algorithms, but is less important
for ray-tracing.

�
camera.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "camera.h"
#include "film.h"
#include "mc.h"�
Camera Method Implementations �
We will define an abstract Camera base class that holds options that are used

to specify generic camera parameters and that defines the interface that concrete
camera implementations need to provide. The main method that camera sub-
classes need to implement is GenerateRay(), which was previously defined in
Section 1.5.

The base Camera constructor takes a number of parameters that are appropriate
for all camera types. They include the transformation that places the camera in
the scene and near and far clipping planes, which give distances along the camera
space z axis that delineate the scene being rendered. Any geometric primitives in
front of the near plane or beyond the far plane will not be rendered; see Figure 6.1.

Real-world cameras have a shutter that opens for a short period of time to expose
the film to light; one result of this non-zero exposure time is that objects that move
during the film exposure time are blurred; this effect is called motion blur. To
model this effect in lrt, each ray has a time value associated with it–by sampling
the scene over a range of times, motion can be captured. Thus, all Cameras store a
shutter open and shutter close time.
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43 GetInverse
32 Transform

�
Camera Method Implementations ��� �
Camera::Camera(const Transform &world2cam, Float hither, Float yon,

Float sopen, Float sclose, Film *f) {
WorldToCamera = world2cam;
CameraToWorld = WorldToCamera.GetInverse();
ClipHither = hither;
ClipYon = yon;
invClipHither = 1.f / ClipHither;
ShutterOpen = sopen;
ShutterClose = sclose;
film = f;

}
�
Camera Options ���
Transform WorldToCamera, CameraToWorld;
Float ClipHither, ClipYon, invClipHither;
Float ShutterOpen, ShutterClose;

�
Camera Public Data ���
Film *film;

Camera Coordinate Spaces

We have already made use of two important modeling coordinate spaces, object
space and world space. We will now introduce three more useful coordinate spaces
that have to do with the camera and imaging. Including object and world space, we
now have the following. (See Figure 6.2.)


 Object space: This is the coordinate system in which geometric primitives
are defined. For example, spheres in lrt are defined to be centered at the
origin of their object space.


 World space: While each primitive may have its own object space, there is
a single world space that the objects in the scene are placed in relation to.
Each primitive has an object to world transformation that determines how it
is located in world space. World space is the standard frame that all spaces
are defined in terms of.


 Camera space: A virtual camera is placed in the scene at some world-space
point with a particular viewing direction and “up” vector. This defines new
coordinate space around that point with the origin at the camera’s location,
the z axis is mapped to the viewing direction and the y axis mapped to the
up direction. This is a handy space for reasoning about which objects are
potentially visible to the camera. For example, if an object’s camera-space
bounding box is entirely behind the z � 0 plane (and the camera doesn’t have
a field of view wider than 180 degrees), the object will not be visible to the
camera.


 Screen space: Screen space is defined on the image plane. The camera
projects objects in camera space onto the image plane; the parts inside the
screen window are visible in the image that is generated. Depth z values in
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Figure 6.2: A handful of camera-related coordinate spaces help to simplify the
implementation of Cameras. The camera class holds transformations between
them. Scene objects in world space are viewed by the camera, which sits at the
origin of camera space and looks down the � z axis. Objects between the hither
and yon planes are projected onto the image plane at z � hither in camera space.
The image plane is at z � 0 in raster space, where x and y range from

�
0 � 0 � to�

xResolution � 1 � yResolution � 1 � . Normalized device coordinate (NDC) space
normalizes raster space so that x and y range from

�
0 � 0 � to

�
1 � 1 � .
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21 Point

screen space range from zero to one, corresponding to points at the near and
far clipping planes, respectively.


 Raster space: Raster space is the coordinate system for the actual image be-
ing rendered–in x and y, it ranges from

�
0 � 0 � to

�
xResolution � 1 � yResolution �

1 � , the overall image resolution, where
�
0 � 0 � is the upper left corner of the

image. Depth values are the same as in screen space and a linear transfor-
mation converts from screen to raster space.


 NDC Normalized device coordinate space: this is almost like raster space,
except in x and y, the image is normalized to range from

�
0 � 0 � to

�
1 � 1 � .

All cameras store a world space to camera space transformation; this can be used
transform primitives in the scene into camera space. The origin of camera space
is the camera’s position, and the camera looks down the camera space z axis. The
projection cameras in the next section will compute matrices to transform between
all of these spaces as needed, but cameras with unusual imaging characteristics
can’t necessarily represent these transformations with 4x4 matrices.

So that other code can see if a point in the scene lies between the clipping planes,
all cameras provide a ScreenDepth() function which computes the screen-space
z depth of a given point in the scene. Points outside the depth range � 0 � 1 � won’t
appear in the image.�
Camera Interface Declarations ��� �
virtual Float ScreenDepth(const Point &Pworld) const = 0;

� ���  � ��� ��� � � � � � � � �
� � � � �
��!$#

One of the fundamental parts of 3D computer graphics is the 3D viewing prob-
lem: how a three-dimensional scene is projected onto a two-dimensional image
for display. Most of the classic approaches can be expressed by a 4x4 projective
transformation matrix. Therefore, we will introduce a projection matrix camera
class for such cameras and then define two simple camera models. The first of
these implements an orthographic projection and the other implements a perspec-
tive projection–these are two classic and widely-used projections.�
Camera Declarations ��� �
class ProjectiveCamera : public Camera {
public:�

ProjectiveCamera Method Declarations �
protected:�

ProjectiveCamera Options �
};

In addition to the world to camera transformation and the projective transfor-
mation matrix, the ProjectiveCamera takes the screen-space extent of the image,
clipping plane distances, a pointer to the Film class for the camera, and additional
parameters for motion blur and depth of field. sopen and sclose give times when
the camera’s shutter opens and closes. If objects in the scene are moving during
that time range or if the camera is moving, each ray traced can sample the scene
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at a different point in time, such that objects in the image are blurred appropri-
ately. Depth of field, the implementation of which will be shown at the end of this
section, simulates blurriness of out-of-focus objects in real lens systems.�
Camera Method Implementations ��� �
ProjectiveCamera::ProjectiveCamera(const Transform &w2c,

const Transform &proj, const Extent2D &Screen,
Float hither, Float yon, Float sopen,
Float sclose, Float lensr,
Float focald, Film *f)

: Camera(w2c, hither, yon, sopen, sclose, f) {�
Initialize depth of field parameters ��
Compute projective camera transformations �

}

The ProjectiveCamera implementations pass the projective transformation up
to the base class constructor here. This transformation gives us the camera to screen
projection; from that we can compute most of the others that we need.�
Compute projective camera transformations ���
CameraToScreen = proj;
WorldToScreen = CameraToScreen * WorldToCamera;�
Compute projective camera screen transformations �
RasterToCamera = CameraToScreen.GetInverse() * RasterToScreen;

�
ProjectiveCamera Options ���
Transform CameraToScreen, WorldToScreen, RasterToCamera;

The only non-trivial one of the precomputed transformations is ScreenToRaster
note the composition of transformations where (reading backwards), we start with
a point in screen space, translate so that the upper left corner of the screen is at the
origin, and then scale by one over the screen width and height, giving us a point
with x and y coordinates between zero and one. Finally, we scale by the raster
resolution, so that we end up covering the raster range from

�
0 � 0 � up to the overall

raster resolution.�
Compute projective camera screen transformations ���
ScreenToRaster = Scale(film->xResolution-1.f, film->yResolution-1.f, 1.f) *

Scale(1.f / (Screen.x1 - Screen.x0),
1.f / (Screen.y0 - Screen.y1), 1.f) *

Translate(Vector(-Screen.x0, -Screen.y1, 0.f));
RasterToScreen = ScreenToRaster.GetInverse();

�
ProjectiveCamera Options ��� �
Transform ScreenToRaster, RasterToScreen;

Once we have all of the transformations initialized appropriately, it’s easy to
compute the screen-space depth of a point in the scene by applying the appropriate
transformation.�
Camera Method Implementations ��� �
Float ProjectiveCamera::ScreenDepth(const Point &Pworld) const {

return WorldToScreen(Pworld).z;
}
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Figure 6.3: The orthographic view volume is an axis-aligned box in camera space,
defined such that objects inside the region are projected onto the z � hither face of
the box.

Orthographic Camera
�
orthographic.cc* ����

Source Code Copyright �
#include "camera.h"
#include "paramset.h"�
OrthographicCamera Declarations ��
OrthographicCamera Definitions �

�
OrthographicCamera Declarations ���
class OrthoCamera : public ProjectiveCamera {
public:�

OrthoCamera Method Declarations �
};

The orthographic transformation takes a rectangular region of the scene and
projects it onto the front face of the box that defines the region. It doesn’t give the
effect of foreshortening–objects becoming smaller on the image plane as they get
farther away–but it does leave parallel lines parallel and preserves relative distance
between objects. Figure 6.3 shows how this rectangular volume gives the visible
region of the scene.

The orthographic camera constructor takes a transform matrix to position the
camera in the scene, various common camera parameters, the screen window, and
lens parameters for depth of field. It generates the orthographic transformation
matrix with the Orthogrpahic() transformation function which will be defined
shortly.
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Figure 6.4: orthographic ray generation: raster space to ray...

�
OrthographicCamera Definitions ���
OrthoCamera::OrthoCamera(const Transform &world2cam,

const Extent2D &Screen, Float hither, Float yon,
Float sopen, Float sclose, Float lensr,
Float focald, Film *f)

: ProjectiveCamera(world2cam, Orthographic(hither, yon),
Screen, hither, yon, sopen, sclose,
lensr, focald, f) {

}

The orthographic viewing transformation leaves x and y coordinates unchanged,
but maps z values at the hither plane to 0 and z values at the yon plane to 1. (See
Figure 6.3.) It is easy to derive: first, the scene is translated along the z axis so that
the near clipping plane is aligned with z � 0. Then, the scene is scaled in z so that
the far clipping plane maps to z � 1. The composition of these two transformations
gives the overall transformation.�
Transform Methods ��� �
Transform Orthographic(Float znear, Float zfar) {

return Scale(1.f, 1.f, 1.f / (zfar-znear)) *
Translate(Vector(0.f, 0.f, -znear));

}

We can now write the code to take a sample point in raster space and turn it into a
camera ray. Recall that the imagex and imagex components of the camera Sample
are raster-space x and y coordinates on the image plane. We use following process:
first, we transform the raster-space sample position into a point in camera space;
this gives us the origin of the camera ray–a point located on the near clipping plane.
Because the camera-space viewing direction points down the z axis, the camera
space ray direction is

�
0 � 0 � 1 � . After the camera-space ray has been generated, we

transform it to world space.
If depth of field has been enabled for this scene, the fragment

�
Modify ray for

depth of field � takes care of modifying the ray so that depth of field is simulated.
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Depth of field will be explained later in this section.�
OrthographicCamera Definitions ��� �
void OrthoCamera::GenerateRay(const Sample *sample, Ray &ray) const {�

Generate raster and camera samples �
ray.O = Pcamera;
ray.D = Vector(0,0,1);
ray.mint = 0.;
ray.maxt = INFINITY;�
Set ray time value ��
Modify ray for depth of field �
CameraToWorld(ray, &ray);

}
�
Set ray time value ���
ray.time = Lerp(sample->time, ShutterOpen, ShutterClose);

Once all of the transformation matrices have been set up, we just set up the raster
space sample point and transform it to camera space.�
Generate raster and camera samples ���
Point Pras(sample->imagex, sample->imagey, 0);
Point Pcamera;
RasterToCamera(Pras, &Pcamera);

Perspective Camera
�
perspective.cc* ����

Source Code Copyright �
#include "camera.h"
#include "paramset.h"�
PerspectiveCamera Declarations ��
PerspectiveCamera Definitions �
The perspective projection is similar to the orthographic projection in that it

projects a volume of space onto a 2D image plane. However, it includes the ef-
fect of foreshortening: objects that are far away are projected to be smaller than
objects of the same size that are closer. Furthermore, unlike the orthographic pro-
jection, the perspective projection also doesn’t preserve distances or angles in gen-
eral, and parallel lines no longer remain parallel. The perspective projection is a
reasonably close match for how the eye and camera lenses generate images of the
three-dimensional world.�
PerspectiveCamera Declarations ���
class PerspectiveCamera : public ProjectiveCamera {
public:�

PerspectiveCamera Method Declarations �
};
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Figure 6.5: The perspective transformation matrix projects points in camera space
onto the image plane. The x

�

and y
�

coordinates of the projected points are equal to
the unprojected x and y coordinates divided by the z coordinate. The projected z

�

coordinate is computed so that z points on the hither plane map to z
� � 0 and points

on the yon plane map to z
� � 1.

�
PerspectiveCamera Definitions ���
PerspectiveCamera::PerspectiveCamera(const Transform &world2cam,

const Extent2D &Screen, Float hither, Float yon,
Float sopen, Float sclose, Float lensr, Float focald,
Float fov, Film *f)

: ProjectiveCamera(world2cam, Perspective(fov, hither, yon),
Screen, hither, yon, sopen, sclose,
lensr, focald, f) {

}

The perspective projection describes perspective viewing of the scene. Points in
the scene are projected onto a viewing plane at z � 1; this is one unit away from
the virtual camera at z � 0)–see Figure 6.5. The process is most easily understood
in two steps:


 First, points p in camera space are projected onto the viewing plane. A little
algebra shows that the projected x

�

and y
�

coordinates on the viewing plane
can be computed by dividing x and y by the point’s z coordinate value. The
projected z depth is remapped so that z values at the hither plane go to 0 and
z values at the yon plane go to 1. The computation we’d like to do is:

x
� � x � z

y
� � y � z

z
� � f

�
z � n �

z
�
f � n �

�

Fortunately, all of this can easily be encoded in a four-by-four matrix us-
ing homogeneous coordinates (recall the discussion of homogeneous coor-
dinates in Section 2.6 on page 30.) The Transform in the Perspective()
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function below generates the appropriate matrix.


 Second, we account for the angular field of view specified by the user and
scale the

�
x � y � values on the projection plane so that points inside the field of

view project to coordinates between � � 1 � 1 � on the view plane. (For square
images, both x and y will lie between � � 1 � 1 � in screen space. Otherwise, the
direction in which the image is narrower will map to � � 1 � 1 � and the wider
direction will map to an appropriately larger range of screen-space values.)
The scale that is applied after the projective transformation takes care of
this. (Recall that the tangent is equal to the ratio of the opposite side of a
right triangle to the adjacent side. Here the adjacent side is defined to have
a length of 1, so the opposite side has the length tan

�
fov � 2 � . Scaling by one

over this maps the field of view to range from � � 1 � 1 � .
�
Transform Methods ��� �
Transform Perspective(Float fov, Float n, Float f) {

Float invTanAng = 1.f / tanf(Radians(fov) / 2.f);
Matrix4x4 *persp =

new Matrix4x4(1, 0, 0, 0,
0, 1, 0, 0,
0, 0, f/(f-n), -f*n/(f-n),
0, 0, 1, 0);

return Scale(invTanAng, invTanAng, 1) *
Transform(persp);

}

For a perspective projection, rays originate from the sample position on the
hither plane and have the direction given by the vector from

�
0 � 0 � 0 � through the

sample position. Therefore, we compute the ray’s direction by subtracting
�
0 � 0 � 0 �

from the sample’s camera-space position. In other words, the ray’s vector direction
is component-wise equal to its point position. Rather than doing a useless subtrac-
tion to convert the point to a direction, we just component-wise initialize the vector
ray.D from the point Pcamera.

In the perspective case, since the generated ray’s direction may be quite short, we
scale it up by the inverse of the near clip plane location; although this isn’t strictly
necessary (there’s no particular need for the ray direction to be normalized), it can
be more intuitive when debugging if the ray’s direction has a magnitude somewhat
close to one.
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Figure 6.6: Real-world cameras have a lens with finite aperture and lens controls
that adjust the lens position with respect to the film plane. Because the aperture is
finite, objects in the scene aren’t all imaged onto the film in perfect focus. Here,
the point p1 doesn’t lie on the plane of points in perfect focus, so it images to an
area p �1 on the film and is blurred. The point p2 does lie on the focal plane, so it
images to a point p �2 and is in focus. Both increasing aperture size and increasing
an object’s distance from the focal plane increase its blurriness.

$
PerspectiveCamera Definitions % � &
void PerspectiveCamera::GenerateRay(const Sample *sample,

Ray &ray) const {$
Generate raster and camera samples %
ray.O = Pcamera;
ray.D = Vector(Pcamera.x, Pcamera.y, Pcamera.z);
ray.mint = 0.;
ray.maxt = INFINITY;$
Set ray time value %$
Modify ray for depth of field %
CameraToWorld(ray, &ray);
ray.D *= invClipHither;

}

Depth of Field

Real cameras have lens systems that focus light through a finite-sized aperture
onto the film plane. Because the aperture has finite area, a single point in the scene
may be projected onto an area on the film plane. (And correspondingly, a single
point on the film plane may see different parts of the scene, depending on which
part of the lens it’s receiving light from.) Figure 6.6 shows this effect. The point
p1 doesn’t lie on the plane of focus, so is projected through the lens onto an area
p �1 on the film plane. The point p2 does lie on the plane of focus, so it projects to
a single point p �2 on the image plane. Therefore, p1 will be blurring on the image
plane while p2 will be in sharp focus.

XXX need to differentiate between focal distance and lens focal length XXX
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Figure 6.7: To adjust a camera ray for depth of field, we first compute the distance
along the ray, ft, where it intersects the focal plane. We then shift the ray’s origin
from the center of the lens to the sampled lens position and construct a new ray
(dashed line) from the new origin that sill does through the same point on the focal
plane. This ensures that points on the focal plane remain in focus but that other
points are blurred appropriately.

Lensmaker’s equation makes this behavior explicit, relating the distance from
the object being imaged to the lens, do, and the distance between the image and the
lens, di,

1
do

�
1
di

� 1
f
�

where f is the focal length of the lens.
The area that the point projects to is called the circle of confusion. The size

of the circle of confusion is dependent on the size of the aperture and how close
the point is to the focal plane: the plane of points that are in perfect focus. The
focusing controls of a camera adjust the lens system inside of it to shift the distance
to the plane of focus. The larger the lens aperture, the more blurred out of focus
points are. In the limit, a pinhole camera has an infinitessimal aperture, leaving all
points in focus.

Therefore, the projective cameras take two extra parameters for depth of field:
one sets the size of the lens aperture and the other sets the focal distance.�
Initialize depth of field parameters ���
LensRadius = lensr;
FocalDistance = focald;

�
ProjectiveCamera Options ��� �
Float LensRadius, FocalDistance;

It turns out that it just takes a few lines of code to simulate depth of field in a ray
tracer. We associate each ray with a point on the lens and then adjust its direction to
simulate the lens’s effect: see Figure 6.7. Starting with the original ray, computed
without accounting for depth of field, we have a ray through the center of the lens
(corresponding to a pinhole camera.)
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�
Modify ray for depth of field ���
if (LensRadius > 0.) {�

Sample point on lens ��
Compute point on plane of focus ��
Update ray for effect of lens �

}

We then choose a 2D point on the lens. The ConcentricSampleDisk() func-
tion, defined in Chapter 14, takes a

�
u � v � sample position in � 0 � 1 � 2 and maps it to

the 2D disk with radius 1. To get a point on the lens, we scale these coordinates
by the lens radius. The camera sample point passed into the GenerateSample()
function uses the two lens sample positions from the Sampler.�
Sample point on lens ���
Float lu, lv;
ConcentricSampleDisk(sample->lensx, sample->lensy, &lu, &lv);
lu *= LensRadius;
lv *= LensRadius;

We next comupte the t value along the ray where it intersects with the plane of
focus. Because the plane of focus is orthogonal to the z axis and the ray starts on
the hither plane, this is a particularly simple computation.�
Compute point on plane of focus ���
Float ft = (FocalDistance - ClipHither) / ray.D.z;
Point Pfocus = ray(ft);

Now we can adjust the ray: we want to compute the ray corresponding to the
dashed line in Figure 6.7; the origin is shifted to the sampled point on the lens
and the direciton is set so that the ray still passes through the point on the plane of
focus, Pfocus.�
Update ray for effect of lens ���
ray.O.x += lu;
ray.O.y += lv;
ray.D = Pfocus - ray.O;

� ��� � � � � � � � � ����� � � � ��� �
�
environment.cc* ����

Source Code Copyright �
#include "camera.h"
#include "film.h"
#include "paramset.h"�
EnvironmentCamera Declarations ��
EnvironmentCamera Definitions �
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Figure 6.8: An image rendered with the EnvironmentCamera, which traces rays in
all directions from the camera position. The resulting image gives a representation
of all light arriving at that point in the scene and can be used for interesting lighting
techniques that will be described in Chapters 12 and 15.

�
EnvironmentCamera Declarations ���
class EnvironmentCamera : public Camera {
public:�

EnvironmentCamera Method Declarations �
EnvironmentCamera(const Transform &world2cam, Float hither,

Float yon, Float sopen, Float sclose, Film *film);
virtual Float ScreenDepth(const Point &Pworld) const;

private:�
EnvironmentCamera Private Data �

};

One advantage of ray-tracing renderers compared to scanline or rasterization
rendering methods is that it’s easy to have unusual image projections: we have
great freedom in how the image sample positions are mapped into ray directions,
since the rendering algorithm doesn’t depend on properties such as straight lines in
the scene always projecting to straight lines in the image, etc.

Here we will describe a camera model that traces rays in all directions around a
point in the scene, giving a two-dimensional view of everything that is visible from
that point. Consider a sphere around the camera position in the scene; choosing
points on that sphere gives directions to trace rays in. If we parameterize the sphere
with spherical coordinates, each point on the sphere is associated with a

�
θ � φ � pair,

where θ � � 0 � π � and φ � � 0 � 2π � . (See Section 5.3 on page 163 for more details
on spherical coordinates.) This type of image is particularly useful because it com-
pactly captures a representation of all of the incident light at a point on the scene. It
will be useful later when we discuss environment mapping and environment light-
ing: two rendering techniques that are based on image-based representations of
light in a scene.

An image generated with this kind of projection is shown in Figure 6.8. Theta
values range from 0, at the top of the image, to π, at the bottom of the image, and
phi values range from 0 to 2π, moving across the image.
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�
EnvironmentCamera Definitions ���
EnvironmentCamera::EnvironmentCamera(const Transform &world2cam,

Float hither, Float yon, Float sopen, Float sclose,
Film *film)

: Camera(world2cam, hither, yon, sopen, sclose, film) {
rayOrigin = CameraToWorld(Point(0,0,0));

}

All rays generated by this camera have the same origin; for efficiency we com-
pute the world-space position of the camera once in the constructor.�
EnvironmentCamera Private Data ���
Point rayOrigin;

�
EnvironmentCamera Definitions ��� �
void EnvironmentCamera::GenerateRay(const Sample *sample,

Ray &ray) const {
ray.O = rayOrigin;�
Generate environment camera ray direction ��
Set ray time value �
ray.mint = 0.;
ray.maxt = INFINITY;

}

To compute the
�
θ � φ � coordinates for this ray, we first compute NDC coodi-

nates from the raster image sample position. These are then scaled up to cover the�
θ � φ � range and then the spherical coordinate formula is used to comupte the ray

direction.�
Generate environment camera ray direction ���
Float theta = M_PI * sample->imagey / (film->yResolution - 1);
Float phi = 2 * M_PI * sample->imagex / (film->xResolution - 1);
Vector dir(sinf(theta) * cosf(phi), cosf(theta),

sinf(theta) * sinf(phi));
CameraToWorld(dir, &ray.D);

To compute a screen depth value for a point in the scene, we treat the clip planes
as clip spheres, with radii given by the hither and yon distances. From these, we
can compute a point’s depth by computing where it lies along the ray from the
camera point passing through it with respect to these spheres.�
EnvironmentCamera Definitions ��� �
Float EnvironmentCamera::ScreenDepth(const Point &Pworld) const {

return (Distance(Pworld, rayOrigin) - ClipHither) /
(ClipYon - ClipHither);

}
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173 film

� ��� � � ! �
�
film.h* ����

Source Code Copyright �
#ifndef FILM_H
#define FILM_H
#include "lrt.h"
#include "color.h"
#include "geometry.h"
#include "transform.h"�
Film Declarations �
#endif // FILM_H

�
film.cc* ����

Source Code Copyright �
#include "film.h"
#include "tonemap.h"�
Film Method Definitions �
The Film class takes care of string the values of the pixels computed from the

image samples. Once all of the samples have arrived, it then applies a set of imag-
ing operations which adjust the final image and prepare it for display before it is
written out. The various information stored by the image is organized into a set
of channels; numeric values at the regular grid of pixel sample locations. Each
channel has a particular semantic meaning. Many image formats just store color
channels, representing spectral color values. More generally, we can store some
combination of a color representation, the depth of an object visible at the pixel,
etc.�
Film Declarations ���
class Film {
public:�

Film Interface ��
Film Public Data �

private:�
Film Private Data �

};

It is also useful to store information the coverage of objects at each pixel: how
many of the rays contributing to it intersected an object in the scene and how many
didn’t hit anything. We store this fraction in the image’s alpha channel. The lets
us later disambiguate between pixels that are black because nothing was visible
in them and pixels that are black because all of their rays hit a black object, for
example. In general, the alpha channel is quite useful for image compositing: for
instance, a rendered image can be put over a photograph, using the alpha channel to
determine in which of the pixels the photograph is visible. For pixels with an alpha
value between zero and one, the two images are blended together, giving smooth
edges at the boundary of the rendered object.
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Figure 6.9: The image crow window specifies a subset of the image to be renderer.
It is specified in NDC space, with coordinates ranging from

�
0 � 0 � to

�
1 � 1 � . The

Film class only allocates space for and stores pixel values in the region inside the
crop window.

�
Film Method Definitions ���
Film::Film(int xres, int yres, const Extent2D &cropWindow) {

xResolution = xres;
yResolution = yres;�
Compute film image extent ��
Allocate film image storage �

}

The film constructor starts by intiializing a few parameters passed into the con-
structor. One of the most important parameters is the overall image resolution–
xResolution and yResolution hold the total number of pixels in the x and y
directions.�
Film Public Data ���
int xResolution, yResolution;

The user may have also specified a crop window that defines a subsection of
the image to render–this can be useful for debugging as well as for breaking a large
image into chunks that can then be reassembled later. The crop window is specified
in NDC space, with each coordinate ranging from zero to one–see Figure 6.9. In
conjunction with the overall image resolution, the crop window gives us the extent
of integer pixel locations that we’ll actually store and write out. xPixelStart and
yPixelStart store the pixel position of the upper left corner of the crop window,
and xPixelWidth and yPixelWidth give the pixel widths in each direction. Given
a pixel

�
x � y � inside the pixel crop window, the pixel arrays are indexed as

�
y � yPixelStart ��� xPixelWidth �

�
x � xPixelStart � �

�
Compute film image extent ���
xPixelStart = Ceil2Int(xResolution * cropWindow.x0);
xPixelWidth = Ceil2Int(xResolution * cropWindow.x1) - xPixelStart;
yPixelStart = Ceil2Int(yResolution * cropWindow.y0);
yPixelWidth = Ceil2Int(yResolution * cropWindow.y1) - yPixelStart;
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�
Film Private Data ���
int xPixelStart, yPixelStart, xPixelWidth, yPixelWidth;

Now that we know the pixel resolution of the image, we allocate an array of
Pixel structures to store sample values as samples come in. Pixel radiance values
are stored in L, their alpha values are stored in alpha, and their z depths are stored
in depth. For now, just consider weightSum to be a tally of the total number of
samples that contribute to the final pixel value; Chapter 7 explains the function of
WeightSums in detail in the context of general principles of image sampling and
reconstruction.�
Allocate film image storage ���
pixels = new Pixel[xPixelWidth * yPixelWidth];

�
Film Private Data ��� �
struct Pixel {

Pixel() { alpha = 0.; depth = INFINITY; weightSum = 0.; }
Spectrum L;
Float alpha, depth, weightSum;

};
Pixel *pixels;

�
Film Method Definitions ��� �
Film::˜Film() {

delete[] pixels;
}

As the renderer computes radiance along rays in the scene, the Sampler will
call the film’s UpdatePixel() method to report the radiance, alpha, and depth
values along with the sample’s weighted contribution at each film sample that it
contributes to. We make sure that the asked-for pixel is inside the range of pixels
the film stores and then update the appropriate parts of the Pixel structure if so.�
Film Interface ��� �
inline bool UpdatePixel(int x, int y, const Spectrum &L,

Float alpha, Float depth, Float weight) {
if (x < xPixelStart || x >= xPixelStart + xPixelWidth ||

y < yPixelStart || y >= yPixelStart + yPixelWidth)
return false;

int offset = (y - yPixelStart) * xPixelWidth +
(x - xPixelStart);

Pixel *pixelp = pixels + offset;
pixelp->L += L * weight;
pixelp->alpha += alpha * weight;
pixelp->depth = min(pixelp->depth, depth);
pixelp->weightSum += weight;
return true;

}
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Möller and Haines have a particularly well-written derivation of the orthographic
and perspective projection matrices in Real Time Rendering (MH02). Other good
references for projections are Rogers and Adams’ Mathematical Elements for Com-
puter Graphics (RA90), Watt and Watt (WW92), Foley et al (FvDFH90) and
Eberly’s book on game engine design (Ebe01). (Originally Sutherland sketchpad
stuff?)

Potmesil and Chakravarty did early work on depth of field and motion blur in
computer graphics (PC81; PC82; PC83). Cook and collaborators developed a more
accurate model for these effects based on distribution ray tracing; this is the ap-
proach we have implemented in this chapter (CPC84; Coo86).

Kolb et al investigated simulating complex camera lens systems with ray-tracing
in order to model the imaging effects of real cameras (KHM95). Another unusual
projection method was used by Greene and Heckbert for generating images for
Omnimax theaters (GH86a).

Porter and Duff’s paper on compositing digital images is the classic paper on
the uses of images with alpha channels and explains why pre-multiplied alpha is a
preferable preresentation for color (PD84). (The first use of an extra alpha channel
in images in graphics dates to Smith and Catmull, however (Smi79). See also
Wallace’s paper for a refinement of Smith and Catmull’s approach (Wal81).)

Gamma correction has a a long history in computer graphics; Poynton has writ-
ten comprehensive FAQs on issues related to color and gamma-correction in com-
puter graphics (Poy02b; Poy02a).

Display issues, mapping to reasonable RGB values, out of gamut colors, ... See
Rougeron and Péroche’s survey article for discussion and references (RP98).

Malacara’s monograph gives a concise overview of color theory and basic prop-
erties of how the the human visual system processes color (Mal02).

Wandell’s book?
wazczeki(?sp) and stiles
Glassner has written an article on the under-constrained problem of converting

RGB values (e.g. as selected by the user from a display) to a SPD (Gla89b).
Tone reproduction for computer graphics became an active area of research

around 1993 with the work of Tumblin and Rushmeier (TR93), Chiu et al (CHS � 93),
and Ward (War94a). The non-linear mapping we presented was developed by Rein-
hard et al (ERF02).

� � ��� ����# � #

6.1 Moving camera

6.2 Cek style lens systems?

6.3 Ward style histogram-based ton repro stuff: don’t waste dynamic range in
parts of the histogram where not many image samples lie
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We’ll now describe how the Sampler decides where the image should be sam-
pled and how the pixels in the output image are computed from those samples.
The mathematical background for this is given by sampling theory: the theory of
taking discrete sample values from continuous signals and then reconstructing new
signals from those samples. Most of the previous development of sampling the-
ory has been for encoding and compressing audio (e.g. over the telephone), and
for television signal encoding and transmission. In rendering, we face the two-
dimensional instance of this problem, where we’re sampling an image at particular
positions, by tracing rays into the scene and then reconstructing a set of output
pixels that form an image.

In the one dimensional case, consider a signal given by a function f
�
x � ; we

can evaluate f at any x value we choose. Each such x is a sample position, and the
value of f

�
x � is the sample value. The left half of Figure 7.1 shows a set of samples

(black dots) of a smooth 1D function. From a set of such samples,
�
x � f � x ��� , we’d

like to reconstruct a new signal f̃ that approximates f as closely as possible. On
the right side of Figure 7.1 is a reconstructed function that approximated f

�
x � by

linearly interpolating neighboring sample values. In general, the only information
we have about f comes from the sample values we have taken; as such, f̃ is likely
to not match f perfectly, since we have no knowledge of f ’s behavior between the
sample values that we have.

��� �
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Figure 7.1: By taking a set of point samples of f
�
x � , we determine its value at those

positions. From the sample values, we can reconstruct a function f̃
�
x � which is an

approximatino to f
�
x � . The sampling theorem, introduced in Section 7.1, makes

a precise statement about the conditions on f
�
x � and the number of samples taken

under which f̃
�
x � is exactly the same as f

�
x � . That the exact function can be found

purely by point sampling f
�
x � is a remarkable result.

� �
�  � � ���"!  � � ��� # # � � ����	�  � � � !�� ��� � ��� �"� �

Intuitively, the smoother that a function is, the fewer samples will be neces-
sary to reconstruct it accurately. In the limit, when the signal is constant, a single
sample is enough to characterize the signal completely. As a signal gets progres-
sively less smooth (i.e. as it has higher frequency undulations), progressively more
samples are necessary to represent it accurately. In general, we can talk about the
sampling rate, (or the inverse of the sampling rate, the sampling frequency): this is
the separation in ∆x between adjacent samples of the signal. If the sampling rate is
uniform, the spacing between all of the samples is constant.

The frequency of the function f
�
x � can be described precisely. For example

f
�
x � � sin2πx has a single frequency, ω � 1, since a new cycle starts whenever a

distance of ∆x � 1 � ω � 1 passes along the x axis. f
�
x � � sin8πx � sin 2πx has two

frequencies, ω � 1 and ω � 4. Interestingly enough, any continuous function f
�
x �

can be completely characterized by the distribution of all of its frequencies.
The sampling theorem makes an important statement about the sampling rate

and how accurately a function can be reconstructed from a set of samples. Specif-
ically, so long as the frequency of sample points ωs is greater than twice the max-
imum frequency present in the signal ωm, it is possible to reconstruct the original
signal perfectly from the samples. This minimum sampling frequency is called the
Nyquist frequency.

In order to perform this perfect reconstruction, a specific technique must be
used to reconstruct the new function from the samples. Given the set of samples
and their values

�
xi � f

�
xi ��� , the new function is defined by

f̃
�
x � � ∑

i

f
�
xi � r

�
xi � x � (7.1.1)

where r
�
t � is the ideal reconstruction filter (also known as the sinc function):

r
�
x � � sinc � ω

2π
x �

where ω is the sampling frequency and sinc
�
x � � �

sin x ��� x. A graph of the sinc
function is shown in Figure 7.3.

Aliasing
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Figure 7.2: Undersampled 1D function: when the original function has undulations
at a higher frequency than half the sampling frequency, it’s not possible to recon-
struct the original function. Aliasing, low-frequency errors in the reconstructed
function that aren’t present in the original function, is the result.

-2 0 2
0.0

0.5

1.0

Figure 7.3: Graph of the sinc function, the filter that perfectly reconstructs the orig-
inal function that was sampled, as long as the sampling frequency was sufficiently
high. The entire sinc function actually has infinite support, spanning

�
� ∞ � ∞ � .
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Figure 7.4: Aliasing from point sampling the function cos
�
x2 � y2 � ; at the left side

of the image, the function has a low frequency–tens of pixels per cycle–so it is
represented accurately. Moving to the right, however, aliasing artifacts appear in
the top image since the sampling rate doesn’t keep up with the function’s highest
frequency. If high frequency elements of the signal are removed with filtering
before sampling, as was done in the bottom image, the right side of the image
takes on a constant grey color. (Example due to Don Mitchell.)

If the original function isn’t sampled with a sufficiently high sampling rate,
aliasing can result. Aliasing happens when high-frequency components in the orig-
inal signal appear in the reconstructed signal as lower-frequency artifacts. In 1D,
Figure 7.2 shows aliasing in a reconstructed function due to under-sampling the
original function. Figure 7.4 shows the effect of sampling the two-dimensional
function f

�
x � y � � cos

�
x2 � y2 � ; the origin

�
0 � 0 � is at the center of the left edge of

the image. At the left, we have accurately represented the signal, though as we
move farther to the right and f has higher and higher frequency content, aliasing
starts: the circular patterns that appear in the center and right of the image are sever
aliasing artifacts.

It’s often either impossible or very difficult to know the frequency content of the
signal being sampled. Nevertheless, the sampling theorem is still useful. First, it
tells us the effect of increasing the sampling frequency: the point at which aliasing
starts is pushed out to a higher frequency. Second, given some particular sampling
frequency, it tells us the frequency beyond which we should try to remove high
frequency data from the signal; this will be useful in Section 11.6 when we intro-
duce texture filtering, for instance. For a given sampling rate, the best way to avoid
aliasing is to pre-filter the signal to remove any frequencies higher than the Nyquist
limit.

The application of these ideas to the two-dimensional case of sampling and re-
constructing images is straightforward; we have an image, which we can think of



Sec. 7.1] Signal Processing and Sampling Theory 195

Figure 7.5: 1D step function: the function discontinuously jumps from one value
to another. Such functions have infinitely-high frequency content. As such, point
sampling can never adequately capture them for perfect reconstruction.

as a function of two-dimensional
�
x � y � image locations to radiance values L:

f
�
x � y ��� L

where x � � 0 � xResolution � and y � � 0 � yResolution � . The good news is that, with
our ray-tracer, we can evaluate this at any

�
x � y � point that we choose. The bad news

is that we can only point sample the image function f : it’s not generally possible
to remove the high frequencies from the function before sampling it.

More generally, we can think of there being a multi-dimensional scene function
that maps a set of sample parameters to radiance. In addition to sampling a particu-
lar

�
x � y � pixel, varying the time t at which it is sampled will give different radiance

values if there are moving objects in the scene. Further, for cameras that simulate
depth of field (Section 6.2), varying the

�
u � v � lens sample position gives different

results. Sampling all of these dimensions well is an important part of generating
high-quality imagery; the Sampler classes in the next few sections will address the
issue of sampling all of them as well as possible.

Geometry is one of the biggest causes of aliasing in rendered images. When pro-
jected onto the image plane, an object’s boundary introduces a step function, where
the image function’s value discontinuously jumps from one value to another. A
one-dimensional example of a step function is shown in Figure 7.5. Unfortunately,
step functions have infinite frequency content, which means that no amount of in-
creasing the sampling density can correctly capture them. Furthermore, when the
perfect reconstruction filter is applied to aliased samples, ringing artifacts appear
in the reconstructed image–an effect known as Gibb’s phenomenon. Another prob-
lem comes from very small objects in the scene: if geometry is small enough that
it falls in between samples on the image plane, it can make no contribution to the
final image at all. Both of these forms of geometric aliasing can cause some of the
worst artifacts in rendered images.

Another source of aliasing can come from the colors and materials on an object.
Shading aliasing can come from texture maps on objects that haven’t been filtered
correctly (see Section 11.6 on page 333), or from small highlights on shiny sur-
faces; if the sampling rate is not high enough to sample these features adequately,
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Figure 7.6: Jittered sampling (below) changes the regular, low-frequency aliasing
artifacts from under-sampling the signal into high-frequency noise.

aliasing will result. Furthermore, a sharp shadow cast by an object introduces an-
other step function in the final image; while it is possible to identify step functions
from geometric edges, detecting step functions from shadow boundaries is much
more difficult.

Non-uniform sampling

Although the image function that we’re sampling is known to have infinite-
frequency components and thus can’t be perfectly reconstructed, not all is lost. It
turns out that choosing the distribution of sample points carefully (and specifically,
not using a uniform sampling pattern) can reduce the visual impact of aliasing.
For a fixed sampling rate that isn’t sufficient to capture the function, both uniform
and non-uniform sampling produce incorrect reconstructed signals. However, non-
uniform sampling tends to turn the regular aliasing artifacts into noise.

Figure 7.6 shows this effect with the same cosine function example as was used
above. On top, we have the function sampled at a fixed rate using uniform samples.
Below, we have jittered each sample location, adding a small random number to it
in x and y. The aliasing patterns have been transformed into high-frequency noise
artifacts, which are less visually objectionable.

This is an interesting result, since it shows that the best sampling patterns ac-
cording to the signal processing view don’t always give the best results percep-
tually. In particular, some image artifacts are more visually acceptable than oth-
ers. This observation will guide our development of good image sampling patterns
through the rest of this chapter.

Adaptive sampling

One approach that has been suggested to combat aliasing is adaptive super-
sampling: if we can identify the regions of the signal with frequencies higher than
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173 film

the Nyquist limit, we can take additional samples in those regions without needing
to incur the expense of increasing the sampling frequency everywhere. It is hard
to get this to work well in practice, however, since in general it’s hard to find
all of the places where super-sampling is needed. Most schemes are based on
examining adjacent sample values, finding ones where there is a significant change
in sample value between the two; the hypothesis is that the signal may have high
frequencies in that region. In general, however, adjacent sample values cannot tell
us anything about what is really happening in between them: the function may
have huge variation between the two of them, but just happen to return to the same
value at each of them. Thus, some areas that need super-sampling will usually be
missed, leaving the only recourse to be increasing the basic sampling rate anyway.

� ��� � � ���
�  � � � !�� � � � �����
� � �	���
�
sampling.h* ����

Source Code Copyright �
#ifndef SAMPLING_H
#define SAMPLING_H
#include "lrt.h"�
Sampling Constants ��
Sampling Declarations �
#endif // SAMPLING_H

�
sampling.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "scene.h"
#include "sampling.h"
#include "film.h"�
Sampler Method Definitions ��
Sample Method Definitions �
We can now start to describe the operation of a few classes that generate good

image sampling patterns. All of them inherit from an abstract Sampler class that
defines their interface. Samplers have two main jobs:

1. They are responsible for generating a sequence of multi-dimensional sample
positions. The first two dimensions give the raster-space image sample po-
sition. The third value gives the time at which the sample should be taken;
this ranges from zero to one, and is scaled by the camera to cover the time
period that the shutter is open appropriately. The next two samples give a�
u � v � lens position to sample for depth of field; these also vary from zero to

one. Finally, sample points in four more dimensions are generated for future
use by some of the light transport routines in Chapter 15.

2. Samplers are responsible for taking the radiance values computed for par-
ticular image samples and computing final values for the output pixels. We
will describe this part of their operation later, in Section 7.6.
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�
Sampling Declarations ���
class Sampler {
public:�

Sampler Interface ��
Sampler Options �

};

All Samplers take a few common parameters that must be passed on to the base
class’s constructor. They are the overall image resolution in the x and y dimensions,
the number of samples per pixel to take in each direction, the NDC image crop
window, and a pointer to the Filter to be used to filter the image samples to
compute the final pixels. We store these values in member variables for later use.�
Sampler Method Definitions ��� �
Sampler::Sampler(int xres, int yres, int xsamp, int ysamp,

const Extent2D &Crop, Filter *f) {
xResolution = xres;
yResolution = yres;
xPixelSamples = xsamp;
yPixelSamples = ysamp;
filter = f;�
Initialize pixel extents from crop window �

}
�
Sampler Options ���
int xResolution, yResolution;
int xPixelSamples, yPixelSamples;
Filter *filter;

The constructor wraps up by initializing the variables below that give the range
of pixels in x and y for which we need to generate samples. Samples for pixels
ranging from xPixelStart to xPixelEnd-1, inclusive, in x (and analogously in
y) should be generated by the Sampler. The fragment that implements

�
Initialize

pixel extents from crop window � and details of how particular crop window values
translate into sample pixel ranges will be explained later, in Section 7.6.�
Sampler Options ��� �
int xPixelStart, xPixelEnd, yPixelStart, yPixelEnd;

Samplers need to implement the GetNextSample() method, which is here de-
clared as a pure virtual function. The Scene::Render() method will call this
function until it returns false; as long as it keeps returning true, it should fill in
the sample that is passed in with sample values. All of the dimensions should be
in the range � 0 � 1 � , except for the first two, which should be given in terms of the
image size.�
Sampler Interface ��� �
virtual bool GetNextSample(Sample *sample) = 0;

So that it’s easy for the main rendering loop to figure out what percentage of
the scene has been rendered after some number of samples have been processed,
the TotalSamples() method returns the total number of samples that the Sampler
will be returning.
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506 AllocL1CacheAligned
494 size
198 xPixelEnd
198 xPixelSamples
198 yPixelEnd
198 yPixelSamples

�
Sampler Interface ��� �
int TotalSamples() const {

return xPixelSamples * yPixelSamples * (xPixelEnd - xPixelStart) *
(yPixelEnd - yPixelStart);

}

Sample representation

The Sample structure
Explain something about different numbers needed at different ray depths, etc...�

Sampling Declarations ��� �
struct Sample {
public:�

Sample Method Declarations �
Float imagex, imagey;
Float lensx, lensy;
Float time;
vector<int> nLightSamples, nBSDFSamples;
Float **light, **bsdf;

};
�
Sample Method Definitions ���
Sample::Sample(const vector<int> &nLight, const vector<int> &nBSDF) {

nLightSamples = nLight;
nBSDFSamples = nBSDF;�
Compute total number of light and BSDF samples needed ��
Allocate storage for light and BSDF sample pointers ��
Allocate storage for light and BSDF sample memory �

}
�
Compute total number of light and BSDF samples needed ���
int totSamples = 0;
for (u_int i = 0; i < nLightSamples.size(); ++i)

totSamples += nLightSamples[i];
for (u_int i = 0; i < nBSDFSamples.size(); ++i)

totSamples += nBSDFSamples[i];
totSamples *= 2;

�
Allocate storage for light and BSDF sample pointers ���
int nPtrs = nLightSamples.size() + nBSDFSamples.size();
if (!nPtrs)

light = bsdf = NULL;
else {

Float **ptrs = (Float **)AllocL1CacheAligned(nPtrs * sizeof(Float *));
light = ptrs;
bsdf = ptrs + nLightSamples.size();

}
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�
Allocate storage for light and BSDF sample memory ���
if (light) {

Float *mem = (Float *)AllocL1CacheAligned(totSamples * sizeof(Float));
for (u_int i = 0; i < nLightSamples.size(); ++i) {

light[i] = mem;
mem += 2 * nLightSamples[i];

}
for (u_int i = 0; i < nBSDFSamples.size(); ++i) {

bsdf[i] = mem;
mem += 2 * nBSDFSamples[i];

}
}

� ���  � � ��� � � ���  � � � !�� � �
�
stratified.cc* ����

Source Code Copyright �
#include "sampling.h"
#include "paramset.h"�
StratifiedSampler Declarations ��
StratifiedSampler Method Definitions �
The first sample generator that we will introduce divides the image plane into

rectangular regions and generates a single sample inside each region. These regions
are commonly called strata, and this sampler is thus called StratifiedSampler.
Each sample is chosen by choosing a random point inside each of the stratum; this
can be computed by jittering the center point of the stratum by a random amount,
up to half its width and height. This sampler also offers a mode where this jittering
is not done, giving uniform sampling in the strata; this unjittered mode is mostly
useful for sampling pattern comparisons rather than rendering final images.

Figure 7.7 shows a comparison of a few basic sampling patterns. On the top is a
completely random sampling pattern: we have chosen a number of image samples
to take and have computed that many random image locations. The result is a
terrible sampling pattern; some regions of the image have few samples and other
areas have clumps of many samples. For reference, in the middle is an un-jittered
stratified pattern. On the bottom, we have jittered the uniform pattern, adding a
random offset to each sample’s location but keeping it inside its cell. This gives a
better overall distribution than the purely random pattern, although there are still
some clumps of samples and some regions that are under-sampled. We will present
a more sophisticated image sampling method in the next section that ameliorates
some of these problems.

A visualization of strata over an image is shown in Figure 7.8; a grid has been
superimposed over the image, where one sample point is chosen inside each grid
cell. The total number of strata in each direction is the number of pixels times
the number of samples per pixel in that direction. The default sampling rate, four
samples (two in the x direction and two in y), gives reasonably good results on
many images.
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Random

Uniform

Jittered

Figure 7.7: Three sampling patterns. The random pattern on the top is a poor
pattern, with many clumps of samples that leave large sections of the image poorly
sampled. In the middle is a uniform pattern which is better distributed but that
can exacerbate aliasing artifacts. On the bottom is a jittered pattern, which turns
aliasing from the uniform pattern into high-frequency noise.
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lensSamples 216
Sampler 198

timeSamples 216
xPixelSamples 198
yPixelSamples 198
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There are a total of xResolution*xPixelSamples strata in the x direction and
analogously in the y direction. Samples are generated by scanning over the pixel
strata left-to-right and top-to-bottom. The sampler holds the offset of the current
stratum in the XPos and YPos variables, which are initialized to point at first stratum
in the upper left of the image’s crop window to start out.�
StratifiedSampler Declarations ���
class StratifiedSampler : public Sampler {
public:�

StratifiedSampler Method Declarations �
private:�

StratifiedSampler Private Data ��
StratifiedSampler Private Methods �

};
�
StratifiedSampler Method Definitions ���
StratifiedSampler::StratifiedSampler(int xres, int yres, int xpix,

int ypix, bool jitter, const Extent2D &crop,
Filter *f)

: Sampler(xres, yres, xpix, ypix, crop, f) {
JitterSamples = jitter;
XPos = xPixelStart * xPixelSamples;
YPos = yPixelStart * xPixelSamples;
imageSamples = new Float[xPixelSamples * yPixelSamples * 2];
lensSamples = new Float[xPixelSamples * yPixelSamples * 2];
timeSamples = new Float[xPixelSamples * yPixelSamples];�
Generate samples for XPos,YPos �

}
�
StratifiedSampler Private Data ���
bool JitterSamples;
int XPos, YPos;
int samplePos;
Float *imageSamples, *lensSamples, *timeSamples;

Generate image, lens, time for the whole pixel. Will do light and bsdf as needed,
per sample (for now?).�
Generate samples for XPos,YPos ���
sample2D(imageSamples);
sample2D(lensSamples);
sample1D(timeSamples);�
Scale and shift stratified image samples ��
Decorrelate sample dimensions �
samplePos = 0;

Rather than generating 5 dimensional stratified pattern, generate a collection of
2d and 1d patterns for all of the various dimensions. Then associate samples from
the additional dimensions with each image sample.

Good since no exponential growth in number of samples, but good coverage
of the sample space. In particular, good since each pixel has good coverage–
intuition for why this matters, why pixel spacing is the rate at which we want
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202 JitterSamples
216 lensSamples
515 RandomFloat
202 StratifiedSampler
216 timeSamples
198 xPixelSamples
202 XPos
198 yPixelSamples
202 YPos

good distribution–not more and not less....�
StratifiedSampler Method Definitions ��� �
void StratifiedSampler::sample2D(Float *samp) const {

Float dx = 1.f / xPixelSamples;
Float dy = 1.f / yPixelSamples;
for (int y = 0; y < yPixelSamples; ++y)

for (int x = 0; x < xPixelSamples; ++x) {
int o = (x + y * xPixelSamples) * 2;
Float jx = 0., jy = 0.;
if (JitterSamples) {

jx = RandomFloat();
jy = RandomFloat();

}
samp[o] = (x + jx) * dx;
samp[o+1] = (y + jy) * dy;

}
}

�
StratifiedSampler Method Definitions ��� �
void StratifiedSampler::sample1D(Float *samp) const {

int totSamples = xPixelSamples * yPixelSamples;
Float invTot = 1.f / totSamples;
for (int i = 0; i < totSamples; ++i) {

Float delta = .5;
if (JitterSamples)

delta = RandomFloat();
samp[i] = (i + delta) * invTot;

}
}

XXX this is wrong
Now we need to generate a sample in the current cell. If jittering is enabled, we

add a random offset between � � 5 and � 5 to each position to place it randomly in its
cell. We then convert the sample to raster-space by dividing by the total number of
samples in that direction.�
Scale and shift stratified image samples ���
for (int y = 0; y < yPixelSamples; ++y) {

for (int x = 0; x < xPixelSamples; ++x) {
int o = (x + y * xPixelSamples) * 2;
imageSamples[o] += XPos - .5f;
imageSamples[o+1] += YPos - .5f;

}
}

�
Decorrelate sample dimensions ���
shuffle2D(lensSamples);
shuffle1D(timeSamples);
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Figure 7.8: pixel strata for jittered sampling.

�
StratifiedSampler Method Definitions ��� �
void StratifiedSampler::shuffle2D(Float *samp) const {

int totSamples = xPixelSamples * yPixelSamples;
for (int i = 0; i < totSamples; ++i) {

int other = RandomInt() % totSamples;
swap(samp[2*i], samp[2*other]);
swap(samp[2*i+1], samp[2*other+1]);

}
}

We can now write the GetNextSample() function. It starts by checking to see if
it has generated all of the necessary samples; if so, it returns false. It then generates
a new sample and advances the variables that keep track of the next stratum that
needs to be sampled.�
StratifiedSampler Method Definitions ��� �
bool StratifiedSampler::GetNextSample(Sample *sample) {�

Compute new set of samples if needed for next pixel ��
Return next StratifiedSampler sample point �
return true;

}
�
Compute new set of samples if needed for next pixel ���
if (samplePos == xPixelSamples * yPixelSamples) {�

Advance to next stratum �
if (YPos == yPixelEnd)

return false;�
Generate samples for XPos,YPos �

}

The y strata counter YPos is only advanced when we reach the end of a row
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408 LatinHypercube
216 lensSamples
494 size
216 timeSamples
198 xPixelEnd
202 XPos
202 YPos

of samples in the x direction. Therefore, once the y position counter has been
advanced all the way down to the bottom of the image, we’re done.

We finally advance to the next cell in the sampling grid, first trying to move to
the next cell in x. If that takes us off of the end of the image, we reset the x position
to the first stratum in the next x row to be sampled and try to advance the y position.
If that ends up taking us off the bottom of the image, we’re done–the next time this
method is called, it will just return false.�
Advance to next stratum ���
if (++XPos == xPixelEnd) {

XPos = xPixelStart;
++YPos;

}
�
Return next StratifiedSampler sample point ���
sample->imagex = imageSamples[2*samplePos];
sample->imagey = imageSamples[2*samplePos+1];
sample->lensx = lensSamples[2*samplePos];
sample->lensy = lensSamples[2*samplePos+1];
sample->time = timeSamples[samplePos];�
Generate stratified lens and BSDF samples �
++samplePos;

Need to explain latin hypercube stuff somewhere....�
Generate stratified lens and BSDF samples ���
for (u_int i = 0; i < sample->nLightSamples.size(); ++i)

LatinHypercube(sample->light[i], sample->nLightSamples[i], 2);
for (u_int i = 0; i < sample->nBSDFSamples.size(); ++i)

LatinHypercube(sample->bsdf[i], sample->nBSDFSamples[i], 2);

� ��� � � � � 	 ��# ��� � � ���	� �  ��� �	���	��� #

�
hammersley.cc* ����

Source Code Copyright �
#include "sampling.h"
#include "paramset.h"�
HammersleySampler Declarations ��
HammersleySampler Method Definitions �
The underlying goal that the StratifiedSampler strives for is to generate a

well-distributed set of sample points, where no two sample points are too close
together, and where there aren’t any excessively large regions of the image with no
samples in them. As Figure 7.7 showed, the jittered pattern does this much better
than a random pattern does, though its quality can suffer when samples in adjacent
strata happen to be close to the shared boundary of the strata.

Definition of Discrepancy

Mathemeticians have developed a concept called discrepancy that can be used
to evaluate the quality of a pattern of sample positions. Patterns that are well-
distributed (in a manner to be formalized shortly) have low discrepancy values.
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One can thus consider the sample pattern generation problem to be one of finding
a suitable low-discrepancy pattern of points. A number of deterministic techniques
have been developed that generate low-discrepancy point sets; this section will use
one of them, the Hammersley point set, as the basis for a low-discrepancy sample
generator.

Before defining the HammersleySampler, we will first introduce a formal defi-
nition for discrepancy. The basic idea behind it is that the quality of a set of a set of
points in an n dimensional space � 0 � 1 � n can be evaluated by looking at regions of
the domain � 0 � 1 � n, counting the number of points inside the region, and comparing
the volume of these regions to the number of sample points inside them. In general,
one fourth of the volume should have roughly one fourth of the sample points in-
side of it, and so forth. While it’s not possible for this to always be the case, we can
still try to use patterns that minimize the difference between the volume estimated
by the points and the actual volume (the discrepancy.)

To compute the discrepancy of a set of points, we first pick a family of shapes B
which are subsets of � 0 � 1 � n. For example, boxes with one corner at the origin are
often used. This corresponds to:

B ��� � 0 � v1 � � � 0 � v2 � � ����� � � 0 � vs ��� �
where 0 � vi � 1. Given a sequence of sample points P � x1 � � � � � xN , the discrep-
ancy of P with respect to B is

DN
�
B � P � � sup

b � B

�
�
�
�

� � xi � b �
N

� λ
�
b �

�
�
�
� �

where λ
�
b � is the volume of b. In other words, we’re finding the maximum dif-

ference between the fraction of points inside one of the shapes and the volume of
the shape. When the set of shapes B is the set of boxes with a corner at the origin
(described above), this is called the star discrepancy D �N

�
P � . (Other popular sets

of shapes to use to compute discrepancy include axis aligned boxes, where the re-
striction that one corner be at the origin has been removed, and hyperplanes that
cut the domain into two pieces.)

For a few particular point sets, the discrepancy can be computed analytically.
For example, consider the set of points in one dimension

xi
� i

N
�

We can see that the star discrepancy of xi is

D �N
�
x1 � � � � � xn � � 1

N
�

For example, take the interval B � � 0 � 1
N � . Then λ

�
B � � 1

N , but
� � xi � B � � 0. This

interval (and the intervals � 0 � 2
N � , etc.) is the interval where the largest differences

between volume and fraction of points is.
We can improve on the star discrepancy of this sequence by modifying it slightly:

xi
� i � 1

2

N
�
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Then

D �N
�
xi � � 1

2N
�

A theorem due to H. Niederreiter provides some bounds for the star discrepancy
of a sequence of points in 1D:

D �N
�
xi � � 1

2N
� max

1 � i � N

�
�
�
� xi �

2i � 1
2N

�
�
�
�

�

Thus, the second example’s sequence has the lowest possible discrepancy for a
sequence in 1D. In general, it is much easier to analyze and compute bounds for
the discrepancy of sequences in 1D than in higher dimensions. For less simple
point sequences, and for sequences in higher dimensions, the discrepancy generally
must be estimated numerically, by constructing a large number of shapes B and
computing their discrepancy.

Constructing low-discrepancy sequences

Given the goal of constructing a low-discrepancy sequence, we will now in-
troduce techniques that have been developed specifically to generate sequences of
points that have low discrepancy. The techniques that we will describe are all built
on top of a construction called the radical inverse. It is based on the fact that an
integer value n can be expressed in base b with a sequence of digits am

� � � a2a1

uniquely determined by:

n �
∞

∑
i � 1

aib
i � 1

Then, the radical inverse function Φb in base b takes an non-negative integer
and converts it to a floating-point value in � 0 � 1 � , by reflecting these digits about the
decimal point:

Φb
�
n � � 0 � a1a2

� � � am

The function RadicalInverse() computes the radical inverse for a given num-
ber n in the base base. It first computes the value of a1 by taking the remainder of
the number n when divided by the base. It then divides n by the base, effectively
chopping off the last digit so that the next time through the loop, it can compute
a2 by finding the remainder base b, etc. This process continues until n is zero, at
which point we have found the last non-zero ai value.�
Global Inline Functions ��� �
inline Float RadicalInverse(int n, int base) {

Float val = 0;
Float invBase = 1.f / base, scale = invBase;
++n;
while (n > 0) {�

Compute next digit of radical inverse �
}
return val;

}
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As we are computing the digits base b, ai, we can incrementally construct the
value of the radical inverse. The contribution of ai to the radical inverse is

ai
� 1
bi �

so we incrementally update the value ib, which holds the value 1 � bi each time
through the loop.�
Compute next digit of radical inverse ���
int digit = (n % base);
val += digit * scale;
n /= base;
scale *= invBase;

Given the RadicalInverse() function, we can start constructing low discrep-
ancy sequences. One of the simplest low discrepancy sequences is the Van Der
Corput Sequence, which is a one-dimensional sequence given by the radical in-
verse function in base two.

xi
� Φ2

�
i �

n base 2 Φ2 (n)
1 1 .1 = 1 � 2
2 10 .01 = 1 � 4
3 11 .11 = 3 � 4
4 100 .001 = 3 � 8
5 101 .101 = 5 � 8
...

...
...

Figure 7.9: The radical inverse of the first few positive integers, computed in base
2: Φ2 (n). Notice how successive values of Φ2 (n) are far from all previous values
of Φ2 (n).

Figure 7.9 shows the first few values of the Van Der Corput sequence; notice
how it recursively splits the intervals of the 1D line in half. The discrepancy of this
sequence is

D �N
�
P � � O

�
logN

N � �

which matches the best discrepancy that has been attained for infinite sequences of
n dimensions,

D �N
�
P � � O

� �
logN � s

N � �

Two well-known low-discrepency sequences that are defined in an arbitrary
number of dimensions are the Halton and Hammersley sequences. Both use the
radical inverse function as well.

To generate an n dimensional Halton sequence, we use the radical inverse base b,
with a different base for each dimension and where the bases used are all relatively
prime to each other. (A natural choice is to use the first n prime numbers.)

xi
� �

Φ2
�
i � � Φ3

�
i � � Φ5

�
i � � � � � � Φpn

�
i ��� �
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One of the most useful characteristics of the Halton sequence is that it can be
used even if the total number of samples needed isn’t known in advance; all prefixes
of a given sequence are well-distributed, so thus as additional samples are added to
the sequence, the low-discrepancy property will be maintained. The discrepancy
of Halton sequences is

D �N
�
xi � � O

� �
log N � s

N � �

which is good.
If the number of samples to be taken is known in advance, the discrepancy can

be improved slightly. Hammersley point sets are defined by:

xi
�

�
i � 1

2

N
� Φ2

�
i � � Φ3

�
i � � � � � � Φpn

�
i � � �

where N is the total number of samples to be taken and as before all of the bases b
are relatively prime.

The folded radical inverse function can be used to reduce the discrepancy of
Hammersley and Halton sequences by substituting it for the original radical inverse
function defined above. It is defined by adding the offset i to the ith digit a i and
taking the result modulus b before adding the result to the next digit to the right of
the decimal point.

Ψb
�
n � � ∑

i

���
ai � i � 1 � mod b � � 1

bi �

The FoldedRadicalInverse() function computes Ψb. It is generally similar
to the original RadicalInverse() function, with two modifications. First, it needs
to track which digit is currently being processed, so that the appropriate offset can
be added before the modulus; this is done in the modOffset variable. Second, it
needs to handle the fact that Ψb is actually an infinite sum–even though the digits
ai are zero after a finite number of terms, the offset that is added ensures that all
except 1 � b terms beyond the point where ai

� 0 will be non-zero. Fortunately, the
finite precision of computer floating-point numbers solves this problem: we can
stop adding digits to the folded radical inverse as soon as we detect that ib is small
enough such that adding its contribution to val is certain to leave val unchanged.
The test in the while loop watches for this to happen.�
Global Inline Functions ��� �
inline Float FoldedRadicalInverse(int n, int base) {

Float val = 0;
Float invBase = 1.f/base, scale = invBase;
++n;
int modOffset = 0;
while (val + base * scale != val) {�

Compute next digit of folded radical inverse �
}
return val;

}
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�
Compute next digit of folded radical inverse ���
int digit = ((n+modOffset) % base);
n /= base;
val += digit * scale;
scale *= invBase;
++modOffset;

Graphs of the first 100 Halton and Hammersley points are shown in Figure 7.10.
It’s possible to see that the Hammersley sequence has lower discrepancy than the
Halton sequence–there are far fewer clumps of nearby sample points. Furthermore,
one can see that the folded radical inverse function reduces the discrepancy of
the Hammersley sequence; its effect on the Halton sequence is less visually clear,
however.

The Hammersly sample generator

The HammersleySampler uses the folded radical inverse function to generate
a Hammersley point set for image sampling. It works by mapping the first two
dimensions of the Hammersley points from � 0 � 1 � 2 to a square region on the image
plane, starting at (xPixelStart, yPixelStart) and scaled by a constant amount
in both directions so that it covers the pixels up to (xPixelEnd, yPixelEnd). Any
generated samples that are past (xPixelEnd, yPixelEnd) are discarded. The to-
tal number of samples generated is determined by computing the total number of
pixels in the extent that is being sampled times the number of samples to be taken
per-pixel.

For non-square images, it’s important to use the approach described above, gen-
erating extra samples and rejecting those that are outside of the image region, rather
than scaling the Hammersley point set by different amounts in the x and y direc-
tions. Scaling by different amounts would effectively cause the samples to be more
closely spaced in one direction than the other, which is certainly not what one
expects when rendering a non-square image.�
HammersleySampler Declarations ���
class HammersleySampler : public Sampler {
public:�

HammersleySampler Method Declarations �
private:�

HammersleySampler Private Data �
};

The constructor computes the length of a side of the square region samples are
generated inside of, extent, the total number of samples to generate (and its in-
verse), nSamples and invNSamples, and the sample number i of the next Ham-
mersley point xi to be computed by GetNextSample().
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Halton, Radical Inverse Hammersley, Radical Inverse

Halton, Folded Radical Inverse Hammersley, Folded Radical Inverse

Figure 7.10: Graphs of the first 100 points in the Halton (left) and Hammersley
(right) low-discrepancy point sequences, using the radical inverse Φb in the top
row, and the folded radical inverse Ψb in the bottom row. The Hammersley se-
quence has lower discrepancy than the Halton sequence, at the cost of requiring
that the number of samples to be taken be known in advance. The folded radical
inverse function improves the discrepancy of both sequences.
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�
HammersleySampler Method Definitions ���
HammersleySampler::HammersleySampler(int xres, int yres, int xpix,

int ypix, const Extent2D &crop, Filter *f, bool uf)
: Sampler(xres, yres, xpix, ypix, crop, f) {
extent = max((xPixelEnd - xPixelStart + 1),

(yPixelEnd - yPixelStart + 1));
nSamples = xPixelSamples * yPixelSamples * extent * extent;
invNSamples = 1.f / nSamples;
curSample = 0;
useFolded = uf;

}�
HammersleySampler Private Data ���
int extent, nSamples;
int curSample;
Float invNSamples;
bool useFolded;

The HammersleySampler keeps generating points until a total of nSamples
have been returned, after which it returns false, indicating that it has no more
to provide.

In the implementation below, we use either the FoldedRadicalInverse() func-
tion (to give a Hammersley-Zaremba point set) or the RadicalInverse() function
(to give a Hammersley point set), based on the useFolded parameter. With either
one of these functions, it is substantially more expensive computationally to gener-
ate image samples than it is for the StratifiedSampler of the previous section or
the BestCandidateSampler that will be introduced in the next section (roughly
ten times as expensive computationally.)

For very simple scenes, where the cost of tracing a camera ray and computing
its contribution is low, it may be more efficient to trace more rays generated by a
lower-quality sample generation method to render an image of a particular quality
level than it is to trace fewer rays that are “better”, since the cost of generating the
samples may dominate. For more complex scenes, however, where computing the
contribution of a camera ray is more expensive, we can afford to spend more time
to compute very good samples, since a reduction in the total number of samples
that need to be taken can make up for the expense of computing the samples.�
HammersleySampler Method Definitions ��� �
bool HammersleySampler::GetNextSample(Sample *sample) {
tryAgain:

if (curSample == nSamples) return false;�
Compute Hammersley

�
x � y � image sample location ��

Compute remaining dimensions of Hammersley sample �
++curSample;
return true;

}

We start by computing the raster-space
�
x � y � image sample position. We imme-

diately check to make sure that it is inside the region of pixels that need samples
generated for it, so that we can skip generating the remainder of the dimensions in
case it is out of bounds.
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�
Compute Hammersley

�
x � y � image sample location ���

Float x = curSample * invNSamples;
Float y = useFolded ? FoldedRadicalInverse(curSample, 2) :

RadicalInverse(curSample, 2);
sample->imagex = xPixelStart + x * extent;
sample->imagey = yPixelStart + y * extent;
if (sample->imagex > xPixelEnd || sample->imagey > yPixelEnd) {

++curSample;
goto tryAgain;

}
sample->imagex -= .5f;
sample->imagey -= .5f;

Now that we know that we’ve got a valid image sample, we compute the sample
points for the rest of the dimensions.�
Compute remaining dimensions of Hammersley sample ���
static int primes[] = { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103 };
sample->time = useFolded ? FoldedRadicalInverse(curSample, 3) :

RadicalInverse(curSample, 3);
sample->lensx = useFolded ? FoldedRadicalInverse(curSample, 5) :

RadicalInverse(curSample, 5);
sample->lensy = useFolded ? FoldedRadicalInverse(curSample, 7) :

RadicalInverse(curSample, 7);�
Compute low-discrpeancy light and BSDF samples �
For now, Cranley–Patterson stuff. Should do Köllig and Keller stuff...�

Compute low-discrpeancy light and BSDF samples ���
for (u_int i = 0; i < sample->nLightSamples.size(); ++i)

RotateLD2D(sample->light[i], sample->nLightSamples[i]);
for (u_int i = 0; i < sample->nBSDFSamples.size(); ++i)

RotateLD2D(sample->bsdf[i], sample->nBSDFSamples[i]);

�
HammersleySampler Method Definitions ��� �
void HammersleySampler::RotateLD2D(Float *samp, int nSamples) const {
#define WRAP(x) ((x) > 1 ? ((x)-1) : (x))

Float shift = RandomFloat();
for (u_int i = 0; i < nSamples; ++i) {

Float s1 = (Float)i / (Float)nSamples;
Float s2 = useFolded ? FoldedRadicalInverse(i, 2) :

RadicalInverse(i, 2);
samp[2*i] = WRAP(s1 + shift);
samp[2*i+1] = WRAP(s2 + shift);

}
#undef WRAP
}
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� ��� � � #�� � � ���	��� �
�����  � � � !�� ���  ��� ����� ��#
�
bestcandidate.cc* ����

Source Code Copyright �
#include "sampling.h"
#include "paramset.h"�
BestCandidateSampler Declarations ��
BestCandidateSampler Method Definitions �
Though usually better than uniform sampling, the jittered sampling pattern still

has shortcomings: when choosing a sample position in one cell, we don’t account
for sample positions in nearby cells to try to keep adjacent samples from clumping
together. Ideally, all of the sample positions across the image would be optimized
so that there are as few clumps of nearby samples as possible.

For example, a Poisson disk pattern has been shown to be an excellent image
sampling pattern. The Poisson disk pattern is a group of points such that no two of
them are closer than some specified distance. Studies have shown that the rods and
cones in the eye are distributed in a Poisson disk-like pattern, which suggests that
this pattern might be effective for imaging.

Poisson disk patterns are usually generated by dart throwing: we keep generat-
ing random samples, throwing away all that are closer to a previous sample than a
fixed threshold distance. This can be a very expensive process, since many darts
may be necessary. Another approach is the best candidate algorithm. When a new
sample is to be computed, a large number of random candidates are generated; all
of these candidates are compared to the previous samples and the one that is far-
thest away from all of the previous samples is added to the pattern. Although this
algorithm doesn’t guarantee the Poisson disk property, it usually does quite well
if enough candidates are generated. Another advantage it has is that any prefix of
the final pattern is itself a well-distributed sampling pattern. Furthermore, it’s eas-
ier to generate a good pattern with a pre-chosen number of samples with the best
candidate algorithm than it is with a dart throwing algorithm.

In this section we will present an implementation of the best-candidate algorithm
and its extension to computing sampling patterns that include good distributions
of samples in additional dimensions. Because it is a computationally-intensive
algorithm, we will compute a good sampling pattern once in a pre-process. The
pattern can then be stored in a table and efficiently used at rendering-time.

Rather than computing a sampling pattern large enough to sample the most enor-
mous image we’d ever render, we’ll compute a pattern that can be reused by tiling
it over the image plane by translating and scaling it appropriately. This means that
we must consider it to have toroidal topology. When computing the distance be-
tween two samples, we must compute the distance between them as if the square
sampling region was rolled into a torus. Thus, for these purposes points at the top
of the region may have a very small distance to points at the bottom, etc.

Generating the best-candidate pattern
�
samplepat.cc ���
#include "lrt.h"
#include "sampling.h"�
Sample Pattern Precomputation �



Sec. 7.5] Best-Candidate Sampling Patterns 215

Jittered

Poisson Disc

Best Candidate

Figure 7.11: Comparison of sampling patterns. On the top is a jittered pattern: note
clumping of samples and undersampling in some areas. In the middle is a Poisson
disk pattern generated by dart-throwing. No two samples are closer than a fixed
threshold, and although there is no guarantee that there will be one sample in each
of the strata, this is usually the case. On the bottom is a pattern generated with the
best-candidate algorithm; it is nearly as good as the Poisson disk pattern. (Due to
its toroidal topology, the two strata at the top left with no samples have samples
very close to them from the bottom left part, etc.)
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We will now show the program that generates the samples in an off-line compu-
tation. First we need to define the size of the table that we will be generating.�
Sampling Constants ���
#define SQRT_SAMPLE_TABLE_SIZE 64
#define SAMPLE_TABLE_SIZE (SQRT_SAMPLE_TABLE_SIZE * \

SQRT_SAMPLE_TABLE_SIZE)

Recall that we need to generate sample points in a nine-dimensional space. Two
dimensions determine the image sample location, one determines a point in time,
two more determine a point on a lens (for depth of field), and four more are po-
tentially used when computing Monte Carlo estimates of light transport (see Chap-
ters 14 and 15.) When generating the samples we store each of these sets of samples
in a separate array.�
Pattern Precomputation Local Data ���
static Float pixelSamples[SAMPLE_TABLE_SIZE][2];
static Float timeSamples[SAMPLE_TABLE_SIZE];
static Float lensSamples[SAMPLE_TABLE_SIZE][2];
static Float bsdfSamples[SAMPLE_TABLE_SIZE][2];
static Float lightSamples[SAMPLE_TABLE_SIZE][2];

Here is the main function for the off-line sample computation program. We com-
pute sample values in a multi-stage process. First, we generate a well-distributed
set of image sample positions. Then, given the image samples, we generate a good
set of time samples. Finally, we generate good samples for the lens, BSDF and
light sampling.�
Sample Pattern Precomputation ��� �
int main() {�

Compute image sample positions ��
Compute time samples ��
Compute lens, BSDF, and light samples ��
Output sample table �
return 0;

}

In order to speed up the candidate evaluation, we will store the accepted samples
in a grid. This allows us to only check nearby samples when computing distances.
The grid splits up the 2D sample domain � 0 � 1 � 2 into BC_GRID_SIZE strata in each
direction and stores a list of the integer sample numbers of the samples that overlap
each cell.�
Global Forward Declarations ��� �
#define BC_GRID_SIZE 40
typedef vector<int> SampleGrid[BC_GRID_SIZE][BC_GRID_SIZE];
#define GRID(v) (int((v) * BC_GRID_SIZE))

To compute the image samples, we start by allocating a sample grid and calling
a function to run the 2D best candidate algorithm.�
Compute image sample positions ���
SampleGrid pixelGrid;
BestCandidate2D(pixelSamples, SAMPLE_TABLE_SIZE, &pixelGrid);
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For the best candidate algorithm, the first image sample position is chosen com-
pletely arbitrarily and recorded in the grid. For all subsequent samples, we generate
a set of candidates that are compared to the already-computed samples.�
Sample Pattern Precomputation ��� �
void BestCandidate2D(Float table[][2], int totalSamples,

SampleGrid *grid) {
SampleGrid localGrid;
if (!grid) grid = &localGrid;
cerr << "Throwing darts: ";�
Generate first 2D sample arbitrarily �
for (int currentSample = 1; currentSample < totalSamples;

++currentSample) {
if ((currentSample % (totalSamples/60)) == 0)

cerr << ’+’;�
Generate next best 2D image sample �

}
cerr << endl;

}

To start off the process, we can choose any random point for the first sample;
only the second sample and beyond need to be checked against previous samples.�
Generate first 2D sample arbitrarily ���
table[0][0] = RandomFloat();
table[0][1] = RandomFloat();
addSampleToGrid(table, 0, grid);

A short utility function adds the entryth item in the given table of samples to
the given SampleGrid.�
Pattern Precomputation Utility Functions ���
static void addSampleToGrid(Float table[][2], int entry,

SampleGrid *grid) {
int u = GRID(table[entry][0]);
int v = GRID(table[entry][1]);
(*grid)[u][v].push_back(entry);

}

To generate the rest of the samples, we will use a dart throwing algorithm that
throws a number of candidate darts for each needed sample. The number of darts
thrown is proportional to the number of samples we have already; this ensures that
the quality of the samples as we go is in some sense consistent. After throwing
a dart, we see how close it is to all of the samples we’ve generated so far. If it’s
farther away from all of the accepted samples than the previous best candidate was,
we keep it. At the end of the loop, the remaining candidate is kept.
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�
Generate next best 2D image sample ���
Float maxDist2 = 0.;
int numCandidates = 500 * currentSample;
for (int currentCandidate = 0; currentCandidate < numCandidates;

++currentCandidate) {�
Generate a random candidate sample ��
Loop over neighboring grid cells and check distances ��
Keep this sample if it is the best one so far �

}
addSampleToGrid(table, currentSample, grid);

Candidate positions are chosen completely at random. Note that we’re com-
puting image sample locations in the range � 0 � 1 � ; it’ll be up to the Sampler that
uses the sampling pattern to scale and translate image samples into raster-space
appropriately.�
Generate a random candidate sample ���
Float candidate[2];
candidate[0] = RandomFloat();
candidate[1] = RandomFloat();

Now that we have a candidate, we see if it’s the best candidate we’ve come up
with so far. We compute the distances to all of the already-generated samples,
keeping track of the minimum of all of the distances. Whichever candidate that
has the largest minimum distance is the best. For efficiency, we will actually just
compute the squared distance, which gives the same result for this test and saves
us a lot of expensive square root computations.

We actually only compute distances to the eight neighboring grid cells and the
cell that the candidate is in; although this means that the first few samples are not
optimally distributed relative to each other, this doesn’t matter by the time we are
done computing samples, so long as BC_GRID_SIZE � SQRT_SAMPLE_TABLE_SIZE.�
Loop over neighboring grid cells and check distances ���
Float sampleDist2 = INFINITY;
int gu = GRID(candidate[0]);
int gv = GRID(candidate[1]);
for (int du = -1; du <= 1; ++du) {

for (int dv = -1; dv <= 1; ++dv) {�
Compute (u,v) grid cell to check ��
Update minimum squared distance from cell’s samples �

}
}

We do need to handle the toroidal topology here, though; if the grid cell we’d
like to consider is out of bounds, we wrap around to the other end of the grid.�
Compute (u,v) grid cell to check ���
int u = gu + du, v = gv + dv;
if (u < 0) u += BC_GRID_SIZE;
if (u >= BC_GRID_SIZE) u -= BC_GRID_SIZE;
if (v < 0) v += BC_GRID_SIZE;
if (v >= BC_GRID_SIZE) v -= BC_GRID_SIZE;
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We now loop over the list of sample numbers for the samples in the grid cell
we’re considering. For each one, we compute the squared distance to the current
candidate, recording the lowest squared distance of all the ones we check.�
Update minimum squared distance from cell’s samples ���
for (u_int g = 0; g < (*grid)[u][v].size(); ++g) {

int s = (*grid)[u][v][g];
Float xdist = Wrapped1DDist(candidate[0], table[s][0]);
Float ydist = Wrapped1DDist(candidate[1], table[s][1]);
Float d2 = xdist*xdist + ydist*ydist;
sampleDist2 = min(sampleDist2, d2);

}

When we compute the 1D distance between two values in � 0 � 1 � , we need to
handle the wrap-around issue. Consider two samples with x coordinates of � 01
and � 99, respectively. Direct computation will find their distance to be � 98, though
with wrap-around, the actual distance should be � 02. Because we’re only checking
distances to samples in adjacent grid-cells, we can easily detect this situation when
one of the distances is greater than 0 � 5. In that case, the true distance is just the
sum of the distance from the higher sample to one plus the distance from zero to
the lower sample.�
Pattern Precomputation Utility Functions ��� �
inline Float Wrapped1DDist(Float a, Float b) {

Float d = fabsf(a - b);
if (d < .5) return d;
else return 1 - max(a, b) + min(a, b);

}

Finally, we see if this candidate has the highest squared distance to its neighbors.
If so, we record its distance and tentatively put it in the output table.�
Keep this sample if it is the best one so far ���
if (sampleDist2 > maxDist2) {

maxDist2 = sampleDist2;
table[currentSample][0] = candidate[0];
table[currentSample][1] = candidate[1];

}

Now that we’ve got all of the image samples that we want, we turn to comput-
ing the sample positions for the rest of the dimensions. One might think that a
good sample pattern could be computed by generalizing the Poisson disk concept
to a higher-dimensional Poisson sphere. Interestingly enough, we can do better
than this. (In the nine-dimensional case in particular, a large number of candidate
samples would be needed to find good ones, anyway.)

Consider the problem of choosing time values for two nearby image samples:
not only do we want the time values to not be too close together, but in fact, it’s
even better if the time values are as far apart as possible—in any local 2D region of
the image, we’d like the best possible coverage of the complete three-dimensional
sample space.

An intuition for why this is the case comes from how the sampling pattern will
be used. Although we’re generating a nine-dimensional pattern overall, what we’re
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interested in is optimizing its distribution across local areas of the two-dimensional
image plane; optimizing its distribution over the nine-dimensional space is only a
secondary concern.

Therefore, we’ll use a two stage process for generating the sample positions.
First, we will generate a well-distributed sampling pattern for the time values and
for the two-dimensional lens, BSDF, and light values. Then, we will associate these
samples with image samples in a way that ensures that nearby image samples have
sample values for the other dimensions that are well spread-out.

As if that wasn’t enough to worry about, we should also be considering corre-
lation. Not only should nearby pixel samples have distant sample values for the
other dimensions, but we should also make sure that, for example, the time and
lens values aren’t correlated: if we somehow kept choosing samples such that the
time value was always similar to the lens u sample value, the sample pattern is not
as good as it would be if the two were uncorrelated. We won’t address this issue in
our approach below, though at least none of our techniques are prone to introducing
correlation.

For time, we generate a set of one-dimensional stratified sample values over
� 0 � 1 � . When we’re done, we will rearrange the timeValues array so that the i’th
time sample is a good one for the i’th image sample.�
Compute time samples ���
cerr << "Computing time samples: ";
for (int i = 0; i < SAMPLE_TABLE_SIZE; ++i)

timeSamples[i] = (i + RandomFloat()) / SAMPLE_TABLE_SIZE;
for (int currentSample = 1; currentSample < SAMPLE_TABLE_SIZE;

++currentSample) {
if ((currentSample % (SAMPLE_TABLE_SIZE/52)) == 0)

cerr << ’+’;�
Select best time sample for current image sample �

}
cerr << endl;

�
Select best time sample for current image sample ���
int best = -1;�
Find best time relative to neighbors �
Assert(best != -1);
swap(timeSamples[best], timeSamples[currentSample]);

Given that we’re working on finding a good time for the sample number currentSample,
the elements of timeSamples from zero to currentSample-1 have already been
assigned to previous image samples and are unavailable to us. The rest of the times,
from currentSample to SAMPLE_TABLE_SIZE-1, are the ones we will choose
from.�
Find best time relative to neighbors ���
Float maxMinDelta = 0.;
for (int t = currentSample; t < SAMPLE_TABLE_SIZE; ++t) {�

Compute min delta for this time ��
Update best if this is best time so far �

}
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As when we were doing dart-throwing for image samples, we only look at the
samples in the adjoining few grid cells. Of these, we will select the one that is
most different than the time samples that have already been assigned to the nearby
image samples.�
Compute min delta for this time ���
int gu = GRID(pixelSamples[currentSample][0]);
int gv = GRID(pixelSamples[currentSample][1]);
Float minDelta = INFINITY;
for (int du = -1; du <= 1; ++du) {

for (int dv = -1; dv <= 1; ++dv) {�
Check distance from times of nearby samples �

}
}

We loop through the samples in each of the grid cells, though we need to be
careful to only consider the ones that already have time samples associated with
them. Therefore, we skip over the ones that have sample numbers greater than the
sample we’re currently working to find a time value for. For the remaining ones,
we compute the distance for their time sample to the current candidate time sample,
keeping track of the minimum difference.�
Check distance from times of nearby samples ����

Compute (u,v) grid cell to check �
for (u_int g = 0; g < pixelGrid[u][v].size(); ++g) {

int otherSample = pixelGrid[u][v][g];
if (otherSample < currentSample) {

Float dt = Wrapped1DDist(timeSamples[otherSample],
timeSamples[t]);

minDelta = min(minDelta, dt);
}

}

If the minimum distance from the current time sample is greater than the mini-
mum distance of the previous best time sample, we update our records.�
Update best if this is best time so far ���
if (minDelta > maxMinDelta) {

maxMinDelta = minDelta;
best = t;

}

We now go ahead and do the rest of the dimensions in turn. We generate good
two-dimensional sampling patterns using dart throwing and then associate these
samples with image samples in the same manner that we assigned times to image
samples.
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�
Compute lens, BSDF, and light samples ���
BestCandidate2D(lensSamples, SAMPLE_TABLE_SIZE);
Redistribute2D(lensSamples, pixelGrid);
BestCandidate2D(bsdfSamples, SAMPLE_TABLE_SIZE);
Redistribute2D(bsdfSamples, pixelGrid);
BestCandidate2D(lightSamples, SAMPLE_TABLE_SIZE);
Redistribute2D(lightSamples, pixelGrid);

After the BestCandidate2D() function generates a good set of 2D samples, the
Redistribute2D() utility function takes the set of samples to assign to the image
samples and reshuffles them like we reshuffled the time samples to give them a
good distribution with respect to their neighbors.�
Sample Pattern Precomputation ��� �
static void Redistribute2D(Float samples[][2],

SampleGrid &pixelGrid) {
cerr << "Redistributing: ";
for (int currentSample = 1;

currentSample < SAMPLE_TABLE_SIZE; ++currentSample) {
if ((currentSample % (SAMPLE_TABLE_SIZE/52)) == 0)

cerr << ’+’;�
Select best sample for current image sample �

}
cerr << endl;

}
�
Select best sample for current image sample ���
int best = -1;�
Find best 2D sample relative to neighbors �
Assert(best != -1);
swap(samples[best][0], samples[currentSample][0]);
swap(samples[best][1], samples[currentSample][1]);

As with time, we want to choose the sample from the available ones that maxi-
mizes the minimum distance to the sample values that have already been assigned
to the neighboring image samples.�
Find best 2D sample relative to neighbors ���
Float maxMinDist2 = 0.f;
for (int samp = currentSample; samp < SAMPLE_TABLE_SIZE;

++samp) {�
Check distance to nearby samples ��
Update best for 2D sample if it is best so far �

}
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�
Check distance to nearby samples ���
int gu = GRID(pixelSamples[currentSample][0]);
int gv = GRID(pixelSamples[currentSample][1]);
Float minDist2 = INFINITY;
for (int du = -1; du <= 1; ++du) {

for (int dv = -1; dv <= 1; ++dv) {�
Check 2D samples in current grid cell �

}
}

�
Check 2D samples in current grid cell ����

Compute (u,v) grid cell to check �
for (u_int g = 0; g < pixelGrid[u][v].size(); ++g) {

int s2 = pixelGrid[u][v][g];
if (s2 < currentSample) {

Float dx = Wrapped1DDist(samples[s2][0],
samples[samp][0]);

Float dy = Wrapped1DDist(samples[s2][1],
samples[samp][1]);

Float d2 = dx*dx + dy*dy;
minDist2 = min(d2, minDist2);

}
}

�
Update best for 2D sample if it is best so far ���
if (minDist2 > maxMinDist2) {

maxMinDist2 = minDist2;
best = samp;

}

When we’re all done, we open up a file and write out C++ code that initializes
the table. When lrt is compiled, it will #include this file to initialize its sample
table.
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�
Output sample table ���
FILE *f = fopen("sampledata.cc", "w");
Assert(f);
fprintf(f, "\n/* Automatically generated %dx%d sample "

"table (%s @ %s) */\n\n",
SQRT_SAMPLE_TABLE_SIZE, SQRT_SAMPLE_TABLE_SIZE,
__DATE__, __TIME__);

fprintf(f, "const Float BestCandidateSampler::sampleTable[%d][9] "
"= {\n", SAMPLE_TABLE_SIZE);

for (int i = 0; i < SAMPLE_TABLE_SIZE; ++i) {
fprintf(f, " { ");
fprintf(f, "%10.10ff, %10.10ff, ", pixelSamples[i][0],

pixelSamples[i][1]);
fprintf(f, "%10.10ff, ", timeSamples[i]);
fprintf(f, "%10.10ff, %10.10ff, ", lensSamples[i][0],

lensSamples[i][1]);
fprintf(f, "%10.10ff, %10.10ff, ", bsdfSamples[i][0],

bsdfSamples[i][1]);
fprintf(f, "%10.10ff, %10.10ff, ", lightSamples[i][0],

lightSamples[i][1]);
fprintf(f, "},\n");

}
fprintf(f, "};\n");

Using the best-candidate pattern

BestCandidateSampler, the Sampler that uses our sample table, is pretty
straightforward. A single copy of the sample table covers

SQRT_SAMPLE_TABLE_SIZE / xPixelSamples

pixel extents in the x direction and analogously in y. As with the StratifiedSampler,
we scan across the image from the upper left of the crop window, going left-to-right
and then top-to-bottom. Here, we generate all samples inside the sample table’s ex-
tent before advancing to the next region of the image that it covers.�
BestCandidateSampler Declarations ���
class BestCandidateSampler : public Sampler {
public:�

BestCandidateSampler Method Declarations �
private:�

BestCandidateSampler Private Data �
};

We store our current raster-space pixel position in XTablePos and YTablePos
where XTableWidth and YTableWidth are the raster-space widths in pixels that
the precomputed sample table spans. tableOffset holds the current offset into
the sample table; when it is advanced to the point where we are at the end of the
table, we advance to the next region of the image that the table covers.
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�
BestCandidateSampler Method Definitions ���
BestCandidateSampler::BestCandidateSampler(int xres, int yres, int xSamp,

int ySamp, const Extent2D &crop, Filter *f)
: Sampler(xres, yres, xSamp, ySamp, crop, f) {
XTablePos = xPixelStart;
YTablePos = yPixelStart;
XTableWidth = (Float)SQRT_SAMPLE_TABLE_SIZE / xPixelSamples;
YTableWidth = (Float)SQRT_SAMPLE_TABLE_SIZE / yPixelSamples;
tableOffset = 0;�
Update sample shifts �

}
�
BestCandidateSampler Private Data ���
int tableOffset;
Float XTablePos, YTablePos;
Float XTableWidth, YTableWidth;

Here we incorporate the precomputed sample data.�
BestCandidateSampler Private Data ��� �
static const Float sampleTable[SAMPLE_TABLE_SIZE][9];

�
BestCandidateSampler Method Definitions ��� �
#include "sampledata.cc"

One problem that sometimes comes up when using replicated precomputed sam-
ple patterns is that there may be subtle image artifacts, aligned with the extent of
the pattern on the image plane due to the same values being used repeatedly for
time, lens position, etc. Not only are the same SAMPLE_TABLE_SIZE samples used
and re-used (whereas the StratifiedSampler will at least generate different time
values and so forth for each different image sample), but the upper left sample in
each block of samples will always have the time value to boot.

On approach to this problem is to transform the set of sample values each time
before starting to re-use the pattern. Here, we use Cranley-Patterson rotations,
where we compute in each dimension

X
�

i
� �

Xi � ξi � mod 1 �

where Xi is the sample value and ξi is a random number between zero and one.
Because the various sampling patterns were computed with toroidal topology, the
resulting pattern is still well-distributed and seamless. The table of random offsets
ξi is updated each time we are about to reuse the table once again.�
Update sample shifts ���
for (int i = 0; i < 9; ++i)

sampleOffsets[i] = RandomFloat();

�
BestCandidateSampler Private Data ��� �
Float sampleOffsets[9];

The GetNextSample() has a similar structure to the one for StratifiedSampler
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�
BestCandidateSampler Method Definitions ��� �
bool BestCandidateSampler::GetNextSample(Sample *sample) {
again:�

Return false if BestCandidateSampler is done ��
Compute raster sample from table ��
Advance to next sample table position ��
Check sample against crop window, goto again if outside �
return true;

}

As with the StratifiedSampler, we are done generating samples when the
upper y coordinate of the region goes below the bottom of the crop window.�
Return false if BestCandidateSampler is done ���
if (YTablePos >= yPixelEnd)

return false;

It’s just some simple indexing and scaling to compute the raster-space sam-
ple position. We don’t use the shifting technique on image samples: this would
cause the sampling points at the borders between repeated instances of the table
to have a poor distribution; preserving good image-distribution is more important
than reducing correlation. The rest of the dimensions are sampled using the shift-
ing method described above, using the WRAP macro that ensures that the result stays
between 0 and 1.�
Compute raster sample from table ���
#define WRAP(x) ((x) > 1 ? ((x)-1) : (x))
sample->imagex = XTablePos + XTableWidth * sampleTable[tableOffset][0];
sample->imagey = YTablePos + YTableWidth * sampleTable[tableOffset][1];
sample->lensx = WRAP(sampleOffsets[2] + sampleTable[tableOffset][2]);
sample->lensy = WRAP(sampleOffsets[3] + sampleTable[tableOffset][3]);
sample->time = WRAP(sampleOffsets[4] + sampleTable[tableOffset][4]);
#undef WRAP
for (u_int i = 0; i < sample->nLightSamples.size(); ++i)

RotateLD2D(sample->light[i], sample->nLightSamples[i]);
for (u_int i = 0; i < sample->nBSDFSamples.size(); ++i)

RotateLD2D(sample->bsdf[i], sample->nBSDFSamples[i]);

�
BestCandidateSampler Method Definitions ��� �
void BestCandidateSampler::RotateLD2D(Float *samp, int nSamples) {
#define WRAP(x) ((x) > 1 ? ((x)-1) : (x))

Float shift = RandomFloat();
for (u_int i = 0; i < nSamples; ++i) {

Float s1 = (Float)i / (Float)nSamples;
Float s2 = RadicalInverse(i, 2);
samp[2*i] = WRAP(s1 + shift);
samp[2*i+1] = WRAP(s2 + shift);

}
#undef WRAP
}
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We now step to the next precomputed sample value; if we’ve hit the end of the
sample table, we try to move XTablePos forward. If this leaves the raster extent of
the image, we move YTablePos ahead.�
Advance to next sample table position ���
if (++tableOffset == SAMPLE_TABLE_SIZE) {�

Update sample shifts �
tableOffset = 0;
XTablePos += XTableWidth;
if (XTablePos >= xPixelEnd) {

XTablePos = xPixelStart;
YTablePos += YTableWidth;

}
}

The sample table may partially spill off the end of the image plane, so some
of the samples that we generate may be outside the necessary sample region. We
detect this case by checking the sample against the pixel area to be sampled and
generating a new sample if it’s out of bounds.�
Check sample against crop window, goto again if outside ���
if (sample->imagex < xPixelStart ||

sample->imagex >= xPixelEnd ||
sample->imagey < yPixelStart ||
sample->imagey >= yPixelEnd)
goto again;

sample->imagex -= .5f;
sample->imagey -= .5f;

� ��� � � ���
� � ��� � �	#�� � ��� � � � �
Given the non-uniform set of image samples, we need to compute a final value

for each of the pixels in the output image. According to the signal processing
framework, we need to do three things:

1. Reconstruct a continuous image function L̃ from the set of image samples.

2. Prefilter the function L̃ to remove any frequencies past the Nyquist limit for
the pixel spacing.

3. Sample L̃ at the pixel locations to compute the final pixel values.

Because we know that we will only be resampling the L̃ at the pixel locations,
we don’t need to construct an explicit representation of the function and can also
aggregate the function of the first two steps into a single filter function.

Recall that if the original function had been uniformly sampled at a frequency
greater than the Nyquist frequency and reconstructed with the sinc filter, then the
reconstructed function in the first step would match the original image function
perfectly–quite a feat since we were only able to point-sample it. Because the
original image function has higher frequencies than we were able to sample (due
to edges, etc.), we chose to sample it non-uniformly, trading off noise for aliasing.
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Figure 7.12: two-d image filter.

The theory behind the reconstruction equation, 7.1.1, depends on the samples
being uniformly spaced; while a number of approaches have been used to try to ex-
tend it to non-uniform sampling, there is not yet as solid a footing for this. The most
widely used method in graphics is based on interpolation of the samples around a
pixel. To compute a final value for a pixel p

�
x � y � , this interpolation results in

computing a weighted average:

p
�
x � y � � ∑i f

�
x � xi � y � yi � L � xi � yi �

∑i f
�
x � xi � y � yi � (7.6.2)

where L
�
xi � yi � is the radiance value of the i’th sample, located at

�
xi � yi � , and f is a

filter function. See Figure 7.12, which shows a pixel at location
�
x � y � , marked with

an “x”, that has a pixel filter with extent xWidth in the x direction and yWidth in
the y direction. Image samples are denoted by dots, and all of the samples inside
the box given by the filter extent may contribute to the pixel’s value.

It turns out that the sinc filter doesn’t give as good image quality as some other
filters when used for filtering in this situation with non-uniform sample spacing and
a sampling rate almost certainly below the Nyquist limit. For example, the sinc is
prone to ringing artifacts, where edges in the image have faint replicated copies
of the edge in nearby pixels. Furthermore, it is generally avoided for efficiency
reasons because it has infinite support: it doesn’t fall off to zero at a finite distance
from its center. Otherwise all of the image sample values L

�
xi � yi � would need be

considered when computing a filtered value for a particular pixel. A number of
other filters that have finite extent also give substantially better results in practice.

Filter Functions

First we will define the Filter class and an number of implementations of it.
The Filter implements various filter functions f

�
x � y � for use in the pixel filtering

equation, 7.6.2.$
Sampling Declarations % � &
class Filter {
public:$

Filter Interface %$
Filter Data %

};
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All filters have widths beyond which they have a value of zero; these may be
different in the x and y directions. The constructor takes values for these and stores
them for use by the sub-classes.�
Filter Interface ��� �
Filter(Float xw, Float yw)

: xWidth(xw), yWidth(yw), halfXWidth(.5f*xw),
halfYWidth(.5f*yw) {

}
�
Filter Data ���
const Float xWidth, yWidth;
const Float halfXWidth, halfYWidth;

The sole function that Filter implementations need to provide is the Evaluate()
method. It takes an x and y argument, which are the position of the sample point
relative to the center of the filter. The return value specifies the weight of the sam-
ple. We will never call the filter function with points outside of the filter’s extent;
therefore, individual filters don’t need to check for this case.�
Filter Interface ��� �
virtual Float Evaluate(Float x, Float y) const = 0;

Box Filter
�
box.cc* ����

Source Code Copyright �
#include "sampling.h"
#include "paramset.h"�
Box Filter Declarations ��
Box Filter Definitions �
One of the most commonly used filters in graphics is the box filter (and in fact,

when filtering and reconstruction isn’t addressed explicitly, the box filter is the de
facto result. The box filter equally weights all samples within a square region of the
image. Though computationally efficient, it’s just about the worst filter possible.
In practice, it allows high frequency sample data to leak into the output pixels,
causing aliasing. The left side of Figure 7.13 shows a graph of the box filter.�
Box Filter Declarations ���
class BoxFilter: public Filter {
public:

BoxFilter(Float xw, Float yw) : Filter(xw, yw) { }
Float Evaluate(Float x, Float y) const;

};

Because the evaluation function isn’t called with
�
x � y � values outside of the

filter’s extent, we can always return 1 for the filter function’s value.�
Box Filter Definitions ���
Float BoxFilter::Evaluate(Float x, Float y) const {

return 1.;
}



Filter 229
halfXWidth 229
halfYWidth 229

max 513

230 Sampling and Reconstruction [Ch. 7

-1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

-1 0 1
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7.13: Graphs of the box filter (left) and triangle filter (right). Though neither
of these is a particularly good filter, they are both computationally efficient and easy
to implement.

Triangle Filter

�
triangle.cc* ����

Source Code Copyright �
#include "sampling.h"
#include "paramset.h"�
Triangle Filter Declarations ��
Triangle Filter Definitions �
The triangle filter gives slightly better results than the box: samples at the output

pixel have a weight of one, and the weight linearly falls off to the square extent of
the filter. See the right side of Figure 7.13 for a graph of the triangle filter.�
Triangle Filter Declarations ���
class TriangleFilter: public Filter {
public:

TriangleFilter(Float xw, Float yw): Filter(xw, yw) { }
Float Evaluate(Float x, Float y) const;

};
�
Triangle Filter Definitions ���
Float TriangleFilter::Evaluate(Float x, Float y) const {

return max(0.f, halfXWidth - fabsf(x)) *
max(0.f, halfYWidth - fabsf(y));

}

Gaussian Filter
�
gaussian.cc* ����

Source Code Copyright �
#include "sampling.h"
#include "paramset.h"�
Gaussian Filter Declarations ��
Gaussian Filter Definitions �
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Figure 7.14: gaussian and mitchell filter graphs

The Gaussian is the first filter in lrt that gives good performance in practice. It
applies a Gaussian shaped bump, centered at the output pixel and radially symmet-
ric around it. We subtract the Gaussian’s value at the end of its extent from the filter
value; this makes the filter go to zero at its limit–see the left side of Figure 7.14.
The Gaussian does tend to give blurrier images than the next two filters, however.�
Gaussian Filter Declarations ���
class GaussianFilter : public Filter {
public:�

GaussianFilter Interface �
Float Evaluate(Float x, Float y) const;

private:�
GaussianFilter Private Data ��
GaussianFilter Utility Functions �

};

In the constructor, we precompute a few terms that will be the same every time
we evaluate the filter.�
GaussianFilter Interface ���
GaussianFilter(Float xw, Float yw)

: Filter(xw, yw) {
expHalfX = expf(-halfXWidth);
expHalfY = expf(-halfYWidth);

}
�
GaussianFilter Private Data ���
Float expHalfX, expHalfY;

�
Gaussian Filter Definitions ���
Float GaussianFilter::Evaluate(Float x, Float y) const {

return Gaussian(x, expHalfX) * Gaussian(y, expHalfY);
}

�
GaussianFilter Utility Functions ���
static Float Gaussian(Float t, Float expHalf) {

return max(0.f, expf(-t) - expHalf);
}
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Mitchell Filter
�
mitchell.cc* ����

Source Code Copyright �
#include "sampling.h"
#include "paramset.h"�
Mitchell Filter Declarations ��
Mitchell Filter Definitions �
Filter design is a difficult craft, mixing mathematical analysis and perceptual ex-

periments: Mitchell and Netravali have developed a family of parameterized filter
functions in order to be able to explore this space well. After analyzing test sub-
jects’ subjective responses to a variety of parameters, they developed a filter that
tends to do a good job of trading off between ringing–phantom edges next to ac-
tual edges in the image–and blurring–overly blurred results–two common artifacts
from poor reconstruction filters.

Note in the graph of this filter on the right side of Figure 7.14 that this filter
function takes on negative values out by its edges; it has negative lobes. In practice
these negative regions improve the sharpness of edges, giving crisper images (re-
duced blurring). If they become too large, however, ringing tends to start to enter
the image.�
Mitchell Filter Declarations ���
class MitchellFilter : public Filter {
public:

MitchellFilter(Float xw, Float yw) : Filter(xw, yw) { }
Float Evaluate(Float x, Float y) const;
Float Mitchell1D(Float d) const;

};

Like many 2D image filtering functions, the Mitchell-Netravali filter is the prod-
uct of two one-dimensional filter functions in the x and y directions. Such filters
are called separable. (In fact, all of the filters in lrt are separable, though this
wasn’t made explicit in the previous ones.)�
Mitchell Filter Definitions ���
Float MitchellFilter::Evaluate(Float x, Float y) const {

return Mitchell1D(x/halfXWidth) * Mitchell1D(y/halfYWidth);
}
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�
Mitchell Filter Definitions ��� �
Float MitchellFilter::Mitchell1D(Float r) const {

const Float B = .33333333333333333f;
const Float C = .33333333333333333f;
const Float ONE_SIXTH = .166666666666666666f;

r = fabsf(r);
if (r > 1)

return ((-B - 6*C) * r*r*r + (6*B + 30*C) * r*r +
(-12*B - 48*C) * r + (8*B + 24*C)) * ONE_SIXTH;

else
return ((12 - 9*B - 6*C) * r*r*r +

(-18 + 12*B + 6*C) * r*r +
(6 - 2*B)) * ONE_SIXTH;

}

Sinc Filter
�
sinc.cc* ����

Source Code Copyright �
#include "sampling.h"
#include "paramset.h"�
Sinc Filter Declarations ��
Sinc Filter Definitions �
Finally, we provide the SincFilter class, which implements a filter based on

the sinc function. In practice, the sinc filter is often multiplied by another function
that goes to zero after some distance; this gives a filter function with finite extent,
which is much more tractable for implementation. The function that scales the sinc
down is called a windowing function; here we will use one due to Blackman. The
shape of the windowed sinc is quite similar to the Mitchell-Netravali filter, so we
won’t graph it here.�
Sinc Filter Declarations ���
class SincFilter : public Filter {
public:

SincFilter(Float xw, Float yw) : Filter(xw, yw) { }
Float Evaluate(Float x, Float y) const;
Float Sinc1D(Float x) const;

};

Like the Mitchell-Netravali filter, the sinc filter is also separable.�
Sinc Filter Definitions ���
Float SincFilter::Evaluate(Float x, Float y) const{

return Sinc1D(x / halfXWidth) * Sinc1D(y / halfYWidth);
}

The implementation straightforward; we compute the value of the sinc function
and then multiply it by the value of the Blackman windowing function.
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�
Sinc Filter Definitions ��� �
Float SincFilter::Sinc1D(Float x) const {

if (x < 1e-5) return 1;
if (x > 1) return 0;
x *= M_PI;
Float s = sinf(x) / x;
Float blackman = .42f + .5f * cosf(x) + .08f * cosf(2*x);
return s * blackman;

}

���"� ������� � � ����� ���

One of the best books on signal processing, sampling, reconstruction, and the
Fourier transform is Bracewell(Bra68). Glassner’s Principles of Digital Image Syn-
thesis (Gla95) has a series of chapters on the theory and application uniform and
non-uniform sampling and reconstruction to computer graphics. For an extensive
survey of the history of and techniques for interpolation of sampled data, including
the sampling theorem, see Meijering’s survey article (Mei02).

Crow first identified aliasing as a major source of artifacts in computer generated
images (Cro77). Using non-uniform sampling to turn aliasing into noise was in-
troduced by Cook et al(Coo86) and Dippé and Wold(DW85); this work was based
on experiments by Yellot, who investigated the distribution of photoreceptors in
the eyes of monkeys (Yel83). Dippé and Wold also first introduced the pixel filter-
ing equation to graphics and developed a Poisson sample pattern with a minimum
distance between samples. Lee et al developed a technique for adaptive sampling
based on statistical tests to compute images to a given error tolerance (LRU85).

Mitchell has extensively investigated sampling patterns for ray-tracing; his 1987
and 1991 SIGGRAPH papers have many key insights, and the best candidate ap-
proach described in this chapter is based on the latter paper (Mit87; Mit91). An-
other efficient technique to generate Poisson disk patterns was also developed by
McCool and Fiume (MF92). Hiller et al applied a technique based on relaxation
that takes a random point set and improves its distribution (HDK01).

Shirley’s used a concept called discrepancy to evaluate the quality of sample
patterns (Shi91). Discrepancy gives a numeric measure of how well-distributed
a set of sample points is; the better distributed it is, the lower its discrepancy.
This work was built upon by Mitchell (Mit92) and Dobkin and Mitchell (DM93),
Dobkin et al (DEM96).

Mitchell’s first paper on discrepancy introduced the idea of using determinis-
tic low-discrepancy sequences for sampler, removing all randomness in the inter-
est of lower-discrepancy (Mit92). Such quasi-random sequences are the basis of
Quasi Monte Carlo methods, which will be described in Chapter 14. More re-
cently, Keller and collaborators have investigated quasi-random sampling patterns
for a variety of applications in graphics (Kel96; Kel97). Wong et al compared
numeric error with various low-discrepancy sampling schemes (WLH97), though
one of Mitchell’s interesting findings was that low-discrepancy sampling sequences
sometimes lead to visually-objectionable artifacts in images that aren’t present with
other sampling patterns.

Kollig and Keller have investigated
�
t � m � s � -net approaches for generating sam-

pling patterns and have paid particular attention to finding well-distributed light
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source samples for a collection of pixel samples (KK02). Some of their techniques
are based on algorithms developed by Friedel and Keller (FK00).

More recently, Mitchell has investigated how much better stratified sampling
patterns are than random patterns in practice (Mit96); in general, the smoother the
function being sampled is, the more effective they are. For very quickly-changing
functions (e.g. pixels with complex geometry overlapping them), more sophisti-
cated stratified patterns perform no better than unstratified random patterns.

Mitchell and Netravali investigated a family of filters by doing experiments with
human observers to find the most effective ones; the Mitchell filter in this chapter
is the one they chose as best (MN88).

� � ��� ����# � #

7.1 The current implementation of the StratifiedSampler suffers from only
stratifying image samples; samples in the rest of the dimensions are just cho-
sen randomly. Improve the stratified sampler by generating a set of samples

7.2 (t,m,s) nets, etc...
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All the way from processing samples as they come in to make spectral image
pixels, to processing the pixels for storage or display...

� �
�  � � ��� # # � � � � � � ��� �  � � � !$��#

We can now put the image sampling and reconstruction theory together and write
the Sampler function that takes image samples and filters them to compute pixel
values, updating the Film’s pixels. Because all of the Filters defined above have
finite extent, we start by computing which pixels will be affected by the current
sample. We then turn the pixel filtering Equation, 7.6.2, inside out, and for each
pixel

�
x � y � that is affected by the sample, we update two running sums: one for

the numerator of the sample interpolation equation and one for the denomenator.
When all of the samples have been processed, final pixel values can be computed
by performing the division.�
Sampler Method Definitions ��� �
void Sampler::AddSample(Film *film, const Point &Praster,

const Spectrum &radiance, Float alpha) {�
Compute sample’s raster extent ��
Loop over filter support and add sample to pixel arrays �

}

The first thing that we do is compute the bounds in raster-space of the pixels that
will be affected by the sample. This is just half of the overall filter width in each
direction from the sample locations, rounded up on the low end and rounded down
on the high end so that we don’t process any pixels outside of the extent where the
filter is certain to be zero anyway.

� � �
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�
Compute sample’s raster extent ���
int x0 = Ceil2Int (Praster.x - filter->halfXWidth);
int x1 = Floor2Int(Praster.x + filter->halfXWidth);
int y0 = Ceil2Int (Praster.y - filter->halfYWidth);
int y1 = Floor2Int(Praster.y + filter->halfYWidth);

Now, given the extent of pixels that are affected by this sample (x0,y0 to x1,y1,
inclusive), we loop over all of those pixels and then filter the sample value appro-
priately.�
Loop over filter support and add sample to pixel arrays ���
for (int y = y0; y <= y1; ++y)

for (int x = x0; x <= x1; ++x) {�
Evaluate filter value ��
Update pixel values with filtered sample �

}

Each integer pixel
�
x � y � has an instance of the filter function centered around it.

To compute the filter weight for a particular sample, we compute the offset from
the pixel to the sample position and evaluate the filter function at this position.�
Evaluate filter value ���
Float fx = x - Praster.x;
Float fy = y - Praster.y;
Float filterWt = filter->Evaluate(fx, fy);

Now we go ahead and report the weighted sample value to the Film.�
Update pixel values with filtered sample ���
if (filterWt > 0.)

film->UpdatePixel(x, y, radiance, alpha, Praster.z, filterWt);

Computing normalized pixel values

We can now define the fragment
�
Apply filter weights � for the Film’s imaging

pipeline. We divide each pixel sample value by the value of weightSum for that
pixel; this basically computes an average of all of the radiance values from all
of the rays that contributed to this pixel. For efficiency, we compute one over the
weight value once and then multiply by that instead of dividing by the weight value
each time.�
Apply filter weights ���
for (int o = 0; o < xPixelWidth * yPixelWidth; ++o) {

if (pixels[o].weightSum == 0.)
continue;

Float invWt = 1.f / pixels[o].weightSum;
Lout[o] *= invWt;
AlphaOut[o] *= invWt;

}

Sample Crop Extents

We can now also define the fragment that etermines the range of integer pixels
that must have samples generated for them in order to compute the desired image.
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514 Ceil2Int
514 Floor2Int
229 halfXWidth
229 halfYWidth
538 TIFFWriteFloat
198 xPixelEnd
189 xPixelWidth
198 yPixelEnd
189 yPixelWidth

Samplers use these values to guide their sample generation. In particular, because
the pixel interpolation filter generally extends over a number of pixels, we need to
compute samples a bit outside of the range of pixels that will be output.�
Initialize pixel extents from crop window ���
int RasterCropLeft = Ceil2Int(xResolution * Crop.x0);
int RasterCropRight = Ceil2Int(xResolution * Crop.x1);
int RasterCropTop = Ceil2Int(yResolution * Crop.y0);
int RasterCropBottom = Ceil2Int(yResolution * Crop.y1);
xPixelStart = Floor2Int(RasterCropLeft - filter->halfXWidth);
xPixelEnd = Ceil2Int (RasterCropRight + filter->halfXWidth);
yPixelStart = Floor2Int(RasterCropTop - filter->halfYWidth);
yPixelEnd = Ceil2Int (RasterCropBottom + filter->halfYWidth);

� ���  � ��� � � ��! � � � �"�  ���
� � �"�

Once the camera has computed values for all of the image samples and the same
values have been used to set the pixel values, we need to do something with the
results. The easiest thing to do is to write out the image of floating-point SPD
coefficients to disk for later processing or display by programs with knowledge
of the basis functions used. More commonly, we will send the pixels through
an imaging pipeline that uses information about the particular basis functions and
display device being used to compute a new image suitable for display. A number
of tricky issues, ranging from limitations of display devices to the behavior of the
human visual system, need to be carefully addressed to do this well.

Saving SPD coefficients

We’ll provide a Film method that takes a filename and saves out a floating-point
TIFF format image that stores the coefficients of the SPDs at each pixel. In con-
junction with the basis functions used for spectral representation, other programs
can use this image to reconstruct the SPDs computed by the renderer.�
Film Method Definitions ��� �
void Film::WriteCoefficients(const string &filename) const {�

Compute floating-point pixel SPD coefficients �
TIFFWriteFloat(filename, (Float *)Lout, AlphaOut,

xPixelWidth, yPixelWidth, COLOR_SAMPLES,
xResolution, yResolution);�

Release temporary image memory �
}

The first stage of this process is divided into three parts. We make a copy of the
pixel values stored by the film, so that changes to them before saving them don’t
change the film’s pixel values.�
Compute floating-point pixel SPD coefficients ����

Allocate working imaging memory and copy data ��
Apply filter weights ��
Compute premultiplied alpha color values �
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�
Allocate working imaging memory and copy data ���
int nPix = xPixelWidth * yPixelWidth;
Spectrum *Lout = new Spectrum[nPix];
Float *AlphaOut = new Float[nPix];
for (int i = 0; i < nPix; ++i) {

Lout[i] = pixels[i].L;
AlphaOut[i] = pixels[i].alpha;

}

The next stage,
�
Apply filter weights � , will be defined in the next chapter in

Section 7.6 when we explain image filtering and reconstruction. Its function is to
normalize the individual pixel values so that even though many samples may have
contributed to each pixel, the pixel values are consistent.

Before passing the pixel values along, we multiply each by its alpha value; pixel
colors scaled by alpha are known as having premultiplied alpha (also known as
associated alpha). Consider a solid white object; in its center, where it has an
alpha of one, its pixel color values remain white. Along the edges, its color is re-
duced toward black depending on how much of the pixel area the object covers–this
gives softer edges against the background. This representation gives to a variety
of advantages when performing compositing operations–combining multiple im-
ages together and using their alpha channels to blend them more accurately (see
the further reading section for further pointers.)�
Compute premultiplied alpha color values ���
for (int i = 0; i < xPixelWidth * yPixelWidth; ++i)

Lout[i] *= AlphaOut[i];

�
Release temporary image memory ���
delete[] Lout;
delete[] AlphaOut;

� ��� � � ���
� 	 ��# � !$���  � � ��!�� ���
To be able to convert the spectral image into a format suitable for display or

printing, we’ll now explain the pieces of lrt’s imaging pipeline in more detail.
The film class has a WriteDisplayImage() method that applies each of a series
of imaging operations in turn. A structure, DisplayInfo, holds parameters that
describe the characteristics of a particular display device. These parameters guide
the imaging process.�
Film Method Definitions ��� �
void Film::WriteDisplayImage(const DisplayInfo &dinfo) const {�

Compute floating-point pixel SPD coefficients ��
Apply display imaging pipeline ��
Release temporary image memory �

}
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Figure 8.1: Display pipeline

�
Film Declarations ��� �
struct DisplayInfo {

DisplayInfo() {�
DisplayInfo Constructor Implementation �

}�
DisplayInfo Data �

};

The basic display pipeline is shown in Figure 8.1. The fragment
�
Apply display

imaging pipeline � applies each of the stages in turn; we will describe them in order
here.�
Apply display imaging pipeline ����

Convert image to XYZ ��
Apply tone reproduction to image ��
Convert image to display RGB ��
Scale and handle out-of-gamut RGB values ��
Apply gamma correction ��
Map image to display range ��
Dither image ��
Save display image to disk �
Once we have properly normalized SPD coefficients at each pixel, we will take

advantage of a remarkable propeorty of the human visual system that allows us to
represent each pixel’s color with just three floating-point numbers. The tristimulus
theory of color perception says that all visible SPDs can be accurately represented
for human observers with three values, xλ, yλ, and zλ.

Given a SPD S
�
λ � , these values are computed by convolution with the spectral

matching curves, X
�
λ � , Y

�
λ � and Z

�
λ � by

xλ
� �

λ
S
�
λ � X � λ � dλ

yλ
� �

λ
S
�
λ � Y � λ � dλ

zλ
� �

λ
S
�
λ � Z � λ � dλ �

The three matching curves are graphed in Figure 8.2. These curves were deter-
mined by the Commission Internationale de l’Éclairge standards body after a series
of experiments with human test subjects. It is believed that these matching curves
are generally similar to the responses of the three types of color-sensitive cones in
the human retina.

Remarkably, SPDs with substantially different distributions may have very sim-
ilar xλ, yλ, and zλ values. To the human observer, such SPDs actually appear the
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Figure 8.2: XYZ matching curves

same visually, so the XYZ representation is an accurate one. Pairs of such spectra
are called metamers.

It is important to understand the subtlety that although XYZ works well to repre-
sent a given SPD to be displayed for a human observer, it is not a particularly good
set of basis functions for spectral computation. For example, though XYZ values
would work well to describe the perceived color of lemon-skin or a fluorescent
light individually (recall Figure 5.1, which graphs these two SPDs), the product of
their respective XYZ values is likely to give a noticeably different color than the
XYZ value computed by multiplying a more accurate representation of their SPDs
together and then computing XYZ values.

First, we need to add a method to the Spectrum class that returns the XYZ values
for its SPD. It turns out that the new basis function coefficients after converting
from one set of basis functions to another can be written a weighted sums of the
old basis function coefficients. Here, we are converting from the original basis to
the XYZ basis. For example, for xλ,

xλ
� � S

�
λ � X � λ � dλ

� �
λ
∑

i

ciBi
�
λ � X � λ � dλ

� ∑
i

ci
� �

λ
Bi
�
λ � X � λ � dλ �

� ∑
i

ciw
x
i

�

Thus, the weight values wx
i , wy

i and wz
i can be precomputed and stored in an array

for whatever particular basis functions are being used.
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155 Spectrum

�
Spectrum Method Declarations ��� �
void XYZ(Float xyz[3]) const {

xyz[0] = xyz[1] = xyz[2] = 0.;
for (int i = 0; i < COLOR_SAMPLES; ++i) {

xyz[0] += XWeight[i] * c[i];
xyz[1] += YWeight[i] * c[i];
xyz[2] += ZWeight[i] * c[i];

}
}

Also provide Luminance() in a separate utility function for convenience, avoid
computing values for x and z when we don’t need them...�
Spectrum Method Declarations ��� �
Float Luminance() const {

Float y = 0.;
for (int i = 0; i < COLOR_SAMPLES; ++i)

y += YWeight[i] * c[i];
return y;

}

Therefore, we now finally need to settle on the default set of SPD basis functions
for lrt. Though not sufficient for high-quality spectral computations, an expedient
and convenient choice is to use the spectra of standard red, green, and blue phos-
phors for televisions and CRT display tubes. A standard set of these RGB spectra
has been defined for high-definition television; the weights to convert from these
RGBs to XYZ values are below:�
Spectrum Method Definitions ��� �
Float Spectrum::XWeight[COLOR_SAMPLES] = {

0.412453f, 0.357580f, 0.180423f
};
Float Spectrum::YWeight[COLOR_SAMPLES] = {

0.212671f, 0.715160f, 0.072169f
};
Float Spectrum::ZWeight[COLOR_SAMPLES] = {

0.019334f, 0.119193f, 0.950227f
};

For convenience in computing values for XWeight, YWeight and ZWeight for
other spectral basis functions, we will also provide the values of the standard X

�
λ � ,

Y
�
λ � , and Z

�
λ � response curves sampled at 1nm increments from 360nm to 830nm.�

Spectrum Public Data ���
static const int CIEstart = 360;
static const int CIEend = 830;
static const Float CIE_X[CIEend-CIEstart+1];
static const Float CIE_Y[CIEend-CIEstart+1];
static const Float CIE_Z[CIEend-CIEstart+1];
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�
Spectrum Method Definitions ��� �
const Float Spectrum::CIE_X[Spectrum::CIEend-Spectrum::CIEstart+1] = {�

CIE X function values �
};
const Float Spectrum::CIE_Y[Spectrum::CIEend-Spectrum::CIEstart+1] = {�

CIE Y function values �
};
const Float Spectrum::CIE_Z[Spectrum::CIEend-Spectrum::CIEstart+1] = {�

CIE Z function values �
};

Given the XYZ() method in Spectrum, it’s easy for us to convert to an XYZ
image.�
Convert image to XYZ ���
Float *xyz = new Float[3*nPix];
for (int i = 0; i < nPix; ++i)

Lout[i].XYZ(&xyz[3*i]);

We’ll define some macros to clean up some of the code to come; Y(i) returns
the yλ value for the ith pixel, etc.�
ToneMap Declarations ���
#define X(i) (xyz[3*(i)])
#define Y(i) (xyz[3*(i)+1])
#define Z(i) (xyz[3*(i)+2])

� ��� � � ��� � � � � � � �
�
tonemap.h* ����

Source Code Copyright �
#ifndef TONEMAP_H
#define TONEMAP_H 1
#include "lrt.h"
#include "film.h"�
ToneMap Declarations �
#endif // TONEMAP_H

In the early days of computer graphics, final pixel values typically had color
values between zero and one, with no pretense of being associated with actual
physical quantities. In the real-world, scenes often have as many as five orders
of magnitude of variation from the brightest parts to the darkest parts, and the
human visual system generally handles this variation well. Not only are computer
displays unable to display very bright colors, they can generally display only about
two orders of magnitude of brightness variation as well.

Because realisitic scenes rendered with physically-based rendering algorithms
may exhibit this same mismatch between scene brightness and the display device’s
capabilities, it’s important to address the issue of displaying the image such that it
visually has as close an appearence to the actual scene as possible. It has recently
been an active area of research to find good methods to compress down those extra
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orders of magnitude for image display. This work has fallen under the rubric of
tone mapping (or tone reproduction; it draws on research into the human visual
system (HVS) to guide the development of techniques for image display. By ex-
ploiting properties of the HVS, tone mapping algorithms have been developed that
do remarkably well at compensating for display device limitations. In this section,
we will describe a few such algorithms and the principles behind them. Our cov-
erage of this area touches on representative a subset of the possibilities, though the
further reading section gives pointers to many recent papers in this field.

Luminance and photometry

Because these algorithms are generally based on human perception of bright-
ness, tone mapping operators are usually based on the unit of luminance, which
gives a sense of how bright a spectral power distribution appears to a human ob-
server. For example, luminance accounts for the fact that a SPD with a particular
amount of energy that is green will appear much brighter to a human than a SPD
with the same amount of energy that is blue.

Luminance is closely related to radiance; given a spectral radiance value, a lu-
minance value can be computed with a simple conversion formula. In fact, all of
the radiometric quantities defined in Chapter 5 have analogs in the field of photom-
etry, which is the study of visible electromagnetic radiation and its perception by
the HVS. Each spectral radiometric quantity can be converted to its corresponding
photometric quantity by integrating with the spectral response curve V

�
λ � , which

describes the relative sensitivity of the human eye to various wavelengths. For ex-
ample, luminance, which we will denote here by Y, is related to spectral radiance
L
�
λ � by

Y � �
λ

L
�
λ � V � λ � dλ �

Fortunately, the CIE Y
�
λ � tristimulus curve was chosen to be proportional to V

�
λ �

so that
Y � 683 �

λ
L
�
λ � Y � λ � dλ �

Thus, we already have the luminance of each pixel in the image within a scale
factor. We’ll provide a macro that gives the luminance of the ith pixel:�
ToneMap Declarations ��� �
#define LUMINANCE(i) (683.f * Y(i))

The units of luminance are candelas per meter squared (cd � m2), where the can-
dela is the photometric equivalent of radiant intensity. The quantity cd � m2 is often
referred to in units of nits. Some representative luminance values are given in
Figure 8.4.

The human eye has two types of photoreceptor responsible for detecting light:
rods and cones. Rods help with perception in dark environments (scoptic light
levels), ranging from approximately 10

� 6 to 10 cd � m2. Rods give little information
about color and are not very good at resolving fine details. Cones handle light
ranging from approximately � 01 to 108 cd � m2 (photopic light levels.) There are
three types of cones, with sensitivity to different wavelengths of light. (Computer
displays generally display luminances from about 1 to 100 cd � m2.)

Basic tone mapping approaches
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Figure 8.3: St. Peter’s Basilica in Rome...
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Luminance (cd � m2, or nits)
600,000 Sun at horizon
120,000 60 Watt light bulb
8,000 Clear sky
100–1000 Typical office
1–100 Typical computer display
1–10 Street lighting
0.25 Cloudy moonlight

Figure 8.4: Representative luminance values for a number of lighting settings.

The most common approach to tone reproduction is to compute a scale factor
for each pixel that maps its value to the display’s dynamic range. For simple tone
reproduction operators, a single scale factor is often used for all pixels in the image.
Such operators are called spatially uniform operators. They give a monotonic map-
ping of image luminance to display luminance. More sophisticated approaches use
a scale that varies based on each pixel’s brightness and the brightness of nearby
pixels; these are spatially varying operators and they do necessarily guarantee a
monotonic mapping.

That it is possible (and effective) to have a varying operator is an interesting
thing. The human eye is more sensitive to relative changes in luminance locally,
such that if two separate parts of the image have the same luminance, we can
often get away with assigning them utterly different pixel values without the human
observer noticing that anything is amiss. It turns out that it’s more important that
the relative pixel values compared to a pixel’s neighbors are set appropriately than
its absolute value be set appropriately.

The HVS’s sensitivity to luminance changes varies depending on the adaptation
luminance, Y a. The adaptation luminance may vary over different parts of the im-
age. In the methods below, we will use both the display adaptation luminance Y a

d ,
which is the adaptation luminance of the human observer looking at the computer
display, and the world adaptation luminance, Y a

w , the adaptation luminance that
the human would have if viewing the actual scene. A number of time-dependent
tone reproduction operators have been recently developed, where the human visual
system’s adaptation to light over time is modeled. (e.g. when the lights are turned
off in a room, over it takes a few minutes for the HVS to adjust.) In the interests of
simplicity, however, we won’t include the implementations of any time-dependent
operators here.

One of the goals of most tone reproduction algorithms is to preserve contrast in
the displayed image. Because the human visual system is more sensitive to relative
contrast than it is to absolute brightness, it’s more important to make sure that
enough distinct colors are used in all regions of the image–bright and dim–so that
different colors are seen, rather than mapping a wide range of image intensities to
the same pixel values. Thus, an object that is twice as bright as another one in the
scene doesn’t necessarily need to be twice as bright on the display. It’s the local
changes in contrast that seem to be the most important thing for the human visual
system.

less color perception at scoptic levels
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acuity: at low luminance levels, eye isn’t as good at resolving high-frequency
details. 1000 nits, can resolve about 50 cycles per degree, at .001 nits, only about
2.2 cycles per degree.

Tone mapping interface

We will now define a handful of tone mapping operators. All of them inherit
from the ToneMap base class, which specifies the interface method, Map().�
ToneMap Declarations ��� �
class ToneMap {
public:�

ToneMap Interface �
};

The Map() function takes a pointer to the XYZ pixel values and the resolution
of the image. It can also access the DisplayInfo structure in order to find infor-
mation about the particular display device.�
ToneMap Interface ��� �
virtual void Map(Float *xyz, int xRes, int yRes,

const DisplayInfo &di) const = 0;

The DisplayInfo structure holds a ToneMap pointer, initialized to NULL by de-
fault. For the tone reproduction operators that make use of information, it also
holds fields that record the maximum luminance that the device is capable of dis-
playing, maxDisplayY, and the adaptation luminance of the viewer, displayAdaptationY.
These are set to common default values.�
DisplayInfo Data ���
ToneMap *toneMap;
Float maxDisplayY, displayAdaptationY;

�
DisplayInfo Constructor Implementation ���
toneMap = NULL;
maxDisplayY = 100.f;
displayAdaptationY = 50.f;

If the tone operator is non-NULL, we apply it to the XYZ pixels:�
Apply tone reproduction to image ���
if (dinfo.toneMap)

dinfo.toneMap->Map(xyz, xPixelWidth, yPixelWidth, dinfo);

Maximum to white
�
maxwhite.cc* ����

Source Code Copyright �
#include "tonemap.h"�
MaxWhiteOp Declarations ��
MaxWhiteOp Method Definitions �
The easiest tone reproduction operator to apply (besides hoping that the image’s

pixel values are already in a suitable range for the display) is the maximum to white
operator. It loops over all of the pixels to find the one with the greatest luminance.
It then scales all of the pixels so that the brightest one maps to a value of one.



Sec. 8.4] Tone Mapping 249

241 DisplayInfo
513 max
248 ToneMap

There are two main disadvantages to this operator in practice. First, it doesn’t
account for the human visual system at all: if the lights in the scene are turned
up to be 100 times brighter and the scene is re-rendered, the maximum to white
operator will give the same displayed image as before. Second, a small number
of very bright pixels can cause the rest of the image to be too dark to be visible.
Nonetheless, it can work well for scenes without too much dynamic range in the
image and serves as a baseline that can show off the improvement that smarter
operators offer.�
MaxWhiteOp Declarations ���
class MaxWhiteOp : public ToneMap {

void Map(Float *xyz, int xRes, int yRes, const DisplayInfo &di) const;
};

�
MaxWhiteOp Method Definitions ���
void MaxWhiteOp::Map(Float *xyz, int xRes, int yRes,

const DisplayInfo &di) const {�
Compute maximum luminance of all pixels �
Float scale = 683.f / maxLum;�
Apply scale to all image pixels �

}
�
Compute maximum luminance of all pixels ���
Float maxLum = 0.;
for (int i = 0; i < xRes * yRes; ++i)

maxLum = max(maxLum, LUMINANCE(i));
�
Apply scale to all image pixels ���
for (int i = 0; i < xRes * yRes; ++i) {

X(i) *= scale;
Y(i) *= scale;
Z(i) *= scale;

}

Contrast-based scale factor
�
contrast.cc* ����

Source Code Copyright �
#include "tonemap.h"�
ContrastOp Declarations ��
ContrastOp Method Definitions �
An early tone reproduction operator that focused on preserving contrast in the

displayed image was developed by Ward. Previous researchers had developed
models that describe the smallest change in luminance that is noticeable to a hu-
man observer given a particular adaptation luminance (the just noticeable differ-
ence, otherwise known as JND). For larger adaptation luminances, it takes a larger
change in luminance to be noticeable.

XXX make clear that this makes dark images dim, bright images bright, etc...
XXX

Figure 8.5.
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Figure 8.5: contrast

Ward applied this research to derive an algorithm that computes a single spatially-
uniform scale factor that attempts to preserve contrast visibility–given a region of
the image that is just noticeably different from its neighbor, pixel values should be
chosen such that the person looking at the display perceives that those two pixel
values are just noticeably different. XXX Don’t want to scale to more JNDs, since
that’s a waste of the display’s dynamic range, and don’t want to scale to fewer,
since then we will not perceive contrast when we should. XXX�
ContrastOp Declarations ���
class ContrastOp : public ToneMap {
public:

void Map(Float *xyz, int xRes, int yRes, const DisplayInfo &di) const;
};

�
ContrastOp Method Definitions ���
void ContrastOp::Map(Float *xyz, int xRes, int yRes,

const DisplayInfo &di) const {�
Compute world adaptation luminance ��
Compute contrast-preserving scalefactor ��
Apply scale to all image pixels �

}

Blackwell found that given an adaptation luminance Y a, a reasonable model of
the minimum change in luminance necessary to be visible is given by:

∆Y
�
Y a � � 0 � 0594 � � 1 � 219 �

�
Y a � 0 � 4 � 2 � 5 �

We would like to scale the image in a way such that the variation in display
luminances is such that the minimum discernable luminance change for the display,
given the display adaptation, maps to the minimum discernable luminance change
for the image being displayed, given the image adaptation. In other words, we
would like to determine a scale s such that

∆Y
�
Y a

d � � s � ∆Y
�
Y a

w � �
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We can substitude Blackwell’s model and solve this for s, giving

s �
�

1 � 219 �
�
Y a

d � 0 � 4

1 � 219 �
�
Y a

w � 0 � 4 � 2 � 5 �

Applying this scale factor to each pixel in the image maps the world luminance
to display luminance. We then need to divide the result by the maximum display
luminance to get pixel values in the � 0 � 1 � range.

To compute the world adaptation luminance Y a
w , we comupte a log average of

the luminances in the image. This helps bright regions from overwhelming dark
regions. If we knew more about the actual adaptation level (e.g. based on what
part of the image the viewer was looking at), a more precise adaptation luminance
could possibly be computed.�
Compute world adaptation luminance ���
Float Ywa = 0.;
for (int i = 0; i < xRes * yRes; ++i)

if (LUMINANCE(i) > 0) Ywa += logf(LUMINANCE(i));
Ywa = expf(Ywa / (xRes * yRes));

And the display adaptation luminance, Y a
d , is available in the DisplayAdaptionY

field of the DisplayInfo structure. Because the scale-factor expects luminance
values, we scale it by 683 before applying it to the pixels.�
Compute contrast-preserving scalefactor ���
Float scale = powf((1.219f + powf(di.displayAdaptationY, 0.4f)) /

(1.219f + powf(Ywa, 0.4f)), 2.5f);
scale *= 683.f / di.maxDisplayY;

Varying adaptation luminance
�
highcontrast.cc* ����

Source Code Copyright �
#include "tonemap.h"
#include "mipmap.h"�
HighContrastOp Declarations ��
HighContrastOp Method Definitions �
As mentioned in the introduction to this section, we can often make better use

of the display’s dynamic range by using a scale factor that varies over the image.
Here we will implement a tone reproduction operator tailored for high-contrast
scenes that computes a local adaptation luminance that varies over the image. The
local adaptation luminance is then used to compute a scale-factor using a contrast-
preserving tone reproduction operator, in a similar manner to the ContrastOp op-
erator defined above.

The main difficulty with methods that compute local adpatation luminance is
that they are prone to artifacts at boundaries between very bright and very dim
parts of the image. If the tone reproduction operator scales the dim pixels using an
adaptation luminance that includes the effects of the bright pixels, the dim pixels
will be mapped to black, causing a halo artifact. Instead, we would like to make
sure that the dim pixels have an adaptation luminance based on just nearby dim
pixels.
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The HighContrastOp operator, to be defined shortly, uses locally-linear scale-
factor, based on local adaptation luminance. Local adaptation luminance is com-
puted in a novel way that avoids halo artifacts. This approach is based on a tone
reproduction operator developed by Ashikhmin (Ash02). Reinhard et al simul-
taneously developed an operator that uses the same technique to comupte local
adaptation (ERF02). Over local regions of the image where the adaptation lumi-
nance is slowly changing, this tone reproduction operator gives a local scale factor,
which is tuned to preserves contrast. However, since adaptation is allowed to vary
over the image, details are preserved–bright regions aren’t blown out to be white,
and dark regions aren’t mapped down to black pixels.

Figure 8.6�
HighContrastOp Declarations ���
class HighContrastOp : public ToneMap {
public:

void Map(Float *xyz, int xRes, int yRes, const DisplayInfo &di) const;
private:�

HighContrastOp Utility Methods �
};

The tone mapping function that HighContrastOp uses is based on the threshold
versus intensity (TVI) function, which gives the just noticable luminance difference
for given adaptation level TVI

�
Y a � . This is similar to the JND function used by

Ward, but is based on a more complex model of the human visual system, including
response to scoptic light levels.

First, we define the perceptual capacity, which tells us, given a particular adap-
tation level, how many just-noticeable-differences a given luminance range covers:

Ya � Yb

TV I
�
Y a �

To be able to quickly compute the perceptual capacity of a given pair of luminance
values, the auxilary capacity function C

�
Y � is defined as the integral

C
�
Y � � � Y

0

dY
TV I

�
Y � �

where the adaptation level to compute the differential perceptual capacity at a given
luminance is assumed to be equal to the luminance. Then C

�
Ya � � C

�
Yb � is the

perceptual capacity from Ya to Yb.
Ashikhmin then made some simplifications to a widely-used TVI function in

order to be able to integrate it analytically, giving the function

C
�
Y � �

���� ���
Y � 0 � 0014 Y � 0 � 0034
2 � 4483 � log

�
L � 0 � 0034 ��� 0 � 4027 0 � 0034 � Y � 1

16 � 563 �
�
Y � 1 ��� 0 � 4027 1 � Y � 7 � 2444

32 � 0693 � log
�
Y � 7 � 2444 ��� 0 � 0556 otherwise
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Figure 8.6: highcontrast, log widths, local contrast...
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�
HighContrastOp Utility Methods ���
static Float C(Float y) {

if (y < 0.0034f) return y / 0.0014f;
else if (y < 1) return 2.4483f + log10f(y/0.0034f)/0.4027f;
else if (y < 7.2444f) return 16.563f + (y - 1)/0.4027f;
else return 32.0693f + log10f(y / 7.2444f)/0.0556f;

}

Given C
�
Y � , we can now take a given luminance value and determine how many

JND steps it is from the minimum luminance in the image,

C
�
Y � � C

�
Ymin �

and we can also compute, of all of the JND steps, what fraction of the way through
all of them it is:

C
�
Y � � C

�
Ymin �

C
�
Ymax � � C

�
Ymin �

This gives us a sense of how far through the range of display luminances this world
luminance should be mapped. Thus, the overall tone mapping operator, giving a
result in terms of display luminance, is

T
�
Y � � Y max

d
C
�
Y � � C

�
Ymin �

C
�
Ymax � � C

�
Ymin �

Because we want to map final values to � 0 � 1 � , the display luminance value Y max
d

cancels out, saving us the trouble of determining it in the first place.�
HighContrastOp Utility Methods ��� �
static Float T(Float y, Float CYmin, Float CYmax) {

return (C(y) - CYmin) / (CYmax - CYmin);
}

Given this tone mapping function T
�
Y a � , the scale-factor at a given pixel

�
x � y �

is defined by

s
�
x � y � � T

�
Y a � x � y ���

Y a
�
x � y ���

�

As long as Y a � x � y � is slowly varying over the image, this is a locally-linear map-
ping (more or less).

We can now define the main tone reproduction function. It compues the mini-
mum and maximum luminances of all pixels in the image so that Ymax and Ymin can
be computed. In order to be able to quickly do the searches to comptue adapta-
tion luminances, we then build an image pyramid data structure, where the original
image is progressively filtered down into lower-resolution copies of itself. This
is then used when we loop over all of the pixels and apply the tone reproduction
operator.�
HighContrastOp Method Definitions ���
void HighContrastOp::Map(Float *xyz, int xRes, int yRes,

const DisplayInfo &di) const {�
Find minimum and maximum image luminances ��
Build luminance image pyramid ��
Apply high contrast tone mapping operator �

}



Sec. 8.4] Tone Mapping 255

241 DisplayInfo
252 HighContrastOp
513 max
513 min
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�
Find minimum and maximum image luminances ���
Float minLum = LUMINANCE(0), maxLum = LUMINANCE(0);
for (int i = 0; i < xRes * yRes; ++i) {

minLum = min(minLum, LUMINANCE(i));
maxLum = max(maxLum, LUMINANCE(i));

}
Float CYmin = C(minLum), CYmax = C(maxLum);

Most previous approaches to computing local adaptation luminance used a blurred
version of the original image, though this led to the halo artifacted described pre-
viously. The insight that the developers of this approach had was that adaptation
luminance shouldn’t be based on a constant-sized average of luminances around
the pixel

�
x � y � , due to big changes in luminance in real-world images, but should

be based on a varying average: as long as the luminance is locally roughly constant,
the area can be expanded until a significant change in luminance is reached. This
gives us the best of both worlds: when luminance is changing slowly, we compute
adaptation luminance over a larger area, giving smooth variation of adpataion lu-
minance when we are far from high contrast features. When contrast is quickly
changing, however, we detect this and don’t suffer artifacts.

A standard technique from image processing is to define the local contrast
lc
�
x � y � of a pixel as the magnitude of the difference between that pixel’s value

and its value in a blurred version of the image:

lc
�
s � x � y � � Bs

�
x � y � � B2s

�
x � y �

Bs
�
x � y �

�

Here s is the filter width used for blurring the image, expressed in pixels. We
would like to find the smallest local extent around each pixel

�
x � y � of radius s such

that � lc � s � x � y � � is less than some constant value–when it becomes greater than that
value, we have passed the amount of acceptable local contrast. Having found such
an s, adaptation luminance is given by

Y a � x � y � � Bs
�
x � y � �

thus fulfilling the criteria above. The top image in Figure 8.6 shows this operator
applied to the St. Peter’s Basilica image, while the middle image shows the local
contrast computed at each pixel for s � 1 � 5, and the bottom image shows the widths
used for computing local adaptation luminance at each pixel, where the brighter
the pixel, the wider a region was sampled. Notice how edges where there are large
jumps in brightness in the original image are found by the local contrast function.

In order to be able to quickly find the value of the blurred image Bs
�
x � y � , we

will create an image pyramid with the MIPMap class described in Section 11.6.�
Build luminance image pyramid ���
Float *Yadapt = new Float[xRes * yRes];
for (int i = 0; i < xRes * yRes; ++i)

Yadapt[i] = LUMINANCE(i);
MIPMap<Float> pyramid(xRes, yRes, Yadapt);
delete[] Yadapt;

Now we loop over all of the pixels in the image, computate the adaptation lumi-
nance, and can then directly apply the tone reproduction operator.
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�
Apply high contrast tone mapping operator ���
ProgressReporter progress(xRes*yRes, "Tone Mapping");
for (int y = 0; y < yRes; ++y) {

Float yc = Float(y) / Float(yRes-1);
for (int x = 0; x < xRes; ++x) {

Float xc = Float(x) / Float(xRes-1);�
Compute adaptation luminance ��
Apply tone mapping based on adaptation luminance �
progress(stderr);

}
}
fprintf(stderr, "\n");

To compute the adaptation luminance, we get look up the value of the pixel
with a given blur amount and with four times that blur amount to compute the
local contrast function. If it’s above the value � 25 (an arbitrary constant, chosen
after some experimentation), we set the adaptation luminance by the average of a
slightly region around the pixel. Otherwise, we increase the blur radius a bit and
try again.�
Compute adaptation luminance ���
Float dwidth = 1.f / Float(max(xRes, yRes));
Float maxWidth = 32.f / Float(max(xRes, yRes));
Float width = 2.f * dwidth, prevWidth = 0.f;
Float Yadapt;
Float prevlc = 0.f;
const Float maxLocalContrast = .5f;
while (1) {�

Compute local contrast at
�
x � y ����

If maximum contrast is exceeded, compute adaptation luminance ��
Increase search region and prepare to compute contrast again �

}
�
Compute local contrast at

�
x � y �����

Float b0 = pyramid.Lookup(xc, yc, width, 0.f, 0.f, width);
Float b1 = pyramid.Lookup(xc, yc, 2.f*width, 0.f, 0.f, 2.f*width);
Float lc = fabsf((b0 - b1) / b0);

�
If maximum contrast is exceeded, compute adaptation luminance ���
if (lc > maxLocalContrast) {

Float t = (lc - prevlc) / maxLocalContrast;
Float w = Lerp(t, prevWidth, width);
Yadapt = pyramid.Lookup(xc, yc, w, 0.f, 0.f, w);
break;

}
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�
Increase search region and prepare to compute contrast again ���
prevlc = lc;
prevWidth = width;
width += dwidth;
if (width >= maxWidth) {

Yadapt = pyramid.Lookup(xc, yc, maxWidth, 0.f, 0.f, maxWidth);
break;

}
�
Apply tone mapping based on adaptation luminance ���
Float scale = 683.f * T(Yadapt, CYmin, CYmax) / Yadapt;
int off = x + y*xRes;
X(off) *= scale;
Y(off) *= scale;
Z(off) *= scale;

Spatially-varying non-linear scale
�
nonlinear.cc* ����

Source Code Copyright �
#include "tonemap.h"�
NonLinearOp Declarations ��
NonLinearOp Method Definitions �
One last approach is less well-grounded in the perception literature, though it

works remarkably well in practice. As with the MaxWhiteOp operator, we start by
computing the maximum luminance of all pixels in the image. We then scale the�
x � y � th pixel by the factor

s
�
x � y � �

� 1 � Y � x � y �
Y 2

max �
1 � Y

�
x � y �

This maps black pixels to zero and the brightest pixels to white. In between, darker
pixels require relatively less change in brightness to cause a given change in output
pixel value than bright pixels do. This matches the human visual system, which
has a generally logarithmic response curve, rather than a linear one.

Figure 8.7.�
NonLinearOp Declarations ���
class NonLinearOp : public ToneMap {

void Map(Float *xyz, int xRes, int yRes, const DisplayInfo &di) const;
};



DisplayInfo 241
NonLinearOp 257

258 Image Pipeline [Ch. 8

Figure 8.7: nonlinear

�
NonLinearOp Method Definitions ���
void NonLinearOp::Map(Float *xyz, int xRes, int yRes,

const DisplayInfo &di) const {�
Compute world adaptation luminance �
Float invLum2 = 1.f / (Ywa * Ywa);
for (int i = 0; i < xRes * yRes; ++i) {

Float scale = (1.f + Y(i) * invLum2) /
(1.f + Y(i));

X(i) *= scale;
Y(i) *= scale;
Z(i) *= scale;

}
}

� ��� 	 � � � ��� � � � � � � � ��� # ��� � ���	� � ��� � ���
After the tone reproduction step, we should have pixel XYZ values with bright-

ness between zero and one. (Some tone reproduction operators don’t guarantee
this, so we’ll clamp the values to this range later in the pipeline just to be sure.) We
will now use information about the particular display device being used to convert
the device-independent XYZ pixel values to device-dependent RGB values. This
is another change of spectral basis, where the new basis is determined by the spec-
tral response curves of the red, green, and blue elements of the display device. As
before, weights to convert from XYZ to the device RGB can be precomputed. The
DisplayInfo structure holds the weights for the particular display being used.�
DisplayInfo Data ��� �
Float rWeight[3], gWeight[3], bWeight[3];

By default, these are initialized to the appropriate weights for the RGB primaries
as specified by the HDTV standard.�
DisplayInfo Constructor Implementation ��� �
rWeight[0] = 3.240479f; rWeight[1] = -1.537150f; rWeight[2] = -0.498535f;
gWeight[0] = -0.969256f; gWeight[1] = 1.875991f; gWeight[2] = 0.041556f;
bWeight[0] = 0.055648f; bWeight[1] = -0.204043f; bWeight[2] = 1.057311f;
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�
Convert image to display RGB ���
Float *rgb = new Float[3*nPix];�
Define RGB access macros �
for (int i = 0; i < nPix; ++i) {

R(i) = dinfo.rWeight[0]*X(i) + dinfo.rWeight[1]*Y(i) +
dinfo.rWeight[2]*Z(i);

G(i) = dinfo.gWeight[0]*X(i) + dinfo.gWeight[1]*Y(i) +
dinfo.gWeight[2]*Z(i);

B(i) = dinfo.bWeight[0]*X(i) + dinfo.bWeight[1]*Y(i) +
dinfo.bWeight[2]*Z(i);

}
delete[] xyz;
xyz = NULL;

�
Define RGB access macros ���
#define R(i) (rgb[3*(i)])
#define G(i) (rgb[3*(i)+1])
#define B(i) (rgb[3*(i)+2])

Unfortunately, there are many colors that modern displays cannot reproduce;
such colors are called out of gammut. (For example, XXX oranges and purples
XXX.) Such colors will have RGB values outside the range � 0 � 1 � . There aren’t
any completely satisfactory solutions to this problem; it’s all a matter of trading
off different kinds of error. We will just clamp out of gammut colors to the range

� 0 � 1 � . This works well for colors that aren’t too far out of that range, though it does
break down in cases like a color with RGB values

�
2 � 1 � 1 � . This method clamps it

to
�
1 � 1 � 1 � , turning what was a reddish color into white.�

Scale and handle out-of-gamut RGB values ���
for (int i = 0; i < nPix; ++i) {

R(i) = Clamp(dinfo.gain * R(i), 0., 1.);
G(i) = Clamp(dinfo.gain * G(i), 0., 1.);
B(i) = Clamp(dinfo.gain * B(i), 0., 1.);

}

Now we need to adjust the color values for the non-linear change in displayed
brightness that displays based on cathode ray tubes (CRTs) exhibit. With these
kinds of displays, the displayed brightness doesn’t vary linearly with the pixel val-
ues: a pixel with value 100 isn’t usually twice as bright as a pixel with value 50.
(Although newer display technologies, such as LCD screens don’t naturally have
non-linear response like this, they are generally built with logic that mimics this
characteristic of CRTs. CHECK THIS.)

This non-linear response is generally modeled with a power function

d � v1 � γ �

where d is the display brightness, v is the voltage applied to the display’s electron
gun, and the gamma value γ is generally 2.2.�
DisplayInfo Data ��� �
Float gain, invGamma;
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�
DisplayInfo Constructor Implementation ��� �
invGamma = 1.f / 2.2f;

�
Apply gamma correction ���
for (int i = 0; i < nPix; ++i) {

R(i) = powf(R(i), dinfo.invGamma);
G(i) = powf(G(i), dinfo.invGamma);
B(i) = powf(B(i), dinfo.invGamma);

}

Once we have gamma corrected pixel values between 0 and 1, we may need to
map them to the range of values that the display expects (e.g. 0 to 255.) Some
image file formats can store floating-point pixel values, so we don’t always need to
perform this step.�
DisplayInfo Data ��� �
bool integerFormat;
int maxDisplayValue;

�
DisplayInfo Constructor Implementation ��� �
integerFormat = true;
maxDisplayValue = 255;

�
Map image to display range ���
if (dinfo.integerFormat) {

for (int i = 0; i < nPix; ++i) {
R(i) *= dinfo.maxDisplayValue;
G(i) *= dinfo.maxDisplayValue;
B(i) *= dinfo.maxDisplayValue;
AlphaOut[i] *= dinfo.maxDisplayValue;

}
}

Finally, we may dither the pixel values before converting them to integer values
for display. Dithering involves adding a small random noise value to each pixel’s
color component. It improves the visual quality of displayed images by making the
transition between areas with one pixel to another less well-delineated.�
DisplayInfo Data ��� �
Float ditherAmount;

�
DisplayInfo Constructor Implementation ��� �
ditherAmount = 0.5f;
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�
Dither image ���
if (dinfo.ditherAmount > 0) {

for (int i = 0; i < nPix; ++i) {
R(i) += RandomFloat(-dinfo.ditherAmount,

dinfo.ditherAmount);
G(i) += RandomFloat(-dinfo.ditherAmount,

dinfo.ditherAmount);
B(i) += RandomFloat(-dinfo.ditherAmount,

dinfo.ditherAmount);
}

}

Finally now, we can save the image out to disk.�
DisplayInfo Data ��� �
string filename;

�
DisplayInfo Constructor Implementation ��� �
filename = "lrt.tiff";

�
Save display image to disk ���
if (dinfo.integerFormat)

TIFFWrite8Bit(dinfo.filename, rgb, AlphaOut, xPixelWidth,
yPixelWidth, 3, xResolution, yResolution);

else
TIFFWriteFloat(dinfo.filename, rgb, AlphaOut, xPixelWidth,

yPixelWidth, 3, xResolution, yResolution);

���"� ������� � � ����� ���

Tumblin and Rushmeier first introduced a the first tone mapping algorithms to
computer graphics and sparked the recent focus on tone reproduction (TR93).
Other early work included Chiu et al’s spatially-varying scale (CHS � 93), and
Ward’s contrast-preservation scale (War94a), which we have implemented in Sec-
tion 8.4.

misc: (THG99), (LRP97)
boundary preservation (TT99)
Wandell’s book on vision has excellent coverage of properties of the human

visual system (Wan95).
Reinhard et al photographic (ERF02), followup (Rei02)
Ashikhmin contrast boundary stuff (Ash02)
Durand and Dorsey (DD02)
vision overview (Fer01)
Interactive Durand and Dorsey (DD00)
complex/sophisticated (PFFG98)
drive rendering (RPG99) (also cite the meyer paper)
adaptation and masking (FPSG96) extended Ward’s contrast-based method to

handle scoptic lighting levels, including reduced color sensitivity and spatial acuity.
(FPSG97)

Time dependence (PTYG00)
Frankle and McCann 83 retinex paper
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Spencer et al and Nishita glare papers!
Survey article (DCWP02).
Perceptually-driven rendering: Bolin and Meyer (BM98), Ramasubramanian et

al (RPG99).
� � ��� ����# � #

8.1 exercise



� � � � ��� � � � � � �

This chapter defines a set of classes that implement various models for describ-
ing light scattering at surfaces. Recall that the BRDF abstraction was introduced
in Chapter 5 to describe light scattering at surfaces. We will define generic in-
terface to these surface reflection and transmission functions, which are known as
BRDFs (bidirectional reflectance distribution functions) and BTDFs (bidirectional
transmittance distribution functions. Scattering from surfaces is often most easily
described as a mixture of a set of BRDFs and BTDFs; in Chapter 10, we will in-
troduce a BSDF object that holds multiple BRDFs and BTDFs to represent overall
scattering from the surface.

Specific reflection models come from a number of sources:

1. Real world data: reflection distribution properties of a number of real-world
surfaces have been measured. This data may then be tabularized or a set of
basis functions may be fit to it.

2. Phenomenological: equations that attempt to describe the qualitative prop-
erties of real-world surfaces can be remarkably effective at mimicking them.
These BSDFs can be particularly easy to use, since they tend to have intuitive
parameters (e.g. “roughness”) that modify their behavior.

3. Simulation: if low-level information is known about the composition of a
surface (e.g. that a paint is comprised of colored particles of some average
size suspended in a medium, or that a particular fabric is comprised from
two types of thread, each with known reflectance properties), light scattering
inside that surface may be simulated to generate data that can then be fit to
basis functions.

��� �



264 Reflection Models [Ch. 9

4. Geometric optics: similar to simulation approaches, if the surface’s lower-
level scattering and geometric properties are known, then models can often
be derived directly from these descriptions. This approach is much more
tractable if geometric optics is used to model light’s interaction with the
surface–this is a much simpler model, not taking into account wave effects
like polarization, etc.

5. Physical (wave) optics: some reflection models have been derived using a
detailed model of light, treating it as a wave and computing the solution
to Maxwell’s equations to find how it scatters from a surface with known
properties. These models tend to be computationally expensive however, and
usually aren’t substantially more accurate than models based on Geometric
optics.

In this chapter, we will define implementations of reflection models based on
measured data, phenomenological models, and geometric optics.

Before we define the reflection and transmission interfaces and classes, a brief
overview of how they fit into the overall system and are used in the process of com-
puting outgoing radiance at a point being shaded: the integrator classes, defined in
Chapter 15, are responsible for determining which surface is first visible along a
ray and computing the scattered radiance at that point. One the hit point is found,
the integrator runs the surface shader that was bound to the surface. The surface
shader is a short procedure that is responsible for deciding what the BSDF is at a
particular point on the surface (see Chapter 10); it returns a BSDF object that holds
BRDFs and BTDFs for that point. The integrators then use the BSDF to compute
the scattered light at the point, based on the incoming illumination from the light
sources in the scene.

Basic terminology

In order to be able to compare the visual appearence of different reflection mod-
els, we will introduce some basic terminology for describing reflection from sur-
faces. Reflection from real surfaces often doesn’t cleanly fit into the categorization
below, though it offers a general framework to start out with.

Reflection from surfaces can be split into three categories: diffuse, glossy, and
specular. Diffuse surfaces scatter light equally in all directions–although a per-
fectly diffuse surface isn’t physically reliazible, examples of near-diffuse surfaces
include dull chalkboards and matte paint. Glossy surfaces (for example, gloss
paint, or plastic) scatter light preferentially in a set of reflected directions–they
show blurry reflections of other objects. Specular surfaces are in a sense a limiting
case of glossy surfaces, reflecting incident light in a single direction. Mirrors and
glass are examples of specular surfaces.

Isotropic vs anisotropic (3D vs 4D)...
XXX image showing these differences.
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Figure 9.1: basic BSDF interface setting

� �
� � ��# � � ��������� � �����
�
reflection.h* ����

Source Code Copyright �
#ifndef REFLECTION_H
#define REFLECTION_H
#include "lrt.h"
#include "geometry.h"�
BSDF Declarations ��
BxDF Declarations ��
BSDF Inline Methods �
#endif // REFLECTION_H

�
reflection.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "color.h"
#include "reflection.h"
#include "shapes.h"
#include "mc.h"
#include <stdarg.h>�
BxDF Utility Functions ��
BxDF Method Definitions ��
BSDF Method Definitions ��
BSDF MC Methods �
We will first define the interface for the individual BRDF and BTDF functions.

BRDFs and BTDFs share a common base-class, BxDF, which defines the basic
interface that they adhere to. There are a few important conventions to keep in
mind when reading and implementing them:

1. They are all defined with respect to a standard reflection coordinate system,
aligned such that the surface normal lies along the � z axis and the S and
T directions lie along the � x and � y axes, respectively. (See Figure 9.1.)
All direction vectors passed to and from these routines should be defined
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with respect to this coordinate system. An important implication of this
convention is that the dot product of a direction vector in this coordinate
system with the surface normal is just the vector’s z component. We will
make use of this fact extensively throughout this chapter.

2. The incident light direction, �ωi, and the outgoing viewing direction, �ωo, will
be normalized and outward facing after being transformed into the the local
coordinate system at the surface. The surface normal should always point to
the “outside” of the object, which helps us determine if light is entering or
exiting transmissive objects. (Note that the local surface coordinate system
may not be exactly the same as the coordinate system returned by the shapes’
Intersect() routines presented in Chapter 3; They can be modified slightly
to achieve effects like bump-mapping.)

3. The BxDFs should not concern themselves with whether �ωi and �ωo lie in
the same hemisphere. For example, although a reflective BxDF should in
principle return zero reflection if the incident direction is above the surface
and the outgoing direction below it, here we will expect them to compute and
return the amount of light reflected as if they were in the same hemisphere
anyway. Higher-level code in the system will handle making sure that only
reflective or transmissive scattering routines are evaluated as appropriate.
(The need for this convention will be described in Section 10.1.)

4. We assume that light in different wavelengths is decoupled; energy at one
wavelength will not be reflected at a different wavelength. Thus, flourescent
materials are not supported.

Both BRDFs and BTDFs inherit from a base BxDF class that specifies their com-
mon interface. Because both have the exact same interface, this reduces repeated
code and allows some parts of the system to work with BxDFs generially without
distinguishing between BRDFs and BTDFs.�
BxDF Declarations ���
class BxDF {
public:�

BxDF Interface Declarations �
};

By creating new and separate byes for BRDFs and BTDFs, we can improve
type-safety and be able to distinguish between them in the parts of the system that
need to keep them separate.�
BxDF Declarations ��� �
class BRDF : public BxDF {
};

�
BxDF Declarations ��� �
class BTDF : public BxDF {
};

Both BRDFs and BTDFs will provide an f function that returns the value of the
distribution function for the given pair of directions.
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155 Spectrum
16 Vector

�
BxDF Interface Declarations ��� �
virtual Spectrum f(const Vector &wo, const Vector &wi) const = 0;

In contrast to most BxDFs, which scattering incident light from a single direction
in many outgoing directions, perfectly specular objects, like a mirror, glass, or wa-
ter, only scatter light from a single incident direction in a single outgoing direction.
Such BxDFs are best described with delta distributions that are zero except for the
single direction where light is scattered.

These BxDFs need special handling in lrt, so we will also provide a method
called f_delta() to handle scattering that involves the use of delta functions.
BxDFs that implement it return true from IsSpecular(). The f_delta() method
returns not only the amount of light scattered, but also along what direction; it is
necessary for the BxDF to choose the direction in this case, since the caller has no
chance of generating the appropriate �ωi direction on their own.

Delta functions have some subtle implications for the light transport algorithms
in Chapter 15; Section 15.1 describes the issues in detail.�
BxDF Interface Declarations ��� �
virtual bool IsSpecular() const { return false; }

�
BxDF Interface Declarations ��� �
virtual Spectrum f_delta(const Vector &wi, Vector *wo) const {

return 0.;
}

Reflectance

It can be useful to take the aggregate behavior of the 4D BxDF, defined as a func-
tion over pairs of directions, and reduce it to a 2D function over a single direction,
or even to a constant value that describes its overall scattering behavior.

The hemispherical-directional reflectance is a 2D function that gives the total
reflection in a given direction due to constant illumination over the hemisphere, or,
equivalently, total reflection over the hemisphere due to light from a given direc-
tion. It is defined as:

ρdh
�
ω � � 1

π
�

Ω
fr
�
ω � ω � � � cosθ � dω

� �

We will add a method to the BxDF class to compute this value.�
BxDF Interface Declarations ��� �
virtual Spectrum rho(const Vector &w) const;

For some BxDFs, this integral can be computed analytically. For the rest, we will
provide a method to estimate the value of ρdh in Section 14.3 the chapter on Monte
Carlo integration.

The hemispherical-hemispherical reflectance of a surface is denoted by ρhh and
is a constant spectral value that gives the fraction of incident light reflected by a
surface when the incident light is the same from all directions. It is:

ρhh
� 1

π
�

Ω
�

Ω
fr
�
ωi � ωr � � cos θi cosθr � dωidωr
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�
BxDF Interface Declarations ��� �
virtual Spectrum rho() const;

BRDF/BTDF Adapter

It’s handy to be define an adapter class that lets us re-use an already-defined
BRDF class as a BTDF, especially for phenomenological models that may be equally
plausible models of transmission. The BRDFToBTDF class takes a BRDF pointer in
the constructor and uses it to implement the BTDF interface. In particular, this
means forwarding method calls on to the BRDF, possible switching the �ωi direction
to lie in the same hemisphere as �ωo, as the BRDF expects.�
BxDF Declarations ��� �
class BRDFToBTDF : public BTDF {
public:

BRDFToBTDF(BRDF *b) { brdf = b; }
˜BRDFToBTDF() { delete brdf; }�
BRDFToBTDF Method Declarations �

private:
BRDF *brdf;

};
�
BRDFToBTDF Method Declarations ���
static Vector otherHemisphere(const Vector &w) {

return Vector(w.x, w.y, -w.z);
}

�
BRDFToBTDF Method Declarations ��� �
bool IsSpecular() { return brdf->IsSpecular(); }
Spectrum rho(const Vector &w) const {

return brdf->rho(otherHemisphere(w));
}
Spectrum rho() const { return brdf->rho(); }

�
BxDF Method Definitions ���
Spectrum BRDFToBTDF::f(const Vector &wo, const Vector &wi) const {

return brdf->f(wo, otherHemisphere(wi));
}

�
BxDF Method Definitions ��� �
Spectrum BRDFToBTDF::f_delta(const Vector &wo, Vector *wi) const {

Spectrum f = brdf->f_delta(wo, wi);
*wi = otherHemisphere(*wi);
return f;

}
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� ���  � �����"!$�	� � � � ��� � � � � ���	� � � ����# � ��# # ��� �
The behavior of light at perfectly smooth surfaces is relatively easy to character-

ize analytically, in both the physical and geometric optics models. These surfaces
exhibit perfect specular reflection and transmission of incident light: for a given
�ωi direction, all light is scattered in a single outgoing direction. For specular re-
flection, this direction is the outgoing direction that makes the same angle with the
normal that the incoming direction does; see Figure 9.2.

For transmission, this direction is given by Snell’s law, which relates the angle
of the transmitted direction θt to the angle of the incident ray, θi. Snell’s law
depends on the index of refraction for the medium the incident ray is in and the
index of refraction of the medium it is entering. The index of refraction describes
how much more slowly light travels in a particular medium compared to the speed
of light in a vacuum. We will use the “eta” symbol, η, to denote the index of
refraction. Although its value is usually dependent on the wavelength of light, we
will make the usual simplification in graphics by representing it by a single average
floating-point value. Snell’s law is:

ηi sinθi
� ηt sinθt

XXX mention that wavelength-dependence is what gives dispersion: incident white
light split into spectral components, e.g. by a prism.

In addition to knowing in which direction light is reflected and transmitted by
a smooth surface, we also need to compute how much light is reflected and trans-
mitted. The Fresnel equations tell us just this: they are the solution to Maxwell’s
equations at smooth surfaces. There are two sets of Fresnel equations; one for
dielectric media–objects that don’t conduct electricity, like glass–and one for con-
ductors, like metals.

For each of these cases, the respective Fresnel equations have two forms, de-
pending on the polarization of the incident light. If we assume that light is circu-
larly polarized–that it is randomly oriented with respect to the light wave–then the
Fresnel equations for light polarized parallel to the wave direction and light polar-
ized perpendicular to the wave direction are squared and added together to give the
Fresnel reflectance.

To compute the Fresnel reflectance of a dielectric, we need to know the indices
of refraction for the two media; see Figure 9.2. Figure 9.3 has the indices of re-
fraction for a number of dielectric materials.

The Fresnel formulae for dielectrics are:

r � � ηt
�
N � �ωi � � ηi

�
N � �ωt �

ηt
�
N � �ωi � � ηi

�
N � �ωt �

r �
� ηi

�
N � �ωi � � ηt

�
N � �ωt �

ηi
�
N � �ωi � � ηt

�
N � �ωt �

where r � is the Fresnel reflectance for parallel polarized light and r � is the re-
flectance for perpendicular polarized light. ηi and ηt are the indices of refraction
for the incident and transmitted media, and �ωi and �ωt are the incident and trans-
mitted directions, where �ωt was computed with Snell’s law. For light with random
polarization (the usual assumption in graphics),

r � 1
2

�
r2� � r2

� �
�
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Figure 9.2: Basic setting for specular reflection and transmission. The reflected
direction is the direction �ωo opposite the incident direction �ωi that makes the same
angle θi with the surface normal as the incident ray. The transmitted direction
makes an angle θt with the negated surface normal, where θt is given by Snell’s
law, which depends on the indices of refraction of the incident and transmitted
media, ηi and ηt , respectively.

Medium Index of refraction η
Vacuum 1.0
Air at sea level 1.00029
Ice 1.31
Water (20 � C) 1.333
Fused Quartz 1.46
Glass 1.5 - 1.6
Sapphire 1.77
Diamond 2.42

Figure 9.3: Indices of refraction for a variety of objects, giving the ratio of the
speed of light in a vacuum to the speed of light in the medium. Though this is a
generally a wavelength-dependent quantity, these values are just averages over the
visible wavelengths.
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155 Spectrum

Object η k
Gold 0.37 2.82
Silver 0.177 3.638
Copper 0.617 2.63
Steel 2.485 3.433

Figure 9.4: Representative measured values of η and k for a few conductors (data
from Hall.)

�
BxDF Utility Functions ���
Spectrum FrDiel(Float cosi, Float cost, const Spectrum &etai,

const Spectrum &etat) {
Spectrum Rparl = ((etat * cosi) - (etai * cost)) /

((etat * cosi) + (etai * cost));
Spectrum Rperp = ((etai * cosi) - (etat * cost)) /

((etai * cosi) + (etat * cost));
return (Rparl*Rparl + Rperp*Rperp) / 2.f;

}

Due to conservation of energy, the energy transmitted by a dielectric is 1 � Fr, if
Fr is the Fresnel reflectance.

Conductors don’t transmit light. Some of the incident light is absorbed by the
material and turned into heat; the Fresnel formula for conductors tells how much is
reflected. In addition to depending on cos θi, it depends on η, the index of refraction
of the conductor, and k, its absorption coefficient. Values for η and k for a few
conductors are given in Figure 9.4. As with the index of refraction for dielectrics,
these quantities are in general wavelength-dependent though are represented as
averages here.

A widely used approximation to the Fresnel reflectance for conductors is

r2� �
�
η2 � k2 � � N � �ωi � 2 � 2η

�
N � �ωi � � 1�

η2 � k2 � � N � �ωi � 2 � 2η
�
N � �ωi � � 1

r2
�

�
�
η2 � k2 � � 2η

�
N � �ωi � �

�
N � �ωi � 2�

η2 � k2 � � 2η
�
N � �ωi � �

�
N � �ωi � 2

�
BxDF Utility Functions ��� �
Spectrum FrCond(Float cosi, const Spectrum &eta, const Spectrum &k) {

Spectrum tmp = (eta*eta + k*k) * cosi*cosi;
Spectrum Rparl2 = (tmp - (2.f * eta * cosi) + 1) /

(tmp + (2.f * eta * cosi) + 1);
Spectrum tmp_f = eta*eta + k*k;
Spectrum Rperp2 = (tmp_f - (2.f * eta * cosi) + cosi*cosi) /

(tmp_f + (2.f * eta * cosi) + cosi*cosi);
return (Rparl2 + Rperp2) / 2.f;

}

For many conductors, values for η and/or k aren’t known–less work has gone
into measuring these values for real surfaces than has been done for measuring
η for dielectrics. Two approximation methods have been applied in graphics to
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finding plausible values for these quantities. Both assume that the reflectance of
the object has been measured at normal incidence: the viewer and the light are both
looking directly down on the surface. By fixing the value of one of η or k and then
substituting into the Fresnel conductor formula, a value for the other parameter can
be computed so that the proper reflectance is computed for normal incidence.

The first method computes an approximate value of η, assuming that the absorp-
tion coefficient is equal to zero.�
BxDF Utility Functions ��� �
Spectrum FresnelApproxEta(const Spectrum &intensity) {

return (Spectrum(1.) + intensity.Sqrt()) /
(Spectrum(1.) - intensity.Sqrt());

}

And the second technique computes an approximate value of k assuming that
η � 1.�
BxDF Utility Functions ��� �
Spectrum FresnelApproxK(const Spectrum &intensity) {

return 2.f * (intensity / (Spectrum(1.) - intensity)).Sqrt();
}

For convenience, we will define an abstract Fresnel class that defines an in-
terface for computing Fresnel reflection coefficients for given directions, and will
write FresnelConductor and FresnelDielectric instances of it for those two
cases. This helps to simplify the implementation of subsequent BRDFs that may
need to support both forms.�
BxDF Declarations ��� �
class Fresnel {
public:�

Fresnel Interface �
};

�
Fresnel Interface ��� �
virtual Spectrum evaluate(Float cosi) const = 0;

�
BxDF Declarations ��� �
class FresnelConductor : public Fresnel {
public:�

FresnelConductor Interface �
private:�

FresnelConductor Private Data �
};

�
FresnelConductor Interface ��� �
FresnelConductor(const Spectrum &e, const Spectrum &kk)

: eta(e), k(kk) {
}

�
FresnelConductor Private Data ���
Spectrum eta, k;
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The evaluation routine for FresnelConductor is simple; it just calls the appro-
priate utility function.�
BxDF Method Definitions ��� �
Spectrum FresnelConductor::evaluate(Float cosi) const {

return FrCond(fabsf(cosi), eta, k);
}

�
BxDF Declarations ��� �
class FresnelDielectric : public Fresnel {
public:�

FresnelDielectric Interface �
private:�

FresnelDielectric Private Data �
};

�
FresnelDielectric Interface ��� �
FresnelDielectric(Float ei, Float et) {

eta_i = ei;
eta_t = et;

}
�
FresnelDielectric Private Data ���
Float eta_i, eta_t;

�
BxDF Method Definitions ��� �
Spectrum FresnelDielectric::evaluate(Float cosi) const {�

Compute Fresnel reflectance for dielectric �
}

For dielectric media, things are a bit more complicated. First, we need to de-
termine if the incident direction is on the outside of the medium or in the inside
of it. Next, we apply Snell’s law to compute the sine of the angle the transmitted
direction makes with the surface normal. We can then compute the cosine of this
angle using the identity sin2 x � cos2 x � 1.�
Compute Fresnel reflectance for dielectric ���
cosi = Clamp(cosi, -1.f, 1.f);�
Compute indices of refraction for dielectric �
Float sint = ei/et * sqrtf(max(0.f, 1.f - cosi*cosi));
if (sint > 1.) {�

Handle total internal reflection �
}
else {

Float cost = sqrtf(max(0.f, 1.f - sint*sint));
return FrDiel(fabsf(cosi), cost, ei, et);

}

The sign of the cosine of the incident direction indicates on which side of the
medium the direction lies; see Figure 9.5. If the cosine is between 0 and 1, the
direction is on the outside, and if it is between -1 and 0, it’s on the inside. We set
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Figure 9.5: The cosine of the angle θ that a direction �ωi makes with the surface nor-
mal tells us if the direction is pointing outside the surface (in the same hemisphere
as the normal), or inside the surface. In the standard BxDF coordinate system, this
test just requires checking the z component of the direction vector. Here, �ω1

i is
in the upper hemisphere, with a positive-valued cosine, while �ω2

i is in the lower
hemisphere.

the variables ei and et such that ei has the index of refraction of the medium the
incident ray is in.�
Compute indices of refraction for dielectric ���
bool entering = cosi > 0.;
Float ei = eta_i, et = eta_t;
if (!entering)

swap(ei, et);

When light is traveling from one medium to another with a lower index of re-
fraction, incident angles near grazing have no transmission into the other medium.
The angle at which this happens is called the critical angle; when θi is greater than
the critical angle, total internal reflection occurs–all of the light is just reflected.
That case is detected here by a value of sinθt greater than one; we just set F to 1,
rather than using the Fresnel equations.�
Handle total internal reflection ���
return 1.;

�
BxDF Declarations ��� �
class FresnelNoOp : public Fresnel {
public:

Spectrum evaluate(Float cosi) const;
};

�
BxDF Method Definitions ��� �
Spectrum FresnelNoOp::evaluate(Float cosi) const {

return 1.;
}

Specular reflection
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266 BRDF

We can now implement the SpecularReflection class, our first specular BxDF.
It describes perfect reflection. First, we will derive the BRDF for a specular reflec-
tor. If the Fresnel equations say that the fraction of light reflected is Fr

� �ωo � , then
we need a BRDF such that

Lo
� �ωo � � Fr

� �ωo � Li
� �ωi �

where �ωi is the reflection vector for �ωo about the surface normal.
Such a BRDF can be constructed using the Dirac delta distribution, a special

distribution δ
�
x � defined such that

δ
�
x � � 0

for all x �� 0, but where � ∞

� ∞
δ
�
x � dx � 1 �

This means that � f
�
x � δ � x � x0 � dx � f

�
x0 � (9.2.1)

The delta distribution requires special handling compared to standard functions.
In particular, integrals with delta distributions must be evaluated by sampling the
delta distribution; their values cannot be properly computed without doing so. Con-
sider the delta distribution equation 9.2.1: if we tried to evaluate it using the trape-
zoid rule or some other numerical integration technique, there would be zero prob-
ability that any of the evaluation points xi would have a non-zero value of δ

�
xi � .

Rather, we must allow the delta distribution to determine the evaluation point it-
self. We will see this issue in practice for both specular BxDFs as well as some of
the light sources to be defined in Chapter 12.

Using the definition of the delta distribiton in conjunction with the scattering
equation, 5.4.8, we can find that the BRDF for perfect specular reflection is

fr
� �ωi � �ωo � � Fr

� �ωo � δ
� �ωi � R

� �ωo � N ���� cos θi �
if R

� �ωo � N � is the specular reflection vector for �ωo reflected about the surface nor-
mal N.�
BxDF Declarations ��� �
class SpecularReflection : public BRDF {
public:�

SpecularReflection Methods �
private:�

SpecularReflection Private Data �
};

The SpecularReflection BxDF takes a Fresnel object to describe dielectric
or conductor Fresnel properties and an additional spectrum, which is further used
to scale the reflected color.�
SpecularReflection Methods ��� �
SpecularReflection(const Spectrum &r, Fresnel *f)

: R(r), fresnel(f) {
}
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φ
φ+π

θ θ

Figure 9.6: Given an incident direction that makes an angle θ with the surface
normal and an angle φ with the x axis, the reflected ray about the normal makes an
angle θ with the normal and φ � π with the x axis. The

�
x � y � z � coordinates of this

direction can be found by scaling the incident direction by
�
� 1 � � 1 � 1 � .

�
SpecularReflection Private Data ���
Spectrum R;
Fresnel *fresnel;

The rest of the implementation is completely straightforward; we return no scat-
tering from f, since for an arbitrary pair of directions, the delta function returns no
scattering.�
SpecularReflection Methods ��� �
Spectrum f(const Vector &, const Vector &) const {

return Spectrum(0.);
}

�
SpecularReflection Methods ��� �
bool IsSpecular() const { return true; }

However, we do implement the f_delta() method, which selects an appropri-
ate direction according to the delta function.�
BxDF Method Definitions ��� �
Spectrum SpecularReflection::f_delta(const Vector &wo,

Vector *wi) const {�
Compute perfect specular reflection direction �
return fresnel->evaluate(wo.z) * R /

fabsf(wi->z);
}

To compute the reflection direction, we need to compute the reflection of �ωo

around the surface normal. Because we’re doing all these computations in a canon-
ical shading coordinate system where the surface normal is defined to be

�
0 � 0 � 1 � ,

the computation is quite simple–all we need to do is to rotate �ωo by π radians about
N–see Figure 9.6.
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Figure 9.7: The amount of transmitted radiance at the boundary between media
with different indices of refraction is scaled by the squared ratio of the two indices
of refraction. Intuitively, this can be understood to be the result of the radiance’s
differential solid angle being squeezed down or expanded as a result of transmis-
sion.

Recall the transformation matrix from Chapter 2 for a rotation around the z axis;
if the angle of rotation is π radians, it is:���

�
� 1 0 0 0
0 � 1 0 0
0 0 1 0
0 0 0 1

����
�

When a vector is multiplied by this matrix, the effect is just to negate the x and y
components and thus it’s easy to compute the reflection direction.�
Compute perfect specular reflection direction ���
*wi = Vector(-wo.x, -wo.y, wo.z);

Specular Transmission

We will now derive the BTDF for specular transmission. Snell’s law does more
than give us the direction for the transmitted ray–interestingly enough it also shows
that radiance along a ray changes as the ray goes between media of different indices
of refraction.

Consider radiance incident at the boundary between two media, with indices
of refraction ηi and ηt for the incident and transmitted media, respectively–see
Figure 9.7. We will denote by τ the fraction of incident energy that is transmitted
(τ will generally be given by the Fresnel equations.) The amount of transmitted
differential flux, then, is:

d2Φt
� τd2Φi �

If we use the definition of radiance, Equation 5.2.4, we have
�
Lt cosθt dAd �ωt � � τ

�
Li cosθi dAd �ωi ���

Expanding the solid angles to spherical angles, we have
�
Lt cos θt dA sinθt dθt dφt � � τ

�
Li cos θi dA sinθt dθi dφi ��� (9.2.2)
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We can now differentiate Snell’s law with respect to θ, which gives the relation

ηi cosθi dθi
� ηt cosθt dθt

�

And thus,
cosθi dθi

cosθt dθt

� ηt

ηi

�

Substituting this and Snell’s law into Equation 9.2.2 and simplifying, we have

Ltη2
i dφt

� τLiη2
t dφi

�

Because φt
� φi � π, dφt

� dφi, so

Lt
� τLi

η2
t

η2
i

� (9.2.3)

The BTDF for specular transmission is thus

ft
� �ωo � �ωt � � η2

t

η2
i

�
1 � Fr

� �ωo ��� δ
� �ωo � T

� �ωt ���� cos θt �
The SpecularTransmission class is almost exactly the same as SpecularReflection

except that the sampled direction is the direction for perfect specular transmission.�
BxDF Declarations ��� �
class SpecularTransmission : public BTDF {
public:�

SpecularTransmission Methods �
private:�

SpecularTransmission Private Data �
};

�
SpecularTransmission Methods ���
SpecularTransmission(const Spectrum &t, Float ei, Float et)

: fresnel(ei, et) {
T = t;
etai = ei;
etat = et;

}

Because conductors do not transmit light, we always use a FresnelDielectric
object to do the Fresnel computations.�
SpecularTransmission Private Data ���
Spectrum T;
Float etai, etat;
FresnelDielectric fresnel;

�
SpecularTransmission Methods ��� �
Spectrum f(const Vector &, const Vector &) const {

return Spectrum(0.);
}
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Figure 9.8: The specularly transmitted direction make an angle θt with the negated
surface normal, � z. Like specular reflection, the angle it makes with the x axis is
π greater than the incident ray’s angle.

�
SpecularTransmission Methods ��� �
bool IsSpecular() const { return true; }

Figure 9.8 shows the basic setting for specular transmission. The incident ray is
refracted about the surface normal, with the angle θt given by Snell’s law.�
BxDF Method Definitions ��� �
Spectrum SpecularTransmission::f_delta(const Vector &wo,

Vector *wi) const {�
Figure out which η is for incident and which transmitted ��
Compute transmitted ray direction �
Float cosi = wo.z;
Spectrum F = fresnel.evaluate(cosi);
return (et*et)/(ei*ei) * (Spectrum(1.)-F) * T / fabsf(wi->z);

}

We start by seeing if the incident ray is entering or exiting the refractive medium;
we use the convention that the surface normal (and thus the

�
0 � 0 � 1 � direction in our

local reflection space) is oriented such that it points outside of the object. There-
fore, if the z component of the �ωo direction is greater than zero, the incident ray is
coming from outside of the object.�
Figure out which η is for incident and which transmitted ���
bool entering = wo.z > 0.;
Float ei = etai, et = etat;
if (!entering)

swap(ei, et);

Figure 9.9 shows the basic setting for computing the transmitted ray direction.
We next compute sini2 and sint2, which are the squares of sinθi and sinθt ,

respectively. In the reflection coordinate system, sinθi is equal to the sum of the
squares of the x and y components of �ωo.

�
sinθt � 2 can be computed directly from�

sinθi � 2 using Snell’s law.
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Figure 9.9: Basic geometry for computing the transmitted direction �ωt from the
incident direction �ωi. The cosθ terms are equal to the z components of the direction
vectors and the sin θ terms are equal to the xy lengths of the corresponding direction
vectors.

We then apply the trigonometric identity sin2 θ 	 cos2 θ � 1 to compute cosθt

from sinθt ; this directly gives us the z component of the transmitted direction. To
compute the x and y components, we first mirror �ωo about the normal, as we did for
specular reflection, but then scale it by the ratio sinθt � sin θi to give it the proper
magnitude. From Snell’s law, this ratio is just ηi � ηt , though, which we happen to
have computed previously.�
Compute transmitted ray direction ���
Float sini2 = wo.x*wo.x + wo.y*wo.y;
Float eta = ei / et;
Float sint2 = eta * eta * sini2;�
Handle total internal reflection for transmission �
Float cost = sqrtf(max(0.f, 1.f - sint2));
if (entering) cost = -cost;
Float sintOverSini = eta;
*wi = Vector(sintOverSini * -wo.x, sintOverSini * -wo.y, cost);

We need to handle the case of total internal reflection here as well; if the squared
value of sin θt is greater than one, no transmission is possible, so we just return
black.�
Handle total internal reflection for transmission ���
if (sint2 > 1.) return 0.;

��� ���������
	��� ���
����	���	���� �����

One of the simplest BRDFs is the Lambertian model; it models a diffuse surface
that scatters incident illumination equally in all directions. That is, the particu-
lar directions of the incident and outgoing directions make no difference for how
much light is scattered. Our Lambertian scattering implementation just takes a
reflectance SPD which gives the fraction of incident light that is scattered.
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�
BxDF Declarations ��� �
class Lambertian : public BRDF {
public:�

Lambertian Methods �
private:�

Lambertian Private Data �
};

�
Lambertian Methods ���
Lambertian(const Spectrum &reflectance)

: R(reflectance), RoverPI(reflectance * INV_PI) {
}

�
Lambertian Private Data ���
Spectrum R, RoverPI;

The reflection distribution function for Lambertian is quite straightforward,
since its value is constant; we just return the overall reflectance divided by π. The
need for the normalization by 1 � π can be understood with the scattering equation.
If a point with Lambertian reflectance ρ is being uniformly illuminated by a con-
stant amount of radiance from all directions, Li

� �ωo � � c, then outgoing radiance in
any direction should be ρc. Substituting into the scattering equation and simplify-
ing, we find that fr

� c � π.�
BxDF Method Definitions ��� �
Spectrum Lambertian::f(const Vector &wo,

const Vector &wi) const {
return RoverPI;

}

The directional-hemispherical and hemispherical-hemispherical reflectance val-
ues for a Lambertian BRDF can be computed analytically.�
Lambertian Methods ��� �
Spectrum rho(const Vector &w) const { return R; }

�
Lambertian Methods ��� �
Spectrum rho() const { return R; }

� ��� � � � � ��� �	����� � � �
��!$#
Most geometric optics approaches to modeling surface reflection are based on

the idea that rough surfaces can be modeled as a collection of small microfacets. A
surface comprised of microfacets is essentially a heightfield, where the distribution
of faces is described statistically. For example, the left half of Figure 9.10 shows
the cross-section of a relatively rough surface. On the right is a much smoother
microfacet surface.

Microfacet-based BRDF models work by statistically modeling the scattering of
light from a large collection of such microfacets. If we assume that the differential
area being illuminated, dA, is relatively large compared to the size of individual
microfacets, then a large number of microfacets are illuminated, so their aggregate
behavior can be modeled.
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Figure 9.10: Microfacet surface models are often described by a function that de-
scribes the distribution of microfacet normals N f with respect to the surface normal
N. The greater the variation of microfacet normals, the rougher the surface is (left).
Smooth surfaces have relatively little variation of microfacet normals (right).

Figure 9.11: There are three important geometric effects to consider with micro-
facet reflection models. On the left is masking, where the microfacet of interest
isn’t visible to the viewer due to occlusion by another microfacet. In the middle
is shadowing, where analogously light doesn’t reach the microfacet. On the right
is inter-reflection, where light bounces among the microfacets before reaching the
viewer.

The two main components of microfacet normals are an expression for the dis-
tribution of facets and a BRDF that describes how light scatters from individual
microfacets. Given these, the hard part is to derive a closed form expression that
gives the BRDF that describes scattering from such a surface. Perfect mirror re-
flection is typically used for the microfacet BRDF, though the Oren–Nayar model
(described below) treats them as Lambertian reflectors.

Finally, local lighting effects at the microfacet level need to be considered–see
Figure 9.11. Consider an individual microfacet of interest, indicated by a heavy
line in the figure: on the left, we can see that the viewer may not be able to see
it, due to it being masked by another microfacet. As in the middle, it may be in
shadow, due to shadowing from a neighboring microfacet. Finally, on the right,
inter-reflection among the microfacets may cause the microfacet to receive illumi-
nation even though it can’t see the light directly (or, it may receive more light than
expected). A common simplification is to assume that all of the microfacets are
symmetric V-shaped grooves. If this assumption is made, then interreflection with
most of the other microfacets can be ignored; only the neighboring microfacet in
the groove needs to be considered.

Particular microfacet-based BRDFs consider each of these effects with vary-
ing degrees of accuracy–the general approach is to make the best approximations
to these effects possible, given the desire of wrapping up with a relatively-easily
evaluated expression at the end.
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Oren–Nayar diffuse reflection

Oren and Nayar observed that real-world objects don’t match Lambertian re-
flection very well. Specifically, rough surfaces generally appear brighter as the
illumination direction approaches the viewing direction. They developed a model
that started with a description rough surfaces in terms of symmetric V-microfacets.
They assumed that each microfacet exhibited Lambertian reflection individually,
and derived a BRDF that models the aggregate reflection of the collection of mi-
crofacets. The distribution of microfacets was assumed to be Gaussian, where the
parameter σ described the standard deviation of the orientation angle.

The resulting model, which accounted for shadowing, masking, and inter-reflection
among the microfacets didn’t have a closed-form solution, so they set out to find a
functional approximation that fit it well. The result is:

fr
� �ωi � �ωo � � ρ

π
�
A � Bmax

�
0 � cos

�
φi � φo ��� sin �ω � tan �ω � �

where if σ is in radians,

A � 1 �
σ2

2
�
σ2 � 0 � 33 �

B � 0 � 45σ2

σ2 � 0 � 09
�ω �

� max
�
θi � θo �

�ω �
� min

�
θi � θo �

We can precompute the values of the A and B parameters to the model and store
them away in the constructor; this will save us work in evaluating the BRDF later.�
OrenNayar Methods ��� �
OrenNayar(const Spectrum &reflectance, Float sig)

: R(reflectance) {
Float sigma2 = Radians(sig*sig);
A = 1.f - (sigma2 / (2.f * (sigma2 + 0.33f)));
B = 0.45f * sigma2 / (sigma2 + 0.09f);

}
�
OrenNayar Private Data ���
Spectrum R;
Float A, B;

Evaluating the model is relatively straightforward; just a matter of applying
some trigonometry to computing the values for the terms in the model. We start
by computing and storing sinθi and sin θo; recall from to the section on specular
transmission and Figure 9.12 that the xy magnitude of the direction vectors gives
these values.
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Figure 9.12: As was done for the SpecularTransmission BTDF, the sinθ term
is found by computing the length of the dashed line, which is the magnitude of the
xy components of the vector. The sin φ and cosφ terms can be computed using the
circular coordinate equations x � r cos φ and y � r sin φ, where r, the length of the
dashed line, was already computed for sin θ.

�
BxDF Method Definitions ��� �
Spectrum OrenNayar::f(const Vector &wo,

const Vector &wi) const {
Float sinthetai = sqrtf(wi.x*wi.x + wi.y*wi.y);
Float sinthetao = sqrtf(wo.x*wo.x + wo.y*wo.y);�
Compute cosine term of Oren–Nayar model ��
Compute sine and tangent terms of Oren–Nayar model �
return R * INV_PI * (A + B * maxcos * sinalpha * tanbeta);

}

We now need to compute the max
�
0 � cos

�
φi � φo ��� term. We can apply the

trigonometric identity

cos
�
a � b � � cosacos b � sinasin b �

such that we just need to compute the sines and cosines of φi and φo. The geometric
setting for this is shown in Figure 9.12. In the plane of the point being shaded, the
vector �ω has coordinates

�
x � y � , which are given by r cos φ and r sin φ, respectively.

The radius r is just sinθ, so

cosφ � x
r
� x

sinθ
sinφ � y

r
� y

sin θ
�

�
Compute cosine term of Oren–Nayar model ���
Float sinphii = wi.y / sinthetai;
Float cosphii = wi.x / sinthetai;
Float sinphio = wo.y / sinthetao;
Float cosphio = wo.x / sinthetao;
Float dcos = cosphii * cosphio + sinphii * sinphio;
Float maxcos = max(0.f, dcos);



Sec. 9.4] Microfacet Models 285

513 max

H

oω

iω

θ
θ

Figure 9.13: For perfectly specular microfacets and a given pair of directions �ωi

and �ωo, only those microfacets with normal �ωh
� ��ωi � �ωo will reflect any light

from �ωi to �ωo.

Finally, we compute the sin α and tanβ terms. Note that whichever of �ωi or �ωo

has a larger value for cosθ (i.e. a larger value of its z component), has a smaller
value for θ. Given the knowledge of which angle is smaller, we can set sinα
directly from the appropriate sin θ value already computed. The tangent can then
just be computed using the identity tana � sina � cos a.�
Compute sine and tangent terms of Oren–Nayar model ���
Float sinalpha, tanbeta;
if (fabsf(wi.z) > fabsf(wo.z)) {

sinalpha = sinthetao;
tanbeta = sinthetai / fabsf(wi.z);

}
else {

sinalpha = sinthetai;
tanbeta = sinthetao / fabsf(wo.z);

}

Torrance–Sparrow model

The first(?) microfacet model was developed by Torrance and Sparrow to model
metallic surfaces. The modeled surfaces as collections of perfectly smooth planar
microfacets; because they are smooth, the microfacets have perfect specular reflec-
tion. The surface is statistically described by a distribution function D

�
θ � that gives

the probability that a microfacet has orientation θ (recall Figure 9.10 which shows
how roughness and the microfacet normal distribution function are related).

Because the microfacets are perfectly specular, only those that are oriented ex-
actly so that they reflect the incident direction �ωi to the outgoing direction �ωo give
any reflection for that pair of directions. It can be shown that only those microfacets
with a normal equal to the half-angle vector,

�ωh
����ωi � �ωo

cause perfect specular reflection from �ωi to �ωo (and vice-versa). (See Figure 9.13.)
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Figure 9.14: Setting for the derivation of the Torrance–Sparrow model. For direc-
tions �ωi and �ωi, only microfacets with normal �ωh reflect light. The angle between
�ωh and N is denoted by θ and the angle between �ωh and �ωo is denoted by θh. (The
angle between �ωh and �ωi is also necessarily θh.)

The derivation of the Torrance–Sparrow has a number of interesting steps; we’ll
go through it in some detail here.

Consider the differential flux incident on the microfacets oriented with half-
angle �ωh for directions �ωi and �ωo, d2Φh. From the definition of radiance, Equa-
tion 5.2.4, it is

d2Φh
� Li

� �ωi � d �ω dA �
� �ωh � � Li

� �ωi � d �ω cos θh dA
� �ωh � �

where we have written dA ( �ωh) for the area measure of the microfacets with ori-
entation �ωh and cos θh for the cosine of the angle between �ωi and �ωh (see Fig-
ure 9.14.)

The differential area of microfacets with orientation �ωh is just

dA
� �ωh � � D

� �ωh � d �ωhdA �
The first two terms describe the differential area of facets per unit area that have
the proper orientation, and the dA term converts this to differential area.

Therefore,
d2Φh

� Li
� �ωi � d �ω cosθh D

� �ωh � d �ωh dA
� �ωh � � (9.4.4)

If we assume that the microfacets individually reflect light according to Fresnel’s
law, the outgoing flux is

d2Φo
� F

� �ωi � �ωo � d2Φh
� (9.4.5)

Again using the definition of radiance, the reflected outgoing radiance is

L
� �ωo � � d2Φo

d �ωo cosθodA
�

If we substitute Equation 9.4.5 into this and then Equation 9.4.4 into the result, we
have

L
� �ωo � � F

� �ωi � �ωo � Li
� �ωo � d �ω i D

� �ωh � d �ωh dA cos θh

d �ωo dA cosθo

In Section 14.3, we will derive an important relation between d �ωh and d �ωo; it is

d �ωh
� d �ωo

4cos θh

�
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We can substitute this into the previous equation and simplify, giving

L
� �ωo � � F

� �ωi � �ωo � Li
� �ωo � D

� �ωh � d �ω i

4 cosθo

�

We can now apply the definition of the BRDF, Equation 5.4.7, giving us the
Torrance–Sparrow BRDF:

fr
� �ωi � �ωo � � D

� �ωh � F
� �ωi � �ωo �

4 cosθi cos θo

Note that this obeys reciprocity.
The Torrance–Sparrow model also includes a geometric attenuation term, which

describes the fraction of microfacets that are masked or shadowed, given directions
�ωi and �ωo. This G term can just be included in the derivation as the Fresnel term
was above. The full model, then, is

fr
� �ωi � �ωo � � D

� �ωh � G
� �ωi � �ωo � F

� �ωi � �ωo �
4 cosθi cosθo

� (9.4.6)

One of the nice things about the Torrance–Sparrow model is that the derivation
doesn’t depend on the particular microfacet distribution being used. Furthermore,
because it doesn’t depend on a particular Fresnel function, it can be used for both
conductors and dielectrics. However, reflection functions besides perfect specular
reflection can not be easily substituted: the relationship between d �ωh and d �ωo used
in its derivation depends on the specular reflection assumption.

We can now define a general microfacet-based BRDF. It takes a pointer to an
abstract MicrofacetDistribution class, which provides routines to compute the
D term of the Torrance–Sparrow model. Here is the pure virtual function that
MicrofacetDistributions must implement; it gives the probability density for
microfacets to be oriented with normal �ωh.�
BxDF Declarations ��� �
class MicrofacetDistribution {
public:�

MicrofacetDistribution Interface �
};

�
MicrofacetDistribution Interface ��� �
virtual Float D(const Vector &wh) const = 0;

The Microfacet BRDF, then, just takes a pointer to a distribution, the re-
flectance of the object, and a Fresnel function.�
BxDF Declarations ��� �
class Microfacet : public BRDF {
public:�

Microfacet Methods �
private:�

Microfacet Private Data �
};
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�
BxDF Method Definitions ��� �
Microfacet::Microfacet(const Spectrum &reflectance, Fresnel *f,

MicrofacetDistribution *d)
: R(reflectance) {

fresnel = f;
distribution = d;

}
�
Microfacet Private Data ���
Spectrum R;
MicrofacetDistribution *distribution;
Fresnel *fresnel;

Evaluating the terms of the BRDF is straightforward. For the Fresnel term, recall
that the angle θh is the same between �ωh and both �ωi and �ωo, so it doesn’t matter
which of them we use to compute the cosine of the angle between them.�
BxDF Method Definitions ��� �
Spectrum Microfacet::f(const Vector &wo, const Vector &wi) const {

Float cosThetaO = fabsf(wo.z);
Float cosThetaI = fabsf(wi.z);
Vector wh = (wi + wo).Hat();
Spectrum F = fresnel->evaluate(Dot(wi, wh));
return R * distribution->D(wh) * G(wi, wo, wh) * F /

(4.f * cosThetaI * cosThetaO);
}

Torrance and Sparrow derived a geometric attenuation term assuming that the
microfacets were made of infinitely long V-shaped grooves. This assumption is a
more restricted one than was used to derive the reflection model from the general
microfacet distribution, but it made it possible for them to derive a closed form re-
sult. Furthermore, their attenuation factor doesn’t account for the roughness of the
surface, which naturally affects the amount of shadowing and masking. That said,
the result is easy to evaluate and the overall model matches real-world surfaces
well.�
Microfacet Methods ��� �
Float G(const Vector &wo, const Vector &wi,

const Vector &wh) const {
Float NdotH = fabsf(wh.z);
Float NdotWO = fabsf(wo.z), NdotWI = fabsf(wi.z);
Float WOdotH = fabsf(Dot(wo, wh));
return min(1.f, min((2.f * NdotH * NdotWO / WOdotH),

(2.f * NdotH * NdotWI / WOdotH)));
}

Blinn Microfacet Distribution

The Blinn microfacet model models an geometric falloff of distribution of mi-
crofacet normal orientations with respect to the underlying surface normal. The
most likely microfacet orientation is in the surface normal direction, falling off
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Figure 9.15: Graph showing the effect of varying the exponent for the Blinn mi-
crofacet distribution model. The solid line shows the graph of the non-normalized
distribution function x4, and the dotted line shows the graph of x20. The larger the
exponent, the more likely it is that a microfacet will be oriented close to the surface
normal, as would be the case for a smooth surface.

to no microfacets oriented perpendicular to the normal. For smooth surfaces, this
falloff happens very quickly, and for rough surfaces, it is more gradual.�
BxDF Declarations ��� �
class Blinn : public MicrofacetDistribution {
public:

Blinn(Float e) { exponent = e; }�
Blinn Method Declarations �

private:
Float exponent;

};

The Blinn model is
D
� �ωh � � c

� �ωh
� N � e

where e is a user-supplied exponent that controls the rate and c is a constant term
that normalizes the distribution so that it is a valid (normalized) probability distri-
bution function. It is

c � e � 1 �
Figure 9.15 gives a sense of how varying the exponent changes the distribution.
The solid line shows the distribution of cosines of the angle between the surface
normal and the microfacet normal with an exponent of 4, corresponding to a rough
surface. As such there is a fair probability of microfacets being oriented in a direc-
tion substantially far away from the normal. The dashed line shows the effect of
a higher exponent of 20, corresponding to a smoother surface. For this case, there
is low probability that any microfacets will be very far off from the surface normal
direction.�
Blinn Method Declarations ���
Float D(const Vector &wh) const {

Float costhetah = fabsf(wh.z);
return (exponent+1) * powf(max(0.f, costhetah), exponent);

}
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Figure 9.16: The two exponents ex and ey for the anisotropic microfacet distribution
function give specular exponents for microfacets facing exactly along the x and
y axes, respectively. For microfacets with other orientations, the exponent e is
comptued by finding the radius e of the super-ellipse for the actual orientation
angle φ.

Anisotropic microfacet model

Ashikhmin and Shirley have developed a microfacet distribution function for
modeling the appearence of anisotropic surfaces. Recall that an anisotropic BRDF
is one where the reflection characteristics at a point vary as the surface is rotated
about that point in the plane perpindicular to the surface normal. Brushed metals
and some types of fabric exhibit anisotropy.

Their model is physicall-based, has intuitive parameters, is efficient, and fits
well into the Monte Carlo integration techniques that will be introduced in later
chapters. We won’t derive their model in detail here, but refer the interested reader
to their original paper and technical report (AS02; AS00). Their model takes two
pareneters: ex, which gives an exponent for the distribution function for half-angle
vectors with an azimuthal angle that orients them exactly along the � x axis, and ey,
an exponents for microfacets oriented along the � y axis. Exponents for intemediate
orientations are found by considering these two values as es the lengths of the
axis of a (super-quadric?) ellipse and finding the appropriate value for the actual
microfacet orientation–see Figure 9.16.

The resulting microfacet distribution function is

D
� �ωh � � � � ex � 1 � � � ey � 1 � � �ωh

� N � ex cos2 φ � ey sin2 φ �
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�
BxDF Declarations ��� �
class Anisotropic : public MicrofacetDistribution {
public:

Anisotropic(Float x, Float y) { ex = x; ey = y; }�
Anisotropic Method Declarations �

private:
Float ex, ey;

};

The terms of the distribution function can be computed quite efficiently. Recall
from the Oren–Nayar BRDF that cosφ � x � sin θ aqnd sin φ � y � sin θ. Since we
want to compute cos2 φ and sin2 φ, however, we can use the substitution sin2 θ �
cos2 θ � 1, so that

cos2 φ � x2

1 � z2

sin2 φ � y2

1 � z2
�

Thus, the implementation is:�
Anisotropic Method Declarations ���
Float D(const Vector &wh) const {

Float costhetah = fabsf(wh.z);
Float e = (ex * wh.x * wh.x + ey * wh.y * wh.y) /

(1.f - costhetah * costhetah);
return sqrtf((ex+1)*(ey+1)) * powf(costhetah, e);

}

� ��� � � � �"� � �"�	� � � �
�
!
Lafortune, Foo, Torrance, and Greenberg have developed a BRDF Model tai-

lored for fitting measured BRDF data to a parameterized model with a relatively
small number of parameters. As a bonus, their model is easy to implement and
quite efficient. The genesis of their model is the Phong model–one of the first
BRDF models developed for graphics. The original Phong model has a number of
shortcomings–most glaring that it is not reciprical or energy-conserving–that the
Lafortune model avoids.

The modified Phong BRDF, which is reciprocal, is

fr
� �ωi � �ωo � �

� �ωi
� R � �ωo � N ��� e �

� �ωo
� R � �ωi � N ��� e �

where R
� �ω � N � is the operator that reflects the vector �ω about the surface normal N.

Like the Blinn microfacet distribution model, the cosine of the angle between the
two vectors is raised to a given power. In the canonical BRDF coordinate system,
the Phong model can be equivalently written as

fr
� �ωi � �ωo � �

� �ωi
� � �ωo �

�
� 1 � � 11 ����� e � � �ωo

� � �ωi �
�
� 1 � � 11 ����� e �

The Lafortune model uses the key observation that the vector
�
� 1 � � 1 � 1 � in the

modified Phong model can itself be a parameter to the BRDF. We will call this
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vector the orientation vector, since it orients the direction of maximum reflection.
For example, if the orientation vector was

�
� 1 � � 1 � 0 � 5 � , the main reflection vector

would be lowered from the perfect specular direction to be closer to the surface.
(Many glossy surfaces in fact have such off-specular reflective behavior. The Blinn
microfacet model is maximally reflective in the specular direction, however.)

If the orientation vector was
�
1 � 1 � 1 � , the surface would be retro-reflective–light

would be primarily reflected back along the direction it arrived along. The moon is
an example of a retro-reflective surface.

Given the generalization of expressing the Phong model in terms of an orienta-
tion vector, the Lafortune model expresses the BRDF as the sum of multiple lobes,
each one specified in terms of an orientation vector and a specular exponent plus
a Lambertian diffuse term. The contribution of each lobe is determined by the
magnitude of the orientation vector–the reo-riented incident vector is no longer
necessarily of unit length and its lenght affects the magnitude of the dot product.
(This makes for an unintuitive control for manual adjustment of the BRDF’s char-
acteristics, though it is less troublesome if the BRDF is being automatically fit to
measured data.) Thus, we have:

fr
� �ωi � �ωo � � ρd

π
�

nlobes

∑
i

� �ωi
� � �ωo � oi ��� ei �

where ρd is the diffuse reflectance, oi are the orientation vectors, and ei are the
specular exponents.

As a further generalization, each orientation vector and specular exponent is
allowed to vary as a funciton of wavelength; we represent each of them with
Spectrum objects in the implementation below. This gives a natural way to ex-
press wavelength-dependent reflection variation in the model.�
BxDF Declarations ��� �
class Lafortune : public BRDF {
public:�

Lafortune Methods �
private:�

Lafortune Private Data �
};

Our implementation limits the number of separate lobes to the compile-time
constant MAX_LOBES, in order to avoid additional run-time memory allocation.
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�
BxDF Method Definitions ��� �
Lafortune::Lafortune(const Spectrum &r, int nl, const Spectrum *xx,

const Spectrum *yy, const Spectrum *zz, const Spectrum *e)
: R(r) {
nLobes = nl;
Assert(nLobes <= MAX_LOBES);
for (int i = 0; i < nLobes; ++i) {

x[i] = xx[i];
y[i] = yy[i];
z[i] = zz[i];
exponent[i] = e[i];

}
}

�
Lafortune Private Data ���
Spectrum R;
#define MAX_LOBES 3
Spectrum x[MAX_LOBES], y[MAX_LOBES], z[MAX_LOBES];
Spectrum exponent[MAX_LOBES];
int nLobes;

�
BxDF Method Definitions ��� �
Spectrum Lafortune::f(const Vector &wo, const Vector &wi) const {

Spectrum ret = R / M_PI;
for (int i = 0; i < nLobes; ++i) {�

Evaluate Lafortune model for ith lobe �
}
return ret;

}

The paper the introduced this model originally defined the orientation vector so
that the vector

�
1 � 1 � 1 � would give the classic Phong model. However, we will

use the different convention that
�
� 1 � � 1 � 1 � gives the Phong model, in order to be

consistent with our specular reflection BRDF.
Evaluating each lobe is straightforward. We simultaneously compute the re-

oriented �ωo vector by multiplying its x, y, and z coefficients with the appropriate
spectral orientation coefficients and compute the dot product of the result with �ωi,
giving a spectral result which is itself then raised to the spectral exponent provided.�
Evaluate Lafortune model for ith lobe ���
Spectrum v = x[i] * wo.x * wi.x + y[i] * wo.y * wi.y +

z[i] * wo.z * wi.z;
ret += v.Pow(exponent[i]);
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Figure 9.17: The FresnelBlend BRDF models the effect of a surface with a glossy
layer on top of a diffuse substrate. As on the angle of incidence of the direction
vectors �ωi and �ωo heads toward glancing (right), the amount of light that reaches
the diffuse substrate is reduced by Fresnel effects and the diffuse layer becomes
less visibly apparent.

� ��� ��� ��# ����! ���	��� �
���	��� � � ��� ��#

Shirley and collaborators have often made the observation that most BRDF
Models in graphics do not account for the effect of Fresnel reflection reducing the
amount of light reaching the bottom level of layered objects. Consider a polished
wood table or a wall with glossy paint: if you look at their surfaces head-on, you
primarily see the wood or the paint pigment color. As you move your viewpoint
toward a glancing angle, you see less of the underlying color as it is overwhelmed
by increasing glossy reflection due to Fresnel effects. The images in Figure XXX
show this effect.

In this section, we will implement a BRDF model due to Ashikhmin and Shirley
that models a diffuse underlying surface with a glossy specular surface abobve it.
The effect of reflection from the diffuse surface is modulated according to how
much energy is left after Fresnel effects have been considered. Figure 9.17. shows
this: on the left, the incident direction is close to the normal, so most light is
transmitted to the diffuse layer and the diffuse term dominates. On the right, the
incident direction is close to glancing, so glossy reflection is the primary mode of
reflection.�
BxDF Declarations ��� �
class FresnelBlend : public BRDF {
public:�

FresnelBlend Methods �
private:�

FresnelBlend Private Data �
};

The model takes two spectra, representing diffuse and specular reflectance, and
a microfacet distribution function for the glossy layer.
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�
BxDF Method Definitions ��� �
FresnelBlend::FresnelBlend(const Spectrum &d, const Spectrum &s,

MicrofacetDistribution *dist)
: Rd(d), Rs(s) {
distribution = dist;

}
�
FresnelBlend Private Data ���
Spectrum Rd, Rs;
MicrofacetDistribution *distribution;

This model is based on the weighted sum of a glossy specular term and a diffuse
term. Accounting for reciprocity and energy conservation, the glossy specular term
is derived as

fr
� �ωi � �ωo � � D

� �ωh �
8π
� �ωh

� �ωi �
�
max

���
N � �ωi � �

�
N � �ωo ����� F

� �ωi � �ωo � �

where D
� �ωh � is a microfacet distribution term and F

� �ωi � �ωo � represents Fresnel
reflectance. Note that this is quite similar to the Torrance–Sparrow model.

The key to Ashikhmin and Shirley’s model was deriving a diffuse term such that
the model still obeyed reciprocity and conserved energy. One key to making the
derivation practical was using an approximation to the Fresnel reflection equations
due to Schlick, who computed Fresnel reflection as

F
�
cosθ � � R �

�
1 � R � � 1 � cosθ � 5 �

where R is the reflectance of the surface at normal incidence.
Given this Fresnel term, they showed that the diffuse term below successfully

modeled Fresnel-based reduced diffuse reflection in a physically plausible manner:

fr
� �ωi � �ωo � � 28Rd

23π
�
1 � Rs �

�
1 �

�
1 �

�
N � �ωi �

2 � 5 � �
1 �

�
1 �

�
N � �ωo �

2 � 5 �
�
FresnelBlend Methods ��� �
Spectrum SchlickFresnel(Float costheta) const {

return Rs + powf(1 - costheta, 5.f) * (Spectrum(1.) - Rs);
}

�
BxDF Method Definitions ��� �
Spectrum FresnelBlend::f(const Vector &wo, const Vector &wi) const {

Spectrum diffuse = (28.f/(23.f*M_PI)) * Rd *
(Spectrum(1.) - Rs) *
(1 - powf(1 - .5f * fabsf(wi.z), 5)) *
(1 - powf(1 - .5f * fabsf(wo.z), 5));

Vector H = (wi + wo).Hat();
Spectrum specular = distribution->D(H) /

(8.f * M_PI * fabsf(Dot(wi, H)) * max(fabsf(wi.z), fabsf(wo.z))) *
SchlickFresnel(Dot(wi, H));

return diffuse + specular;
}
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���"� ������� � � ����� ���

Phong developed and early empirical reflection model for glossy surfaces in
computer graphics (Pho75). Though not reciprocal or energy-conserving, it was a
cornerstone of the first synthetic images of non-Lambertian objects. The Torrance–
Sparrow microfacet model is described in (TS67); a variant of it was applied to
computer graphics by Cook and Torrance (CT81; CT82).

Hall’s book collected and described the state of the art in physically-based sur-
face reflection models for graphics in 1989; it remains a seminal reference (Hal89).
It discussed the physics of surface reflection in detail, with many pointers to the
original literature and with many tables of useful measured data about reflection
from real surfaces.

Cite wavelength-dependent IOR work? Incl Glassner DIS (Gla95, Section 11.8),
Delvin et al survey? Smits, musgrave stuff

Beckman developed an early physical optics model of surface reflection XXX,
which Kajiya used to derive an anisotropic model for computer graphics (Kaj85).
Beckman’s work was built upon more recently by He et al (HTSG91). However,
Nayar et al have shown that some reflection models based on physical (wave) optics
have substantially the same characteristics as those based on geometric optics–the
geometric optics approximations don’t seem to cause too much error (except for
very smooth surfaces) (NIK91). This is a helpful result, giving experimental basis
to the general belief that wave optics models aren’t usually worth their computa-
tional expense for computer graphics applications.

The Oren–Nayar Lambertian model is described in their 1994 SIGGRAPH pa-
per (ON94). Other notable BRDF models recently developed in computer graph-
ics include Ward’s anisotropic model (War92), Hanrahan and Krueger’s model of
subsurface reflection (HK93), and Schlick (Sch93). Ashikhmin et al recently de-
veloped techniques for computing self-shadowing terms for arbitrary microfacet
distributions, without needing to make the assumptions that Torrance and Sparrow
did (APS00).

Lafortune et al (LFTG97).
Ashikhmin and Shirley anisotropic model (AS02; AS00)
A number of researchers have investigated how to find BRDFs based on model-

ing the small-scale geometric features of a reflective surface. This work includes
Cabral et al’s computing BRDFs from bump maps (CMS87), Fournier’s normal
distribution functions (Fou92), and Westin et al (WAT92).

� � ��� ����# � #

9.1 simulation: geom and brdf, fire rays at it, tabularize BRDF. isotropic a big
win–3d table θo, θi, dφ...

9.2 Hanrahan–Krueger subsurface stuff.

9.3 Derive Snell’s law, using Fermat’s principle, give basic setup for it...



� � � � � � � � � �

The low-level BRDFs and BTDFs introduced in Chapter 9 solve only part of the
problem of describing how a surface scatters light. Although they describe how
light is scattered at a particular point on the surface, but we still need to know which
BRDFs and BTDFs describe the scattering at a point, and what the parameters to
these scattering functions are.

In this chapter, we provide a general procedural shading mechanism to generate
BRDFs and BTDFs for points on surfaces. The basic idea is that a surface shader
is bound to each primitive in the scene. The surface shader is a small procedure
that is executed at a point to be shaded; it returns the BSDF, which holds a collection
of BRDFs and BTDFs that describes the scattering at the point. This is a somewhat
different shading paradigm than many rendering systems use—most combine the
function of the surface shader and the lighting integrator (see Chapter 15) into a
single shader. By separating these two pieces, a more flexible system results that is
better able to handle new light transport algorithms.��� �
� �  	 ��#

We now present the implementation of our the general BSDF class. It represents
a weighted mixture of BRDFs and BTDFs, allowing the rest of the system to work
with composite BSDFs directly, rather than having to consider all of the components
they are built from.

Equally important, the BSDF class hides the mechanics of shading normals from
the rest of the system. Shading normals, either from per-vertex normals on polyg-
onal meshes, or from bump mapping, can substantially improve the visual richness
of scenes. However, because they are an ad hoc construct, they are tricky to in-
corporate into a physically-based renderer. Those issues will all be handled in the
BSDF, simplifying other parts of the system.

� � �
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Figure 10.1: The geometric normal, Ng, defined by the surface geometry, and the
shading normal, Ns, given by per-vertex normals and/or bump mapping will gener-
ally specify different hemispheres for integrating incident illumination to compute
surface reflection. This inconsistency is important to handle carefully.

�
BSDF Declarations ���
class BSDF {
public:�

BSDF Method Declarations �
private:�

BSDF Member Variables �
};

The BSDF constructor takes two pieces of DifferentialGeometry: dgS, is the
shading differential geometry, where the normal, S, and T vectors may have been
modified from the true geometric normal and tangent vectors of the original sur-
face and dgG, which represents the true geometric characteristics at the point being
shaded–see Figure 10.1. Throughout this section, we will use the convention where
Ns is the shading normal and Ng is the geometric normal.�
BSDF Method Definitions ���
BSDF::BSDF(const DifferentialGeometry &dgS,

const DifferentialGeometry &dgG) {
Ng = dgG.Nn;�
Orient shading normal to match geometric normal �

}

The constructor stores the geometric normal as given. It then flips the shad-
ing coordinate frame if needed, so that the shading normal lies in the hemisphere
around geometric normal–the assumption is that the shading normal represents a
relatively small perturbation of the geometric normal, so should be in the same
hemisphere.
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�
Orient shading normal to match geometric normal ���
if (Dot(Ng, dgS.Nn) < 0) {

Ns = -dgS.Nn;
Ss = -dgS.S;
Ts = -dgS.T;

}
else {

Ns = dgS.Nn;
Ss = dgS.S;
Ts = dgS.T;

}
�
BSDF Member Variables ���
Normal Ns, Ng;
Vector Ss, Ts;

BRDFs and BTDFs are stored with associated weight values, provided by the
caller when they are added to the BSDF.�
BSDF Inline Methods ���
inline void BSDF::Add(BRDF *b, Float w) {

brdfs.push_back(b);
rWeights.push_back(w);

}
�
BSDF Member Variables ��� �
vector<BRDF *> brdfs;
vector<BTDF *> btdfs;
vector<Float> rWeights, tWeights;

�
BSDF Inline Methods ��� �
inline void BSDF::Add(BTDF *b, Float w) {

btdfs.push_back(b);
tWeights.push_back(w);

}
�
BSDF Method Declarations ��� �
int NumComponents() const {

return (int) (brdfs.size() + btdfs.size());
}

Because a BSDF can contain more than one specular component (glass, for in-
stance is a specular reflector and transmitter, we need to be able to compute the
number of specular components in any given BSDF.
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�
BSDF Inline Methods ��� �
inline int BSDF::NumSpecular() const {

int n = 0;
u_int i;
for (i = 0; i < brdfs.size(); ++i)

if (brdfs[i]->IsSpecular()) ++n;
for (i = 0; i < btdfs.size(); ++i)

if (btdfs[i]->IsSpecular()) ++n;
return n;

}

We also provide a transformation to and from the local coordinate system ex-
pected by BxDFs (as described in Section 9.1). In this coordinate system, the sur-
face normal is along

�
0 � 0 � 1 � , the primary tangent is

�
1 � 0 � 0 � and the secondary

tangent is
�
0 � 1 � 0 � . This transformation into “shading space” simplified many of

the BxDF equations in Chapter 9. These transformations are computed in the same
way as the DifferentialGeometry methords for transforming to and from the
differential geometry’s frame; see Section 2.7 for more information.

The transformation to shading space normalizes the resulting vector, since many
BxDF implementations depend on this. However, we don’t normalize directions in
world space, since there’s not a corresponding assumption for world-space rays.�
BSDF Method Declarations ��� �
Vector WorldToLocal(const Vector &v) const {

return Vector(Dot(v, Ss), Dot(v, Ts), Dot(v, Ns)).Hat();
}

�
BSDF Method Declarations ��� �
Vector LocalToWorld(const Vector &v) const {

return Vector(Ss.x * v.x + Ts.x * v.y + Ns.x * v.z,
Ss.y * v.x + Ts.y * v.y + Ns.y * v.z,
Ss.z * v.x + Ts.z * v.y + Ns.z * v.z);

}

Shading normals can cause a variety of undesirable artifacts in practice–see Fig-
ure 10.2. On the left is a light leak: the geometric normal indicates that �ωi and
�ωo lie on opposide sides of the surface, so if the surface is not transmissive, the
light should have no contribution. However, if we directly evaluate the scattering
equation 5.4.8 about the hemisphere centered around the shading normal, we will
incorrectly incorporate the light from �ωi. Thus, we can see that Ns can’t just be
used as a direct replacement for Ng in rendering computations.

The right side of Figure 10.2 shows a similar situation: the shading normal
indicates that no light should be reflected to the viewer, since it is not in the same
hemisphere as the illumination, while the geometric normal incidates that they are
in the same hemisphere. Direct use of Ns would cause ugly black spots on the
surface where this situation happens.

Fortinately, there is an elegant solution to these problems. When evaluating the
BSDF, we use the geometric normal to decide if we should be evaluating reflection
or transmission: if �ωi and �ωo lie in the same hemisphere with respect to Ng, we
evaluate the BRDFs, and otherwise we evaluate the BTDFs.
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Figure 10.2: The two types of error that result from using shading normals: on the
left, a light leak, where the geometric normal indicates that the light is on the back-
side of the surface, but the shading normal indicates the light is visible (assuming
a reflective and not transmissive surface.) On the right is a dark spot, where the
geometric normal indicates that the surface is illuminated but the shading normal
indicates that the viewer is behind the lit side of the surface.

Given that convention, recall from Section 9.1 that BxDFs in lrt should evaluate
their values without regard to whether �ωi and �ωo are in the same or are in different
hemispheres. Thus, light leaks are avoided, since we only evaluate the BTDFs for
the situation in the left side of Figure 10.2, giving us no reflection for a purely
reflective surface. Similarly, black spots are avoided since we would evaluate the
BRDFs for the situation on the right side of the figure, even though the shading
normal thinks that the directions are in different hemispheres. Because the BRDFs
evaluate their values in this case, we get a reasonable result.

Given all that, evaluating the BSDF is easy. We just transform the world-space
direction vectors to local BSDF space, determine whether we should be using the
BRDFs or the BTDFs, and loop over the appropriate set, evaluating a weighted
sum of their contributions.�
BSDF Inline Methods � 	 �
inline Spectrum BSDF::f(const Vector &woW, const Vector &wiW) const {

Vector wi = WorldToLocal(wiW), wo = WorldToLocal(woW);
Spectrum f = 0.;
if (Dot(wiW, Ng) * Dot(woW, Ng) > 0)

for (u_int i = 0; i < brdfs.size(); ++i)
f += rWeights[i] * brdfs[i]->f(wo, wi);

else
for (u_int i = 0; i < btdfs.size(); ++i)

f += tWeights[i] * btdfs[i]->f(wo, wi);
return f;

}

The f_delta function of a BSDF is slightly different from the BxDF. It takes an
additional argument, specifying which component to query. Typically the caller
of this function will determine the number of specular components and loop over
them, repeatedly calling this function.
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�
BSDF Inline Methods ��� �
inline Spectrum BSDF::f_delta(int component, const Vector &w,

Vector *wi) const {
BxDF *spec = NULL;
Float weight = 0.;�
Find the componentth specular component �
Vector wo = WorldToLocal(w);
Spectrum f = weight * spec->f_delta(wo, wi);
*wi = LocalToWorld(*wi);
return f;

}
�
Find the componentth specular component ���
for (u_int i = 0; i < brdfs.size(); ++i) {

if (brdfs[i]->IsSpecular()) {
if (component-- == 0) {

spec = brdfs[i];
weight = rWeights[i];
break;

}
}

}
if (spec == NULL) {�

Look for specular reflection in BTDFs �
}
if (spec == NULL) return 0.;

We’ll also provide BSDF methods that sum up the reflectance values of their in-
dividual BxDFs; the implementation of these methods is straightforward and won’t
be shown here.�
BSDF Method Declarations ��� �
Spectrum rho() const;
Spectrum rho(const Vector &wo) const;

��� ��� � ������� ���"! � ������� � ��� � �"��� � � � � � � � � � � �
�
materials.h* ����

Source Code Copyright �
#ifndef MATERIALS_H
#define MATERIALS_H
#include "lrt.h"
#include "primitives.h"
#include "texture.h"
#include "color.h"
#include "reflection.h"�
Material Class Declarations ��
Material creation macros �
#endif // MATERIALS_H
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�
materials.cc* ����

Source Code Copyright �
#include "materials.h"
#include "color.h"
#include "reflection.h"
#include "texture.h"
#include "shapes.h"�
Material Method Definitions �

�
Material Class Declarations ���
class Material : public ReferenceCounted<Material> {
public:�

Material Interface �
private:�

Material Private Data �
};

There are two main functions that Materials are responsible for implementing.
The first is a pure virtual function that returns the BSDF for a point on a surface
represented by a Surf. The material is responsible for synthesizing relevant infor-
mation about the texture and geometric surface properties at the point to generate
the scattering function at the point.�
Material Interface ���
virtual BSDF *GetBSDF(const Surf *surf) const = 0;

Since our usual interface to the hit point is through a Surf, we will also add a
convenience method to Surf that returns the BSDF at the hit point. It just forwards
the request on to the Material.�
Surf Method Definitions ���
BSDF *Surf::GetBSDF(const RayDifferential &ray) const {�

Update statistics for number of points shaded ��
Compute filter region for anti-aliasing �
primitive->Bump(dgGeom, &dgShading);
return primitive->material->GetBSDF(this);

}
�
Update statistics for number of points shaded ���
static StatsCounter pointsShaded("Shading", "Number of points shaded");
++pointsShaded;

�
Compute filter region for anti-aliasing ���
dgGeom.ComputeDifferentials(ray);

Filter Regions for Anti-Aliasing

The various Materials below will evaluate texture functions (described in the
next chapter) to compute spatially-varying reflectance properties of surfaces. These
functions may have high frequency variation in screen space, so it is worth-while
for them to try to remove frequencies beyond the Nyquist limit. The trick, then, is
figuring out how the 2D screen sampling frequency translates to some frequency
in the texture space.
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Figure 10.3: two rays on an object gives the local sampling frequency...

Because the bump-mapping code in the next section also needs to be able to
reason about sampling frequency, we’ll do the computations here...

This is a difficult problem to solve correctly in all cases; some assumptions and
approximations need to be made in order to make the problem tractible. However,
it’s far better to make these assumptionsand do some form of anti-aliasing rhan to
give up and just increase the image sampling rate to reduce aliasing. Tracing more
camera rays is an expensive computational cost to bear.

Figure 10.3 shows the basic setting–the density of rays on the image plane im-
plicitly determines a sampling rate at points in the scene. Given two adjacent rays
from the camera, here we are computing shaded values on the object at two nearby
points. If the variation of the texture function on the object has a higher frequency
content than the point sampling rate can capture, the final image will have aliasing.

However, if the texture function is aware of the local sampling frequency of rays
intersecting the object, it can try to remove higher-frequency variations in its value.
The key to tracking this information is the RayDifferential structure, which
was defined in Section 2.4 and is initialized in the Scene::Render() function in
Section 1.5. In addition toe the ray actually being traced through the scene, it
records two offset rays, one offset horizontally one pixel from the camera ray and
the other offset vertically by one pixel.

All of the ray intersection routines only use the main camera ray for their com-
putations; the auxiliary rays are ignored. Once we’ve found an intersection and are
evaluating textures, however, we use the auxiliary rays to estimate local sampling
frequency (note ignoring higher pixel sampling rate–oh, well...)

The key to this estimate is that we make the approximation that the surface is
locally flat with respect to the sampling frequency at the point being shaded. This
is a reasonably approximation to make in practice. Furthermore, it is hard to do
much better, since ray-tracing is by nature a point-sampling method–we have no
additional information about the scene in between the rays we traced, anyway.

Given this approximation, we compute the plane through the point intersected
by the main ray and tangent to the surface there. This plane is given by the implicit
plane equation

ax � by � cz � d � 0 �
where a � Nx, b � Ny, c � Nz, and d � � � N � P � .
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Figure 10.4: rays intersecting the tangent plane lets us approximate the relevant
variations...

Next, we intersect the auxiliary rays rx and ry with this plane (Figure 10.4).
Given their hit positions, we would like the find the amount of variation in posi-
tion on the surface and variation in parametric

�
u � v � coordinates between adjacent

camera ray smaples; these give us the sampling rate in texture parameter space,
which individual textures can use to determine their maximum allowed frequency
conetnt.�
DifferentialGeometry Data ��� �
mutable Vector dPdx, dPdy;
mutable Float dudx, dvdx, dudy, dvdy;

�
Initialize DifferentialGeometry from parameters ��� �
dudx = dvdx = dudy = dvdy = 0;

�
DifferentialGeometry Method Declarations ��� �
DifferentialGeometry(const Point &p, const Vector &dpdu,

const Vector &dpdv, const Vector &dndu,
const Vector &dndv, Float uu, Float vv,
const Shape *sh, Float dux, Float dvx,
Float duy, Float dvy)

: P(p), dPdu(dpdu), dPdv(dpdv), dNdu(dndu), dNdv(dndv) {�
Initialize DifferentialGeometry from parameters �
dudx = dux;
dvdx = dvx;
dudy = duy;
dvdy = dvy;

}
�
DifferentialGeometry Method Declarations ��� �
void ComputeDifferentials(const RayDifferential &r) const;
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�
DifferentialGeometry Method Definitions ���
void DifferentialGeometry::ComputeDifferentials(const RayDifferential &ray) const {

if (ray.hasDifferentials) {�
Estimate screen-space change in P and

�
u � v ���

}
else {

dudx = dvdx = 0.;
dudy = dvdy = 0.;
dPdx = dPdy = Vector(0,0,0);

}
}

�
Estimate screen-space change in P and

�
u � v ������

Compute auxiliary intersection points with plane �
dPdx = Px - P;
dPdy = Py - P;�
Compute

�
u � v � offsets at auxiliary points �

Given their hit positions, we approximate the positions Px and Py on the surface
with the intersection locations on the tangent plane.

Ray-plane intersection: if origin is P and direction is D, then:

t � �
���

a � b � c � � P � � d�
a � b � c � � D

Don’t compute plane a, b, and c, since they’re just in dgGeom.Nn.�
Compute auxiliary intersection points with plane ���
Float D = -Dot(Nn, Vector(P.x, P.y, P.z));
Float tx = -(Dot(Nn, Vector(ray.rx.O.x, ray.rx.O.y, ray.rx.O.z)) + D) /

Dot(Nn, ray.rx.D);
Point Px = ray.rx.O + tx * ray.rx.D;
Float ty = -(Dot(Nn, Vector(ray.ry.O.x, ray.ry.O.y, ray.ry.O.z)) + D) /

Dot(Nn, ray.ry.D);
Point Py = ray.ry.O + ty * ray.ry.D;

compute their parametric
�
u � v � coordinates by taking advantage of the face

thatthe surface’s ∂P � ∂u and ∂P � ∂v form a (not-necessarily orthogonal) coordinate
system on the plane and that the coordinates of the auxiliary intersection points
in terms of this coordinate system are their coordinates with respect to the

�
u � v �

parameterization. Given a position P
�

on the plane, we can compute its position
with respect to the coordinate system by

XXX �
P

�

� P � � �
∂P � ∂u∂P � ∂v �

�
du
dv �

or �� P
�

� Px

P
�

� Py

P
�

� Pz

�� �
�� ∂P � ∂ux ∂P � ∂vx

∂P � ∂uy ∂P � ∂vy

∂P � ∂uz ∂P � ∂vz

�� �
du
dv �

This is a linear system in three equations of two unknowns–i.e. it’s over-constrained.
However, we need to be careful since one of the equations may be degenerate–e.g.
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510 SolveLinearSystem2x2

if ∂P � ∂u and ∂P � ∂v are in the xy plane such that their z components are both zero,
then the third equation will be degenerate. To deal with this, since we only need
two equations to solve the system, we’d like to choose two that won’t have de-
generacies. Easy way to do this is to take the cross product of ∂P � ∂u and ∂P � ∂v
and see which coordinate of the result has the largest magnitude; throw away that
coordinate and use the other two. But that cross product is already available in Nn...�
Compute

�
u � v � offsets at auxiliary points ����

Initialize A, Bx, and By matrices for offset computation �
SolveLinearSystem2x2(A, Bx, x);
dudx = x[0];
dvdx = x[1];
SolveLinearSystem2x2(A, By, x);
dudy = x[0];
dvdy = x[1];

�
Initialize A, Bx, and By matrices for offset computation ���
Float A[2][2], Bx[2], By[2], x[2];
if (fabsf(Nn.x) > fabsf(Nn.y) &&

fabsf(Nn.x) > fabsf(Nn.z)) {�
Project onto yz plane to initialize matrices �

}
else if (fabsf(Nn.y) > fabsf(Nn.z)) {�

Project onto xz plane to initialize matrices �
}
else {�

Project onto xy plane to initialize matrices �
}

�
Project onto yz plane to initialize matrices ���
#define C1 y
#define C2 z�
Initialize matrices for chosen projection plane �
#undef C1
#undef C2

�
Initialize matrices for chosen projection plane ���
A[0][0] = dPdu.C1;
A[0][1] = dPdv.C1;
A[1][0] = dPdu.C2;
A[1][1] = dPdv.C2;
Bx[0] = Px.C1 - P.C1;
Bx[1] = Px.C2 - P.C2;
By[0] = Py.C1 - P.C1;
By[1] = Py.C2 - P.C2;

Bump mapping

All materials take an optional Float texture map that defines a displacement at
each point on the surface: each point x has a displaced point x

�

associated with
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Figure 10.5: The displacement texture associated with each material defines a new
surface based on the old one, offset by the displacement amount along the normal
at each point. lrt doesn’t compute a geometric representation of this displaced
surface, though it does use it to compute shading normals for bump-mapping.

it, defined by x
� � x � dN

�
x � , where d is the offset returned by the displacement

texture at x and N
�
x � is the surface normal at x–see Figure 10.5. We will use this

texture to compute bump-mapped shading normals below, though it could also be
used in an implementation of displacement mapping.�
Material Interface ��� �
Material(Texture<Float> *disp) {

displace = disp;
}

�
Material Private Data ���
Texture<Float> *displace;

The second important Material method, bump, is responsible for computing the
effect of bump mapping at the point being shaded. Two instances of DifferentialGeometry
are stored in Surfs; the first, dgGeom, represents the geometric differential geome-
try at the hit point–the true geometry of the intersection. The second, dgShading,
represents the shading geometry; by default, it is the same as dgGeom, but the
Material also may perturb its normal or tangent vectors in order to simulate the
effect of rough surfaces or modify the mapping for anisotropy, respectively.

To compute a shading normal at a point, we will evaluate the displacement tex-
ture at two auxiliary points next to the current point x: see Figure 10.6. We move
a distance du along the ∂P � ∂u vector and dv along the ∂P � ∂v vector to the two
auxiliary points xu and xv. By evaluating the displacement at these three points, we
compute three points on the displaced surface, x

�

, x
�

u and x
�

v. The cross product of
new tangent vectors �vu

� x
�

u � x and �vv
� x

�

v � x gives the shading normal Ns.
This approach is based on the assumption that the surface is locally flat around x:

if it has a large curvature, then x � ∂P � ∂u � du may be far from the actual surface.
However, as long as du and dv are chosen so that they move a relatively small
distance about x, this isn’t a problem in practice.
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Figure 10.6: To compute the shading normal at a point, we evaluate the displace-
ment texture at that point and at two auxiliary points. By taking the cross product
of the vectors from the main point to the auxiliary point, we find the shading nor-
mal. The auxiliary points are found by offsetting by the parametric distances du
and dv along the ∂P � ∂u and ∂P � ∂v vectors.

�
Material Method Definitions ��� �
void Material::Bump(const DifferentialGeometry &dgg,

Texture<Normal> *Ns, Texture<Vector> *Ss,
DifferentialGeometry *dgs) const {

if (!displace && !Ns && !Ss) {
*dgs = dgg;
return;

}�
Evaluate texture for shading normal and tangent �
*dgs = DifferentialGeometry(dgg.P, Svert, Tvert,

Vector(0,0,0), Vector(0,0,0), dgg.u, dgg.v,
dgg.shape, dgg.dudx, dgg.dvdx, dgg.dudy,
dgg.dvdy);

if (displace) {�
Evaluate displacment and compute bumped values �

}
}

Will expect these guys to be in world space already...�
Evaluate texture for shading normal and tangent ���
Normal Nvert = Ns ? Ns->Evaluate(dgg).Hat() : dgg.Nn;
Vector Svert, Tvert;
Svert = Ss ? Ss->Evaluate(dgg).Hat() : dgg.S;
if (Ns || Ss) {

Tvert = Cross(Svert, Nvert);
Svert = Cross(Tvert, Nvert);

}
else

Tvert = dgg.T;



Cross 20
DifferentialGeometry 47

Hat 19
Material::displace 308

Normal 23
Point 21

Texture::evaluate 323
Vector 16

310 Materials [Ch. 10

�
Evaluate displacment and compute bumped values ����

Compute offset positions and evaluate displacement texture ��
Return bump-mapped differential geometry �
Given the offset distances, we use the DifferentialGeometry::Shift() method

to compute the differential geometry at the auxiliary points. We can then evaluate
the displacement texture at the three points and compute the three displaced posi-
tions.�
Compute offset positions and evaluate displacement texture ���
DifferentialGeometry dgdx, dgdy;
dgs->ShiftX(&dgdx);
dgs->ShiftY(&dgdy);
Point P = dgs->P + Vector(dgs->Nn) *

displace->Evaluate(*dgs);
Point Px = dgdx.P + Vector(dgdx.Nn) * displace->Evaluate(dgdx);
Point Py = dgdy.P + Vector(dgdy.Nn) * displace->Evaluate(dgdy);

The Shift*() methods use the local-flatness assumption mentioned above. New�
u � v � coordinates are easily computed based on the offset the caller provided. We

assume that the partial derivatives, tangents, and surface normal are the same at
the shifted point due to the flatness assumption. The new point P, then, is just
computed by moving the appropriate distances along ∂P � ∂u and ∂P � ∂v.�
DifferentialGeometry Method Declarations ��� �
void ShiftX(DifferentialGeometry *g) const {

*g = *this;
g->u += dudx;
g->v += dvdx;
g->P += dudx * dPdu + dvdx * dPdv;
g->Nb += Normal(dudx * dNdu + dvdx * dNdv);
g->Nn = g->Nb.Hat();
g->T = Cross(g->S, g->Nb);
g->S = Cross(g->T, g->Nb);

}

Given the new positions, we compute partial derivatives with forward differ-
ences. This is all that we need to do here; the DifferentialGeometry constructor
takes care of computing the resulting normal, etc.

XXX Actually this is wasteful; mostly just need to recalculate N values, etc...�
Return bump-mapped differential geometry ���
Float dx = sqrtf(dgs->dudx*dgs->dudx + dgs->dvdx*dgs->dvdx);
Float dy = sqrtf(dgs->dudy*dgs->dudy + dgs->dvdy*dgs->dvdy);
*dgs = DifferentialGeometry(dgs->P, (P-Px) / dx, (P-Py) / dy,

Vector(0,0,0), Vector(0,0,0), dgs->u, dgs->v, dgs->shape);
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��� ��� � ��� ���
�
matte.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "materials.h"�
Matte Class Declarations ��
Matte Method Definitions �

�
Matte Class Declarations ���
class Matte : public Material {
public:�

Matte Interface �
private:�

Matte Private Data �
};

The simplest surface is Matte. It describes a diffusely-reflecting surface. A
Matte::Kd texture parameter gives the overall reflectivity of the surface at each
point.�
Matte Interface ���
Matte(Texture<Spectrum> *kd, Texture<Float> *sig,

Texture<Float> *disp)
: Material(disp) {
Kd = kd;
sigma = sig;

}
�
Matte Private Data ���
Texture<Spectrum> *Kd;
Texture<Float> *sigma;

We need to destroy the Texture when the material is deleted. For brevity, we
won’t include the destructors for the rest of the materials in this chapter.�
Matte Method Definitions ���
Matte::˜Matte() {

delete Kd;
delete sigma;

}

The BSDF method just puts the pieces together. The Matte::Kd texture is eval-
uated to compute the Kd color at the point being shaded. This is then passed on to
create a Lambertian BxDF, which is returned inside a BSDF object.
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�
Matte Method Definitions ��� �
BSDF *Matte::GetBSDF(const Surf *surf) const {

Spectrum r = Kd->Evaluate(surf->dgShading);
Float sig = sigma->Evaluate(surf->dgShading);
BSDF *ret = new BSDF(surf->dgShading, surf->dgGeom);
if (sig == 0.)

ret->Add(new Lambertian(r));
else

ret->Add(new OrenNayar(r, sig));
return ret;

}

��� ���  !$�	#�� � �
�
plastic.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "materials.h"�
Plastic Class Declarations ��
Plastic Method Definitions �

�
Plastic Class Declarations ���
class Plastic : public Material {
public:�

Plastic Interface �
private:�

Plastic Private Data �
};

A more interesting surface is plastic. Plastic can be modelled as a mixture of a
diffuse and glossy scattering function, with appropriate parameters controlling the
particular colors and glossiness. The parameters to Plastic are two reflectivities,
Kd and Ks, which control how much diffuse reflection there is and how much glossy
specular reflection there is. Next is a roughness parameter (which should range
from zero to one) that determines the size of the specular highlight; the higher it is,
the rougher the surface and the smaller the highlight.�
Plastic Interface ��� �
Plastic(Texture<Spectrum> *kd, Texture<Spectrum> *ks,

Texture<Float> *rough, Texture<Float> *disp)
: Material(disp) {

Kd = kd;
Ks = ks;
roughness = rough;

}
�
Plastic Private Data ���
Texture<Spectrum> *Kd, *Ks;
Texture<Float> *roughness;
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�
Plastic Method Definitions ��� �
BSDF *Plastic::GetBSDF(const Surf *surf) const {

Spectrum kd = Kd->Evaluate(surf->dgShading);
BRDF *diff = new Lambertian(kd);
Fresnel *fresnel = new FresnelDielectric(1.5f, 1.f);
Spectrum ks = Ks->Evaluate(surf->dgShading);
Float rough = roughness->Evaluate(surf->dgShading);
BRDF *spec = new Microfacet(ks, fresnel, new Blinn(1.f / rough));
BSDF *ret = new BSDF(surf->dgShading, surf->dgGeom);
ret->Add(diff);
ret->Add(spec);
return ret;

}

��� ��� � � �"��# ! �	�������
�
translucent.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "materials.h"�
Translucent Class Declarations ��
Translucent Method Definitions �

�
Translucent Class Declarations ���
class Translucent : public Material {
public:�

Translucent Interface �
private:�

Translucent Private Data �
};
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�
Translucent Method Definitions ��� �
BSDF *Translucent::GetBSDF(const Surf *surf) const {

BSDF *ret = new BSDF(surf->dgShading, surf->dgGeom);

Float r = reflect->Evaluate(surf->dgShading);
Float t = transmit->Evaluate(surf->dgShading);
if (r == 0. && t == 0.) return ret;

Spectrum kd = Kd->Evaluate(surf->dgShading);
if (!kd.Black()) {

if (r > 0.) ret->Add(new Lambertian(r * kd));
if (t > 0.) ret->Add(new BRDFToBTDF(new Lambertian(t * kd)));

}
Spectrum ks = Ks->Evaluate(surf->dgShading);
if (!ks.Black()) {

Float rough = roughness->Evaluate(surf->dgShading);
if (r > 0.) {

Fresnel *fresnel = new FresnelDielectric(1.5f, 1.f);
ret->Add(new Microfacet(r * ks, fresnel,

new Blinn(1.f / rough)));
}
if (t > 0.) {

Fresnel *fresnel = new FresnelDielectric(1.5f, 1.f);
ret->Add(new BRDFToBTDF(new Microfacet(t * ks, fresnel,

new Blinn(1.f / rough))));
}

}
return ret;

}

��� ��� � !$�	# #
�
glass.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "materials.h"�
Glass Class Declarations ��
Glass Method Definitions �

�
Glass Class Declarations ���
class Glass : public Material {
public:�

Glass Interface �
private:�

Glass Private Data �
};

Another surface shader simulates glass (poorly, since Fresnel effects aren’t yet
included.) Nevertheless, a combination of specular reflection and refraction brings
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us to the heart of recursive ray-tracing and can lead to some nifty images. Our
parameters include reflection and transmission coefficients as well as the index of
refraction of the object.�
Glass Interface ��� �
Glass(Texture<Spectrum> *r, Texture<Spectrum> *t,

Texture<Float> *i, Texture<Float> *disp)
: Material(disp) {

Kr = r;
Kt = t;
index = i;

}
�
Glass Private Data ���
Texture<Spectrum> *Kr, *Kt;
Texture<Float> *index;

As usual, we start by computing new parameters from the primitive’s user-
supplied values. We then generate a new BSDF that holds reflective and transmissive
BRDFs as appropriate given the parameter values.�
Glass Method Definitions ��� �
BSDF *Glass::GetBSDF(const Surf *surf) const {

Spectrum R = Kr->Evaluate(surf->dgShading);
Spectrum T = Kt->Evaluate(surf->dgShading);
Float ior = index->Evaluate(surf->dgShading);
BSDF *ret = new BSDF(surf->dgShading, surf->dgGeom);
if (!R.Black())

ret->Add(new SpecularReflection(R,
new FresnelDielectric(1., ior)));

if (!T.Black())
ret->Add(new SpecularTransmission(T, 1., ior));

return ret;
}��� ���  ��� � � � �����"!

�
shinymetal.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "materials.h"�
ShinyMetal Class Declarations ��
ShinyMetal Method Definitions �

�
ShinyMetal Class Declarations ���
class ShinyMetal : public Material {
public:�

ShinyMetal Interface �
private:�

ShinyMetal Private Data �
};



Blinn 289
BSDF 298

dgGeom 10
dgShading 10

Fresnel 272
FresnelApproxEta 272

Material 303
Microfacet 287

MicrofacetDistribution 287
Spectrum 155

SpecularReflection 275
Surf 10

Texture 323

316 Materials [Ch. 10

Another basic combination of scattering functions gives us something that looks
like a shiny metal surface. We have both a glossy specular reflection, with re-
flectance Ks, and perfect mirror specular reflection, with reflectance Kr.�
ShinyMetal Interface ��� �
ShinyMetal(Texture<Spectrum> *ks, Texture<Float> *rough,

Texture<Spectrum> *kr, Texture<Float> *disp)
: Material(disp) {

Ks = ks;
roughness = rough;
Kr = kr;

}
�
ShinyMetal Private Data ���
Texture<Spectrum> *Ks, *Kr;
Texture<Float> *roughness;

�
ShinyMetal Method Definitions ��� �
BSDF *ShinyMetal::GetBSDF(const Surf *surf) const {

Spectrum spec = Ks->Evaluate(surf->dgShading);
Float rough = roughness->Evaluate(surf->dgShading);
Spectrum R = Kr->Evaluate(surf->dgShading);

MicrofacetDistribution *md = new Blinn(1.f / rough);
Spectrum k = 0.;
Fresnel *frMf = new FresnelConductor(FresnelApproxEta(spec), k);
Fresnel *frSr = new FresnelConductor(FresnelApproxEta(R), k);
BSDF *ret = new BSDF(surf->dgShading, surf->dgGeom);
ret->Add(new Microfacet(1., frMf, md));
ret->Add(new SpecularReflection(1., frSr));
return ret;

}

��� ��� 	 ��� ��# �  � ��#�� � �����

XXX need a better name�
substrate.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "materials.h"�
Substrate Class Declarations ��
Substrate Method Definitions �

�
Substrate Class Declarations ���
class Substrate : public Material {
public:�

Substrate Interface �
private:�

Substrate Private Data �
};
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Figure 10.7:

A reasonably good model of glossy paint can be constructed using some of the
pieces we have put together so far. There are two main types of light reflection
with glossy paint: some of the incident light is specularly reflected at the surface,
and the rest is transmitted into a substrate with suspended colored particles–see
Figure 10.7. The transmitted light is interacts with the particles, and some wave-
lengths of light are absorbed, based on the particle color. The remaining light
eventually exits.

If we make the assumption that the exiting light exits in random directions,
reflection from the substrate can be modeled with a Lambertian BRDF. We will
use the Fresnel formula for dielectrics to determine how much light is reflected
and how much is transmitted, giving us weighting terms for the specular reflection
and the body reflection BRDFs.$
Substrate Interface %'&
Substrate(Texture<Spectrum> *kd, Texture<Spectrum> *ks,

Texture<Float> *u, Texture<Float> *v, Texture<Float> *disp)
: Material(disp) {
Kd = kd;
Ks = ks;
nu = u;
nv = v;

}$
Substrate Private Data %'&
Texture<Spectrum> *Kd, *Ks;
Texture<Float> *nu, *nv;$

Substrate Method Definitions % � &
BSDF *Substrate::GetBSDF(const Surf *surf) const {

Spectrum d = Kd->Evaluate(surf->dgShading);
Spectrum s = Ks->Evaluate(surf->dgShading);
Float u = nu->Evaluate(surf->dgShading);
Float v = nv->Evaluate(surf->dgShading);

BSDF *ret = new BSDF(surf->dgShading, surf->dgGeom);
ret->Add(new FresnelBlend(d, s, new Anisotropic(1.f/u, 1.f/v)));
return ret;

}
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��� � � � ����# �"� ��� 	 �����

�
clay.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "materials.h"�
Clay Class Declarations ��
Clay Method Definitions �
Cornell Program of Computer Graphics...�

Clay Class Declarations ���
class Clay : public Material {
public:

Clay(Texture<Float> *disp) : Material(disp) { }
BSDF *GetBSDF(const Surf *surf) const;

};

�
Clay Method Definitions ���
BSDF *Clay::GetBSDF(const Surf *surf) const {�

Declare clay coefficients �
BSDF *ret = new BSDF(surf->dgShading, surf->dgGeom);
ret->Add(new Lafortune(Spectrum(diffuse), 3, xy, xy, z, e));
return ret;

}
�
Declare clay coefficients ���
static Float diffuse[3] = { 0.383626f, 0.260749f, 0.274207f };
static Float xy0[3] = { -1.089701f, -1.102701f, -1.107603f };
static Float z0[3] = { -1.354682f, -2.714801f, -1.569866f };
static Float e0[3] = { 17.968505f, 11.024489f, 21.270282f };
static Float xy1[3] = { -0.733381f, -0.793320f, -0.848206f };
static Float z1[3] = { 0.676108f, 0.679314f, 0.726031f };
static Float e1[3] = { 8.219745f, 9.055139f, 11.261951f };
static Float xy2[3] = { -1.010548f, -1.012378f, -1.011263f };
static Float z2[3] = { 0.910783f, 0.885239f, 0.892451f };
static Float e2[3] = { 152.912795f, 141.937171f, 201.046802f };
static Spectrum xy[3] = { Spectrum(xy0), Spectrum(xy1), Spectrum(xy2) };
static Spectrum z[3] = { Spectrum(z0), Spectrum(z1), Spectrum(z2) };
static Spectrum e[3] = { Spectrum(e0), Spectrum(e1), Spectrum(e2) };

Will ifdraft felt, primer, skin...
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Amanatides’s cone tracing method (Ama84) and Heckbert and Hanrahan (HH84)
were the first to extend ray tracing to incorporate an area associated with each im-
age sample, rather than just an infinitessimal ray.

Ray differentials (Ige99). Extended by Suykens and Willems to handle glossy
reflection as well (SW01). See also Turkowski’s technical report (Tur93). Also
Shinya et al (STN87), and Mitchell and Hanrahan (MH92). Gritz and Hahn (GH96),
though theirs doesn’t get good anisotropic filter regions and doesn’t account for the
variation in angle that a pixel area subtends as you go from the center to the edges
of the image plane. Collins estimated ray footprint by keeping tree of all rays
traced from a given eye ray, examining corresponding rays at the same level and
position (Col94).

Phong and Crow first introduced the idea of interpolating per-vertex shading
normals to give the appearence of smooth surfaces from polygonal meshes (PC75).
Blinn later developed the bump-mapping technique to give the appearence of geo-
metric complexity on coarse meshes (Bli78).

Snyder and Barr noted the light leak problem from per-vertex shading normals
and proposed a number of work-arounds (SB87). The method we have used in this
chapter is from Veach’s thesis (Vea97, Section 5.3); it is a more robust solution
than those of Snyder and Barr.

Kajiya generalized the idea of bump mapping the normal to frame mapping
(Kaj85).

Shading normals introduce a number of subtle problems to physically-based
light transport algorithms that we have not addressed here. For example, they can
easily lead to surfaces that reflect more energy than was incident upon them, which
can wreak havoc with light transport algorithms. Veach has investigated this issue
in depth and proposed a number of solutions (Vea96).

Gondek et al investigated reflection from glossy painted surfaces (GMN94);
some of the observations from their paper influenced the ad-hoc paint material
model introduced here.

Lafortune coefficients from measurements taken for Marschner at al paper (MWL � 99).
� � ��� ����# � #

10.1 texture plus specular reflection anti-aliasing by point sampling and averag-
ing BSDF under filter kernel: no need for more ray tracing, just increases
texturing and BSDF evaluation time.

10.2 Specular aliasing detection and elimination. Amanatides has discussed the
issue (Ama92), though here we’ll suggest that...



� ���
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We will now describe a set of interfaces and classes that allow us to incorporate
texture into our material models. All of the various materials that were described
in Chapter 10 have a few parameters that describe their respective materials–e.g.
what its diffuse reflectance is, how glossy a surface is, etc. Realistic materials
are generally spatially varying–their properties vary over different positions on the
surface. The texture code in this chapter computes values for these parameters as
they vary over surfaces being shaded (e.g. varying colors in a wood grain pattern,
etc.).

In graphics, the techniques used to compute these varying parameters fall under
the area of texturing. In lrt, a texture is simply a function that evaluates to a float-
ing point or spectral value. It may be a zero-dimensional function (e.g. it returns
a constant); it may be a two-dimensional function of

�
u � v � surface parameter val-

ues; or it may be a three-dimensional function (e.g. of position in the scene). This
chapter will include all three types of textures. Two-dimensional image maps are a
well-known type of texturing–they are incorporated into our texturing framework
in Section 11.6.

Texture functions may themselves be a source of high-frequency variation in the
image function–see Figure 11.1, which shows an aliases image of a checkerboard
on a plane. At the horizon, the number of checks inside a given pixel area is very
large–the middle of theat figure shows a blow-up of one pixel’s area at the horizon.
Although this aliasing is reduced with the non-uniform sampling techniques from
Chapter 7, a better solution is to implement texture functions that are aware of
their frequency content and remove higher-frequency components. For many tex-
ture functions, doing so isn’t too difficult and is substantially more efficient than
increasing the image sampling rate by tracing more rays. The first section of this
chapter will describe general approaches to texture anti-aliasing and the interface

� � �
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Figure 11.1: texture aliasing example

that will be used in lrt throughout the rest of this chapter for implementing various
anti-aliasing approaches.�
texture.h* ����

Source Code Copyright �
#ifndef TEXTURE_H
#define TEXTURE_H
#include "lrt.h"
#include "color.h"
#include "geometry.h"
#include "transform.h"
#include "shapes.h"
#include "primitives.h"
#include "mipmap.h"
#include "camera.h"
#include "shapes/trianglemesh.h"
#include <string>
using std::string;�
Texture Class Declarations ��
Texture Template Method Definitions �
#endif // TEXTURE_H

�
texture.cc* ����

Source Code Copyright �
#include "texture.h"�
Texture Forward Declarations ��
Texture Cache Data ��
Texture Cache Methods ��
Perlin Noise Data ��
Texture Method Definitions �
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�  � � � !�� � � ���	������ � � ��!�� ��# � � �

Three main options, in order of preference...

1. filter out high frequency stuff before sampling (e.g. image maps)

2. frequency clamping: don’t introduce high frequency stuff in the first place
(e.g. sums of noise).

3. super-sampling in texture space: evaluate the texture function at a bunch of
points and average.

First is theoretically best. Second is usually pretty good but not necessarily the
same result. Third is likely to be inefficient, but at least less so than tracing more
camera rays.

In that chapter, we had to throw in the towel and accept the fact that the image
function being sampled by rays will have infinite frequency content (e.g. from
edges), and thus suffer from aliasing. However, this isn’t to say that we should give
up completely on removing high-frequencies from the image that we’re sampling:
if it’s relatively cheap to do so (as it is to deal with texture aliasing), it’s worth
doing so, so that the user doesn’t need to increase pixel sampling (and trace many
more rays) solely in order to reduce texture aliasing.

XXX need a figure showing image samples and their extent as well as texture
image samples for 2D image mapping. Projection of circular region on image plane
into ellipse on texture XXX

How the differential quantities in DifferentialGeometry are used to drive this
process, etc...

� �	��� � � ��� ��� � � �����
� � �	���
Texture is a template class based on the return type of its evaluation function.

This allows us to reuse almost all of the texturing code between textures that return
floating point values and textures that return spectra.�
Texture Class Declarations ���
template <class T> class Texture {
public:�

Texture Interface �
};

The key to Texture’s interface is its evaluation function; it returns a value
of the template type T, usually either Float or Spectrum. It has access to the
DifferentialGeometry at the point being shaded; various textures below will
use different parts of this structure to do their work. Textures that anti-alias them-
selves will use the differential values dPdx, dPdy, dudx, dvdx, dudy, and dtdy to
do so...�
Texture Interface ���
virtual T Evaluate(const DifferentialGeometry &) const = 0;
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� �	��� � ��# � � � � ��� ��� � #
ConstantTexture returns the same value no matter where it is evaluated. It has

no frequency content, and needs no anti-aliasing. This may not seem that useful,
but having this ability simplifies material creation. For example, all of the materials
presented in the next chapter are textured. A diffuse object that is a solid color will
have one of these ConstantTextures associated with it. This way, the shading
system will always evaluate a texture to get the surface color at a point, avoiding
the need for separate textured and non-textured versions of materials.�
Texture Class Declarations ��� �
template <class T>
class ConstantTexture: public Texture<T> {
public:

ConstantTexture(const T &v) { value = v; }
T Evaluate(const DifferentialGeometry &) const;

private:
T value;

};�
Texture Template Method Definitions ���
template <class T>
T ConstantTexture<T>::Evaluate(const DifferentialGeometry &) const {

return value;
}

Scale

One of the most useful things that can be done with the Textures in this chapter
is to compose them together, feeding the output of one texture into the input of
another. The ScaleTexure takes two textures, a base map and a scale, and returns
their product when evaluated. This texture can also ignore anti-aliasing, leaving it
to its members to handle.�
Texture Class Declarations ��� �
template <class T1, class T2>
class ScaleTexture : public Texture<T2> {
public:

ScaleTexture(Texture<T1> *s, Texture<T2> *v) {
scale = s;
value = v;

}�
ScaleTexture Methods �

private:
Texture<T1> *scale;
Texture<T2> *value;

};�
Texture Template Method Definitions ��� �
template <class T1, class T2>
T2 ScaleTexture<T1, T2>::Evaluate(const DifferentialGeometry &dg) const {

return scale->Evaluate(dg) * value->Evaluate(dg);
}
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We need to delete the child textures used by ScaleTextures when they are
deleted. We won’t show the destructors for the rest of the textures in this chapter;
if they hold pointers to other textures they will delete them in their destructors.�
ScaleTexture Methods ��� �
˜ScaleTexture() {

delete scale;
delete value;

}

Mixtures

The MixTexture class is a more general variation of ScaleTexture. It takes
three textures as input: two may be of any type, and the third must return a floating
point value. The floating point texture is then used to blend between the two other
textures. Note that we can use a ConstantTexture for the floating point values to
achieve a uniform blend, or a more complex Texture to blend in a more creative
way.�
Texture Class Declarations ��� �
template <class T>
class MixTexture : public Texture<T> {
public:

MixTexture(Texture<T> *t1, Texture<T> *t2,
Texture<Float> *amt) {

tex1 = t1;
tex2 = t2;
amount = amt;

}�
MixTexture Interface �

private:
Texture<T> *tex1, *tex2;
Texture<Float> *amount;

};

To evaluate the mixture, we just evaluate the three textures and use the floating
point value to linearly interpolate between the two; when the blend amount amt
is zero, the first texture’s value is returned and when it is one, the second one’s
value is returned. We will generally assume that amt will be between zero and one,
ensuring that we always interpolate, rather than sometimes extrapolating. However,
this behavior is not enforced, and texture extrapolation is possible.�
Texture Template Method Definitions ��� �
template <class T>
T MixTexture<T>::Evaluate(const DifferentialGeometry &dg) const {

T t1 = tex1->Evaluate(dg), t2 = tex2->Evaluate(dg);
Float amt = amount->Evaluate(dg);
return (1. - amt) * t1 + amt * t2;

}
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#

The rest of the textures in this chapter are functions that take a two-dimensional�
s � t � coordinate or a three-dimensional

�
x � y � z � coordinate and compute a texture

value at the given position. Sometimes there are obvious ways to choose these tex-
ture coordinates: for parametric surfaces, such as the quadrics in Chapter 3, there
is a natural two-dimensional parameterization of the surface, and for all surfaces
the shading point P is a natural choice for a three-dimensional coordinate. In lrt,
we will use the convention that 2D texture coordinates are denoted by

�
s � t � ; this

helps make clear the distinction between the intrinsic
�
u � v � parameterization of the

underlying surface and the possibly-different coordinate values used for texturing.
In general, however, there is often not a natural parameterization of complex

surfaces. For instance, given an arbitrary subdivision surface, there is no sim-
ple and robust way to assign

�
s � t � texture values to the whole thing so that the

entire � 0 � 1 � 2 � s � t � space is covered continuously and without distortion. Indeed,
how to generate smooth and not-distorted parameterizations of complex meshes is
currently an active area of research. This section will introdoce two abstract base
classes–TextureMapping2D and TextureMapping3D–that provide an interface for
computing 2D and 3D texture coordinates. We will then implement a number of
standard mappings using them.

The TextureMapping2D base class has a single method, map, which is given the
DifferentialGeometry at the shading point and returns the

�
s � t � texture coordi-

nates via Float *s. Furthermore, it returns estimates for the change in s and t with
respect to pixel x and y coordinates in dsdx, dtdx, dsty, and dtdy.�
Texture Class Declarations ��� �
class TextureMapping2D {
public:

virtual ˜TextureMapping2D() { }
virtual void Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const = 0;

};

2D Identity Mapping

The simplest texture mapping uses the 2D parametric
�
u � v � coordinates in the

DifferentialGeometry to compute the texture coordinates. These can be offset
and scaled with user-supplied values in each dimension.�
Texture Class Declarations ��� �
class IdentityMapping2D : public TextureMapping2D {
public:

IdentityMapping2D(Float su = 1, Float sv = 1,
Float du = 0, Float dv = 0);

void Map(const DifferentialGeometry &dg, Float *s, Float *t,
Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const;

private:
Float su, sv, du, dv;

};
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�
Texture Method Definitions ���
IdentityMapping2D::IdentityMapping2D(Float _su, Float _sv,

Float _du, Float _dv) {
su = _su; sv = _sv;
du = _du; dv = _dv;

}
�
Texture Method Definitions ��� �
void IdentityMapping2D::Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const {

*s = su * dg.u + du;
*t = sv * dg.v + dv;
*dsdx = su * dg.dudx;
*dtdx = sv * dg.dvdx;
*dsdy = su * dg.dudy;
*dtdy = sv * dg.dvdy;

}

Spherical Mapping

Another useful mapping effectively wraps a sphere around the object. Each
point is projected along the vector from the sphere’s center through the point, up
to the sphere’s surface. There, the same

�
u � v � mapping as was used for the sphere

shape is used.
The SphericalMapping2D object stores a transformation that is applied to points

before htis mapping is performed; this effectively allows the sphere to be positioned
and oriented with respect to the object.�
Texture Class Declarations ��� �
class SphericalMapping2D : public TextureMapping2D {
public:

SphericalMapping2D(const Transform &toSph)
: toSphere(toSph) {

}
void Map(const DifferentialGeometry &dg, Float *s, Float *t,

Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const;

private:
void sphere(const Point &P, Float *s, Float *t) const;
Transform toSphere;

};

XXX compute the differentials by just applying the mapping to all three points
and taking the differences...
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�
Texture Method Definitions ��� �
void SphericalMapping2D::Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const {

Float sx, tx, sy, ty;
sphere(dg.P, s, t);
sphere(dg.P + dg.dPdx, &sx, &tx);
*dsdx = sx - *s;
*dtdx = tx - *t;
if (*dtdx > .5) *dtdx = 1. - *dtdx;
sphere(dg.P + dg.dPdy, &sy, &ty);
*dsdy = sy - *s;
*dtdy = ty - *t;
if (*dtdy > .5) *dtdy = 1. - *dtdy;

}
�
Texture Method Definitions ��� �
void SphericalMapping2D::sphere(const Point &P, Float *s, Float *t) const {

Vector vec = (toSphere(P) - Point(0,0,0)).Hat();
Float theta = SphericalTheta(vec);
Float phi = SphericalPhi(vec);
*s = theta / M_PI;
*t = phi / (2.f * M_PI);

}

Cylindrical Mapping

Like the spherical mapping, the cylindrical mapping effectively wraps a cylinder
around the object having texture coordinates computed for it. It also supports a
transformation to orient the mapping cylinder.�
Texture Class Declarations ��� �
class CylindricalMapping2D : public TextureMapping2D {
public:

CylindricalMapping2D(const Transform &toCyl)
: toCylinder(toCyl) {

}
void Map(const DifferentialGeometry &dg, Float *s, Float *t,

Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const;

private:
void cylinder(const Point &P, Float *s, Float *t) const;
Transform toCylinder;

};
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�
Texture Method Definitions ��� �
void CylindricalMapping2D::Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const {

Float sx, tx, sy, ty;
cylinder(dg.P, s, t);
cylinder(dg.P + dg.dPdx, &sx, &tx);
*dsdx = sx - *s;
*dtdx = tx - *t;
if (*dtdx > .5) *dtdx = 1. - *dtdx;
cylinder(dg.P + dg.dPdy, &sy, &ty);
*dsdy = sy - *s;
*dtdy = ty - *t;
if (*dtdy > .5) *dtdy = 1. - *dtdy;

}
�
Texture Method Definitions ��� �
void CylindricalMapping2D::cylinder(const Point &P, Float *s,

Float *t) const {
Vector vec = (toCylinder(P) - Point(0,0,0)).Hat();
*s = (M_PI + atan2f(vec.y, vec.x)) / (2.f * M_PI);
*t = (vec.z + 1.f) * 0.5f;

}

Planar Mapping

Another classing mapping method is the planar mapping. The point to have
texture coordinates computed is effectively projected onto a plane; a 2D parame-
terization of the plane gives texture coordinates for the point. For example, a point
P could be projected on the z � 0 plane to yield texture coordinates given by u � Px

and v � Py.
More generally, we can define such a parameterized plane with two non-parallel

vectors �vu and �vv and offsets du and dv. The texture coordinates are given by
taking the dot product of the vector from the point to the origin with each vector
�vu and �vv and then adding the offset. For the example in the previous paragraph,
we’d have �vu

� �
1 � 0 � 0 � , �vv

� �
0 � 1 � 0 � , and du � dv � 0.�

Texture Class Declarations ��� �
class PlanarMapping2D : public TextureMapping2D {
public:

PlanarMapping2D(const Vector &v1, const Vector &v2, Float du = 0,
Float dv = 0);

void Map(const DifferentialGeometry &dg, Float *s, Float *t,
Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const;

private:
Vector vs, vt;
Float ds, dt;

};
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�
Texture Method Definitions ��� �
PlanarMapping2D::PlanarMapping2D(const Vector &_v1,

const Vector &_v2, Float _ds, Float _dt) {
vs = _v1;
vt = _v2;
ds = _ds;
dt = _dt;

}
�
Texture Method Definitions ��� �
void PlanarMapping2D::Map(const DifferentialGeometry &dg,

Float *s, Float *t, Float *dsdx, Float *dtdx,
Float *dsdy, Float *dtdy) const {

Vector vec = dg.P - Point(0,0,0);
*s = ds + Dot(vec, vs);
*t = dt + Dot(vec, vt);
*dsdx = Dot(dg.dPdx, vs);
*dtdx = Dot(dg.dPdx, vt);
*dsdy = Dot(dg.dPdy, vs);
*dtdy = Dot(dg.dPdy, vt);

}

� �	��� ��������� � � !$������� � � ��� �"� � #

Two simple textures interpolate between constant values based on the relation
of the

�
s � t � coordinates of the point being shaded to values at the four corners of

� 0 � 1 � 2 or at the vertices of a triangle mesh. These textures also don’t consider anti-
aliasing, since they don’t tend to be the source of high frequency variations, and
because in any case, if they used a box filter to remove high frequencies, the result
is the same as just evaluating at the main point for those cases.

Bilinear Interpolation
�
Texture Class Declarations ��� �
template <class T>
class BilerpTexture : public Texture<T> {
public:�

BilerpTexture Interface �
T Evaluate(const DifferentialGeometry &) const;

private:�
BilerpTexture Private Data �

};

An even more general class is the BilerpTexture class. It provides bilinear
interpolation between four constant values. Figure 11.2 shows the idea: values are
defined at

�
0 � 0 � , � 1 � 0 � , � 0 � 1 � , and

�
1 � 1 � in

�
s � t � parameter space. The value at a

particular
�
s � t � position is found by interpolating between them.
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Figure 11.2: basic bilerp idea

�
Texture Template Method Definitions ��� �
template <class T>
BilerpTexture<T>::BilerpTexture(TextureMapping2D *m,

const T &t00, const T &t01, const T &t10, const T &t11) {
mapping = m;
tex00 = t00;
tex01 = t01;
tex10 = t10;
tex11 = t11;

}
�
BilerpTexture Private Data ���
TextureMapping2D *mapping;
T tex00, tex01, tex10, tex11;

The interpolated value of the four values at a
�
s � t � position can be computed

by three linear interpolations. For example, we can first interpolate u of the way
between the values at

�
0 � 0 � and

�
1 � 0 � and store that in a temporary tmp1. We

can then interpolate u of the way between the
�
0 � 1 � and

�
1 � 1 � values and store the

result in tmp2. Finally, by interpolating v of the way between tmp1 and tmp2 gives
us our final result. (We get the same result if we first interpolate between

�
0 � 0 � and�

0 � 1 � in v, etc.)
Rather than doing all this work and storing the intermediate values explicitly, an

appropriately weighted average of the four corner values gives us the same value.
The result of this is in the return statement in the evaluation routine below.�
Texture Template Method Definitions ��� �
template <class T>
T BilerpTexture<T>::Evaluate(const DifferentialGeometry &dg) const {

Float u, v, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &u, &v, &dsdx, &dtdx, &dsdy, &dtdy);
return (1-u)*(1-v) * tex00 + (1-u)*v * tex01 + u*(1-v) * tex10 +

u*v * tex11;
}

Barycentric Interpolation
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A generalization of the bilinear interpolation texture, VertexTexture, stores
values at the vertices of a triangle mesh and interpolates the three surrounding
vertex values to compute the value at a particular point on a particular face.�
Texture Class Declarations ��� �
template <class T>
class VertexTexture : public Texture<T> {
public:�

VertexTexture Interface �
T Evaluate(const DifferentialGeometry &) const;

private:�
VertexTexture Private Data �

};
�
Texture Template Method Definitions ��� �
template <class T>
VertexTexture<T>::VertexTexture(const T *vs, int nv) {

nVertices = nv;
vals = new T[nv];
for (int i = 0; i < nv; ++i)

vals[i] = vs[i];
}

�
VertexTexture Private Data ���
int nVertices;
T *vals;

The VertexTexture can only be assigned to Triangle shapes; we will depend
on the rest of the system to enforce this. Therefore, here we can find the vertex in-
dices for the triangle vertices from the Shape pointer in the DifferentialGeometry,
giving us the indices to use into the per-vertex data here.�
Texture Template Method Definitions ��� �
template <class T>
T VertexTexture<T>::Evaluate(const DifferentialGeometry &dg) const {�

Find three vertex texture values, v0, v1, and v2 ��
Compute barycentric coordinates for point �
return b[0] * v0 + b[1] * v1 + b[2] * v2;

}
�
Find three vertex texture values, v0, v1, and v2 ���
Triangle *tri = (Triangle *)(dg.shape);
int *v = tri->v;
const T &v0 = vals[v[0]], &v1 = vals[v[1]], &v2 = vals[v[2]];

Recall that the
�
u � v � parametric coordinates in the DifferentialGeometry for

a triangle are computed with barycentric interpolation of parametric coordinates at
the triangle vertices.

u � b0u0 � b1u1 � b2u2

v � b0v0 � b1v1 � b2v2
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Because bi are barycentric coordinates, b0
� 1 � b1 � b2. Here, u, v, ui and vi

are all known, u and v from the DifferentialGeometry and ui and vi from the
Triangle. We can substitue for the b0 term and rewrite the above equations, giving
a linear system in two unknowns b1 and b2.�

u1 � u0 u2 � u1

v1 � v0 v2 � v1 � �
b1

b2 � �
�

u � u0

v � v0 �
This is a linear system of the basic form AX � B. We can solve for X to give us the
two barycentric coordinates by inverting A

X � A
� 1B �

The closed form solution for this is implemented in the utility routine SolveLinearSystem2x2().�
Compute barycentric coordinates for point ���
Float b[3];�
Initialize A and B matrices for barycentrics �
if (!SolveLinearSystem2x2(A, B, &b[1])) {�

Handle degenerate parametric mapping �
}
else

b[0] = 1.f - b[1] - b[2];
�
Initialize A and B matrices for barycentrics ���
Float uv[3][2];
tri->GetUVs(uv);
Float A[2][2] = { { uv[1][0] - uv[0][0], uv[2][0] - uv[0][0] },

{ uv[1][1] - uv[0][1], uv[2][1] - uv[0][1] } };
Float B[2] = { dg.u - uv[0][0], dg.v - uv[0][1] };

If the determinant of A is zero, the solution is undefined. This could happen if
all three triangle vertices had the same texture coordinates, for example. In this
case, we just set the barycentric coordinates arbitrarily.�
Handle degenerate parametric mapping ���
b[0] = b[1] = b[2] = .3333333333f;

� �	��� � � ���
� � � � #
The class ImageMap handles basic operations for 2D image maps stored on disk.

It will be key to the implementation of ImageTextures, in a few pages. The caller
provides the filename of a TIFF texture, and we read it into an array of Spectrums.
This can actually be somewhat wasteful, since most TIFFs are stored with 8-bit
values in their red, green, and blue channels, while our Spectrum class stores
spectra with 32-bit floating point values for each color component. Because we do
want to support general image maps with floating-point values though, it’s easiest
to just store textures in Spectrum objects.

ImageTextures implement textures from 2D bitmaps stored on disk. Careful
filtering of the bitmap values is essential for anti-aliasing...
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�
Texture Class Declarations ��� �
class ImageMap {
public:

ImageMap(const string &filename);�
ImageMap Method Declarations �

private:�
ImageMap Private Data �

};
�
Texture Method Definitions ��� �
ImageMap::ImageMap(const string &filename) {

int width, height;
Spectrum *texels = TIFFRead(filename, &width, &height);
if (texels) {

mipmap = new MIPMap<Spectrum>(width, height, texels);
delete[] texels;

}
else mipmap = NULL;

}
�
ImageMap Private Data ���
MIPMap<Spectrum> *mipmap;

Texture image is a 2D set of point samples of a presumably continuous function.
Consider projection of textured object onto the viewing screen: the rate at which
the texture is sampled, given by the image sampling rate, the texture map function,
the size the object projects to on the screen, may be much higher or much lower
than the rate at which there are 2D texture samples. And the points at which we’re
sampling the texture will be different than the ones at which it is defined.

Recall from Section 7.1 sampling and signal processing theory. We will have
aliasing if the texture function isn’t sampled by screen samples at a sufficiently high
rate. There are a few key differences from the image sampling issues discussed in
Chapter 7, however: first, it’s cheap to get the value of a sample–just an array
lookup (as opposed to having to trace a ray). Second, we can find out anything we
want to about the behavior of the texture image function–it’s fully defined by the
set of samples that we have.

We’d like to take this opportunity to reduce aliasing in the final image by pre-
filtering the texture image according to the rate at which we’re sampling it in the
final image. This sampling rate may in general change from pixel to pixel–space
variant–since it’s determined by scene geometry, stuff like that that is varying in
unusual ways. Thus, efficiently pre-filtering the texture function, reconstructing a
new function and then resampling it at a particular location has received a bit of
attention in graphics.)
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Figure 11.3: may need to look at many texels to filter a texture over a large area...

�
Texture Method Definitions ��� �
void ImageMap::Lookup(Float s, Float t, Float dsdx, Float dtdx,

Float dsdy, Float dtdy, Spectrum *val) const {
if (!mipmap)

*val = Spectrum(1.f);
else

*val = mipmap->Lookup(s, t, dsdx, dtdx, dsdy, dtdy);
}

�
Texture Method Definitions ��� �
void ImageMap::Lookup(Float s, Float t, Float dsdx, Float dtdx,

Float dsdy, Float dtdy, Float *val) const {
Spectrum sp;
Lookup(s, t, dsdx, dtdx, dsdy, dtdy, &sp);
*val = sp.Luminance();

}

MIP Maps

The MIPMap class implements two different methods for efficient texture filter-
ing. For a high-resolution bitmap, naive filtering of the texture samples may be
extremely inefficient–Figure 11.3 shows a bitmap, with texels indicated by dots
and the filter region indicated by the rectangular dashed region. When the texture
projects to a very small area on the screen, a large number of texels may need to be
filtered.

XXX spatially invariant filter, image pyramid, tri-linear interpolation/Gaussian...�
mipmap.h* ����

Source Code Copyright �
#ifndef MIPMAP_H
#define MIPMAP_H 1
#include "lrt.h"�
MIPMap Declarations ��
MIPMap Method Definitions �
#endif // MIPMAP_H
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�
MIPMap Declarations ���
template <class T> class MIPMap {
public:�

MIPMap Public Interface �
private:�

MIPMap Private Methods ��
MIPMap Private Data �

};
�
MIPMap Method Definitions ���
#define BLOCK_SIZE 4
#define LOG_BLOCK_SIZE 2
#define UP(x) (((x)+BLOCK_SIZE-1) & (!BLOCK_SIZE-1))

�
MIPMap Method Definitions ��� �
template <class T>
MIPMap<T>::MIPMap(int ur, int vr, T *d) {

nLevels = Float2Int(log(max(ur, vr)) / log(2.));
uRes = new int[nLevels];
vRes = new int[nLevels];
data = new T *[nLevels];�
Initialize most detailed level of MIPMap �
for (int i = 1; i < nLevels; ++i) {�

Initialize ith MIPMap level from i � 1st level �
}�
Initialize MIPMap filter weights if needed �

}
�
MIPMap Private Data ���
T **data;
int nLevels;
int *uRes, *vRes;

�
Initialize most detailed level of MIPMap ���
uRes[0] = ur;
vRes[0] = vr;
data[0] = (T *)AllocL2CacheAligned(UP(ur) * UP(vr) * sizeof(T));
for (int v = 0; v < vr; ++v)

for (int u = 0; u < ur; ++u)
texel(0, u, v) = d[u + v * ur];

�
Initialize ith MIPMap level from i � 1st level ���
uRes[i] = max(1, uRes[i-1]/2);
vRes[i] = max(1, vRes[i-1]/2);
data[i] = (T *)AllocL2CacheAligned(UP(uRes[i]) * UP(vRes[i]) * sizeof(T));�
Filter four texels from finer level of pyramid �
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�
Filter four texels from finer level of pyramid ���
for (int v = 0; v < vRes[i]; ++v)

for (int u = 0; u < uRes[i]; ++u)
texel(i, u, v) = .25f * (texel(i-1, 2*u, 2*v) +

texel(i-1, 2*u+1, 2*v) + texel(i-1, 2*u, 2*v+1) +
texel(i-1, 2*u+1, 2*v));

The texel() utility function returns a reference to a Spectrum for the given
texel. If an out-of-range texel coordinate is passed in, we clamp it to the range
of valid texel coordinates, such that the edge texels are repeated throughout space.
Depending on the object being rendered and how the texture map is being used,
other strategies such as returning a texels with a fixed color, mirroring the texture
map across the edges, or repeating the texture map continuously across the

�
s � t �

plane are often useful.�
MIPMap Method Definitions ��� �
template <class T>
const T &MIPMap<T>::texel(int level, int u, int v) const {�

Return
�
u � v � texel from level �

}
�
Return

�
u � v � texel from level ���

u = Clamp(u, 0, uRes[level]-1);
v = Clamp(v, 0, vRes[level]-1);
int bu = (u >> LOG_BLOCK_SIZE), bv = (v >> LOG_BLOCK_SIZE);
int ou = u & (BLOCK_SIZE-1), ov = v & (BLOCK_SIZE-1);
int offset = BLOCK_SIZE * BLOCK_SIZE *

((UP(uRes[level]) >> LOG_BLOCK_SIZE) * bv + bu);
offset += BLOCK_SIZE * ov + ou;
return data[level][offset];

elliptically weighted average(Hec86).�
MIPMap Private Data ��� �
#define WEIGHT_LUT_SIZE 256
static Float weightLut[WEIGHT_LUT_SIZE];
static bool weightsInitialized;

�
MIPMap Method Definitions ��� �
template <class T> Float MIPMap<T>::weightLut[WEIGHT_LUT_SIZE];
template <class T> bool MIPMap<T>::weightsInitialized = false;

�
Initialize MIPMap filter weights if needed ���
if (!weightsInitialized) {

for (int i = 0; i < WEIGHT_LUT_SIZE; ++i) {
Float alpha = 2;
Float r2 = float(i) / float(WEIGHT_LUT_SIZE - 1);
weightLut[i] = expf(-alpha * r2);

}
weightsInitialized = true;

}
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Figure 11.4: bilinear interpolation of texels

�
MIPMap Method Definitions ��� �
template <class T>
MIPMap<T>::˜MIPMap() {

for (int i = 0; i < nLevels; ++i)
FreeCacheAligned(data[i]);

delete[] data;
delete[] uRes;
delete[] vRes;

}

The texture map covers the region in texture coordinates from
�
0 � 0 � to

�
1 � 1 � .

We need to first take the coordinates given by the user and handle the case where
they’re outside this range. We then compute texture coordinates in the space
spanned from

�
0 � 0 � to

�
width � height � , where width and height are the number

of texels in each direction. Finally, we compute the integer texture coordinates of
the upper left of the four texels that we’ll be using.

XXX Figure 11.4.
There is an important subtlety in how the texture coordinates are computed that

is a result of what convention we use for where the texels are positioned. Fig-
ure 11.5 shows the two possibilities for how an image map with two texels in each
direction might be laid out over � 0 � 1 � 2. The natural choice is to place the four tex-
els at integer locations

�
0 � 0 � , � 1 � 0 � , � 0 � 1 � , and

�
1 � 1 � ; these points are marked with

circles in the figure.
A better choice, however, is to place them at the points marked with “x”s; this

convention is used by most graphics APIs, including OpenGL. Advantages of using
this convention include XXX. It is easy to implement this convention; the texture
coordinates just need to be offset by 0 � 5 after they are scaled by the image resolu-
tion in each direction.
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Figure 11.5: Those 0 � 5 texel offsets...

�
MIPMap Method Definitions � 	 �
template <class T>
T MIPMap<T>::bilerp(int level, Float u, Float v) const {

if (level >= nLevels) level = nLevels-1;
u = u * uRes[level] - 0.5f;
v = v * vRes[level] - 0.5f;
int u0 = Floor2Int(u), v0 = Floor2Int(v);�
Compute bilinear interpolation weights �
return weights[0] * texel(level, u0, v0) +

weights[1] * texel(level, u0, v0+1) +
weights[2] * texel(level, u0+1, v0) +
weights[3] * texel(level, u0+1, v0+1);

}
�
Compute bilinear interpolation weights ���
Float du = u - u0, dv = v - v0;
Float weights[4];
weights[0] = (1.-du)*(1.-dv);
weights[1] = (1.-du)*dv;
weights[2] = du*(1.-dv);
weights[3] = du*dv;
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�
MIPMap Method Definitions ��� �
template <class T>
T MIPMap<T>::Lookup(Float u, Float v, Float width) const {

static StatsCounter mipTrilerps("Texture", "Trilinear MIPMap lookups");
++mipTrilerps;
Float level = -logf(max(width, 1e-8f)) / logf(2.);
if (level >= nLevels-1)

return bilerp(0, u, v);
else {

int level = nLevels-1-level;
int l0 = Floor2Int(level);
Float delta = level - l0;
return (1.f-delta) * bilerp(l0, u, v) +

delta * bilerp(l0+1, u, v);
}

}
�
MIPMap Method Definitions ��� �
template <class T>
T MIPMap<T>::Lookup(Float u, Float v, Float du0, Float dv0,

Float du1, Float dv1) const {
static StatsCounter ewaLookups("Texture", "EWA filter lookups");
++ewaLookups;�
Compute ellipse minor and major axes ��
Clamp ellipse eccentricity if too large ��
Choose level of detail for EWA lookup �
if (lod >= nLevels)

return texel(nLevels-1, 0, 0);
else

return ewaLod(u, v, du0, dv0, du1, dv1, lod);
}

�
Compute ellipse minor and major axes ���
Float major[2], minor[2];
if (du0*du0 + dv0*dv0 < du1*du1 + dv1*dv1) {

major[0] = du1;
major[1] = dv1;
minor[0] = du0;
minor[1] = dv0;

}
else {

major[0] = du0;
major[1] = dv0;
minor[0] = du1;
minor[1] = dv1;

}
Float majorLength = sqrtf(major[0]*major[0] + major[1]*major[1]);
Float minorLength = sqrtf(minor[0]*minor[0] + minor[1]*minor[1]);

if the eccentricity of the ellipse is looking to be too big, scale up the shorter of
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the two vectors so that it’s a little more reasonable. This lets us avoid spending
inordinate amounts of time filtering very long and skinny regions (which take a lot
of time), at the expense of some blurring...�
Clamp ellipse eccentricity if too large ���
const Float maxEccentricity = 10;
Float invMinorLength = 1.f / minorLength;
Float e = majorLength * invMinorLength;
if (e > maxEccentricity) {

Float scale = e / maxEccentricity;
minor[0] *= scale;
minor[1] *= scale;
minorLength *= scale;

}

Pick a lod such that we’re looking at somewhere around 3-9 texels in the minor
axis direction.�
Choose level of detail for EWA lookup ���
int lod = max(0, nLevels - 1 - Log2Int(5.f * invMinorLength));

�
MIPMap Method Definitions ��� �
template <class T>
T MIPMap<T>::ewaLod(Float u, Float v, Float du0, Float dv0,

Float du1, Float dv1, int level) const {�
Convert EWA coordinates to appropriate scale for level ��
Compute ellipse coefficients to bound EWA filter region ��
Compute the ellipse’s

�
s � t � bounding box in texture space ��

Scan over ellipse bound and compute quadratic equation �
}

�
Convert EWA coordinates to appropriate scale for level ���
u = u * uRes[level]; // - 0.5f;
v = v * vRes[level]; // - 0.5f;
du0 *= uRes[level];
dv0 *= vRes[level];
du1 *= uRes[level];
dv1 *= vRes[level];

compute ellipse coefficients to bound the region: A*x*x + B*x*y + C*y*y =
F.�
Compute ellipse coefficients to bound EWA filter region ���
Float A = dv0*dv0 + dv1*dv1 + 1;
Float B = -2.f * (du0*dv0 + du1*dv1);
Float C = du0*du0 + du1*du1 + 1;
Float F = A*C - B*B*0.25f;
Float invF = 1.f / F;
A *= invF;
B *= invF;
C *= invF;
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�
Compute the ellipse’s

�
s � t � bounding box in texture space ���

Float det = -B*B + 4.f*A*C;
Float invDet = 1.f / det;
Float uSqrt = sqrtf(det * C), vSqrt = sqrtf(A * det);
int u0 = Ceil2Int (u - 2.f * invDet * uSqrt);
int u1 = Floor2Int(u + 2.f * invDet * uSqrt);
int v0 = Ceil2Int (v - 2.f * invDet * vSqrt);
int v1 = Floor2Int(v + 2.f * invDet * vSqrt);
static StatsRatio ewaTexels("Texture", "Texels per EWA lookup", false);
ewaTexels.add((1+u1-u0) * (1+v1-v0), 1);�

Scan over ellipse bound and compute quadratic equation ���
T num(0.);
Float den = 0;
for (int iv = v0; iv <= v1; ++iv) {

Float V = iv - v;
for (int iu = u0; iu <= u1; ++iu) {

Float U = iu - u;
Float r2 = A*U*U + B*U*V + C*V*V;
if (r2 < 1.) {�

Add EWA sample for current texel �
}

}
}
return num / den;�

Add EWA sample for current texel ���
Float weight = weightLut[Float2Int(r2 * (WEIGHT_LUT_SIZE - 1))];
num += texel(level, iu, iv) * weight;
den += weight;

Texture caching

Because the user may re-use a texture many times within a scene, and because
we may have to look up a texture at shading time, we provide a global hash table
of texture maps, so that they are only loaded once, even if used multiple times.�
Texture Cache Data ���
static StringHashTable textures;�

Texture Cache Methods ���
ImageMap *GetTexture(const string &filename) {

ImageMap *ret = (ImageMap *)textures.Search(filename);
if (!ret) {

static StatsCounter texLoaded("Texture",
"Number of image maps loaded");

++texLoaded;
ret = new ImageMap(filename);
textures.Add(filename, ret);

}
return ret;

}
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Image Texture Maps

We now provide the Texture subclass that uses a ImageMap for image mapping.�
Texture Class Declarations ��� �
template <class T>
class ImageTexture : public Texture<T> {
public:�

ImageTexture Interface �
private:�

ImageTexture Private Data �
};

�
Texture Template Method Definitions ��� �
template <class T>
ImageTexture<T>::ImageTexture(TextureMapping2D *m,

const string &filename) {
mapping = m;
imageMap = GetTexture(filename);

}
�
ImageTexture Private Data ���
ImageMap *imageMap;
TextureMapping2D *mapping;

The evaluation routine is a straightforward of texture coordinate computation
and image map lookup. The lookup is written in a slightly tortuous manner so that
we can overload the ImageMap lookup method based on the pointer type passed in
for the return value. This in turn was necessary since it’s not possible to overload
functions by return type in C++.�
Texture Template Method Definitions ��� �
template <class T>
T ImageTexture<T>::Evaluate(const DifferentialGeometry &dg) const {

Float s, t, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &s, &t, &dsdx, &dtdx, &dsdy, &dtdy);
T val;
imageMap->Lookup(s, t, dsdx, dtdx, dsdy, dtdy, &val);
return val;

}

� �	���  � !�� � ���	�  � � � ��� �"� ��! � � ��� �"� � � �
Once one starts to think of

�
s � t � texture coordinates as quantities that can be

computed in a number of ways–not just from the parametric coordinates of the
surface, the next step is to consider textures defined over a three-dimensional do-
main (often called solid textures.) The nice thing about solid textures is that all
objects have a natural three-dimensional texture mapping–the object-space posi-
tion. This is a substantial advantage for texturing objects that don’t have a natural
two-dimensional parameterization (e.g. triangle meshes and implicit surfaces), and
for objects that have a distorted parameterization (e.g. the poles of a sphere.)
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We will define a TextureMapping3D class that defines the interface for gener-
ating three-dimensional texture coordinates.

Note that this isn’t true for procedural textures, where in general, it’s expensive
to compute what is going on at a particular point, and where those point samples
don’t fully characterize the function. Therefore, what we’d like to do there is to
remove high-frequency stuff in the signal before we take samples from it. Thus, the
thing computing the procedural value needs to be aware of the frequency content of
the various things that it does along the way so that it can stop/remove stuff that is
too high-frequency and will alias. Though this sounds daunting, fortunately, there
are a handful of techniques that work well to handle this.�
Texture Class Declarations ��� �
class TextureMapping3D {
public:

virtual ˜TextureMapping3D() { }
virtual Point Map(const DifferentialGeometry &dg, Point *dPdx,

Point *dPdy) const = 0;
};

The natural three dimensional mapping just takes the world-space coordinate of
the point being shaded and applies a linear transformation to it.�
Texture Class Declarations ��� �
class IdentityMapping3D : public TextureMapping3D {
public:

IdentityMapping3D(const Transform &x) : xform(x) { }
Point Map(const DifferentialGeometry &dg, Point *dPdx,

Point *dPdy) const {
return xform(dg.P);

}
private:

Transform xform;
};

The problem that solid textures introduce is texture representation; a three-
dimensional bitmap takes up a fair amount of storage space, and is much harder
to acquire than a two-dimensional texture map (which can come from a digital
photograph, a rendered image, a texture painted by an artists, etc.) Therefore,
simultaneous to the invention of solid texturing was the invention of procedural
texturing–the idea that short programs could be used to generate texture values at
arbitrary positions on surfaces in the scene.

A simple instance of this idea is a procedural sine wave. If one wanted to use a
sine wave for bump-mapping to simulate waves in water, for example, one might as
well just evaluate the sin function at points on the surface as needed. It’s inefficient
(and inaccurate) to precompute values of the function at a grid of points and then
store them in an image map. If one can invent a three-dimensional function that
describes the colors of wood-grain in a solid block of wood, for instance, then one
can generate images of complex objects that appear to be carved from wood. Over
the years, procedural texturing has grown in application considerably as techniques
have been developed to describe more and more complex surfaces procedurally.
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Procedural texturing has a number of other interesting implications. First, it
can be used to reduce overall memory requirements for rendering, by avoiding
the storage of large, high-resolution texture maps. In addition, procedural shading
gives the promise of potentially infinite detail; as the viewer approaches an object,
the texturing function is evaluated at the points being shaded, which naturally leads
to the right amount of detail being visible. In contrast, image texture maps typically
become blurry when the viewer is too close to them. However, procedural textures
are much more difficult to control and make localized changes to than image maps.

UV texture

A trivial procedural texture, mostly useful for debugging the parameterization
of Shapes, converts the surface’s

�
u � v � coordinates into the first two components

of a Spectrum.�
Texture Class Declarations ��� �
class UVTexture : public Texture<Spectrum> {
public:

UVTexture(TextureMapping2D *m) {
mapping = m;

}�
UVTexture Interface �

private:
TextureMapping2D *mapping;

};
�
Texture Method Definitions ��� �
Spectrum UVTexture::Evaluate(const DifferentialGeometry &dg) const {

Float u, v, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &u, &v, &dsdx, &dtdx, &dsdy, &dtdy);
Float cs[COLOR_SAMPLES];
memset(cs, 0, COLOR_SAMPLES * sizeof(Float));
cs[0] = u;
cs[1] = v;
return Spectrum(cs);

}

Checkerboard

The checkerboard is the canonical basic procedural texture. The
�
s � t � texture

coordinates are used to break parameter space up into square parametric regions
which are shaded with alternating patterns. Rather than just supporting checker-
boards that switch between two fixed colors, we allow the user to pass in two
texture maps.�
Texture Class Declarations ��� �
template <class T> class UVCheckerboard : public Texture<T> {
public:�

UVCheckerboard Interface �
private:�

UVCheckerboard Private Data �
};
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�
UVCheckerboard Interface ���
UVCheckerboard(TextureMapping2D *m, Texture<T> *c1,

Texture<T> *c2) {
mapping = m;
tex1 = c1;
tex2 = c2;

}�
UVCheckerboard Private Data ���
Texture<T> *tex1, *tex2;
TextureMapping2D *mapping;

After getting the
�
s � t � texture coordinates from the TextureMapping2D, we

round the texture coordinates to the nearest integers, add them together, and see
if the result has odd or even parity; this determines which of the two texture maps
we evaluate.�
Texture Template Method Definitions ��� �
template <class T>
T UVCheckerboard<T>::Evaluate(

const DifferentialGeometry &dg) const {
Float u, v, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &u, &v, &dsdx, &dtdx, &dsdy, &dtdy);
if ((Round(u) + Round(v)) % 2 == 0)

return tex1->Evaluate(dg);
return tex2->Evaluate(dg);

}

Solid Checkerboard

The previous Checkerboard class wraps a checkerboard pattern around the ob-
ject in parameter space. We can also define a solid checkerboard pattern based on
three-dimensional texture coordinates. As such that the object is effectively carved
out of 3D checker cubes with the parameter space checkerboard, we provide two
texture maps to choose between. Note that these two textures need not be solid
textures themselves; we are merely going to choose between them based on the 3D
position of the hit point.�
Texture Class Declarations ��� �
template <class T> class SolidCheckerboard : public Texture<T> {
public:�

SolidCheckerboard Interface �
private:�

SolidCheckerboard Private Data �
};�

SolidCheckerboard Interface ���
SolidCheckerboard(TextureMapping3D *m, Texture<T> *c1,

Texture<T> *c2) {
mapping = m;
tex1 = c1;
tex2 = c2;

}
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�
Texture Template Method Definitions ��� �
template <class T>
T SolidCheckerboard<T>::Evaluate(

const DifferentialGeometry &dg) const {
Point dPdx, dPdy;
Point P = mapping->Map(dg, &dPdx, &dPdy);
if ((Round(P.x) + Round(P.y) + Round(P.z)) % 2 == 0)

return tex1->Evaluate(dg);
return tex2->Evaluate(dg);

}

� �	����� ����# �
In order to write solid textures for complex surface appearances, it is helpful

to be able to introduce some controlled variation to the process. Consider a wood
plank floor, for example: each plank’s color is likely to be slightly different than
the others. Or consider a windswept lake; we might want to have waves of similar
amplitude across the entire like, but we don’t want them to be the same (as they
would be if they were constructed from a of sine waves, for example.)

The solution to these sorts of problems came in the form of what has been called
a noise function. In general, a noise function should be smoothly-varying func-
tion defined over

� 3 , ranging between � 1 and 1, but without obviously repeating
patterns to it. Equally important, it should be band limited, with a maximum fre-
quency of roughly 1, which makes it possible to control their frequency content,
so that the patterns it generates don’t have any frequencies higher than the pixel
sample spacing when the object is projected onto the screen.

Many of the noise functions that have been developed are built on the idea of an
integer lattice throughout

� 3 . Some value is associated with each
�
x � y � z � position

in space, where each of x, y, and z are integers. Then, given an arbitrary position
in space, the eight adjoining lattice values are found. They are then interpolated in
some manner to compute the noise value at the particular point.

A simple example of this is value noise. Pseudo-random numbers between � 1
and 1 are associated with each lattice point, and actual noise values are computed
with trilinear interpolation or with a more complex spline interpolant, which can
give a smoother result (by avoiding derivative discontinuities when moving from
one lattice cell to another.)

For such a noise function, given an integer
�
x � y � z � lattice point, we must be able

to efficiently compute its parameter value. Because it’s infeasible to store values for
all possible

�
x � y � z � points, some cleverness is needed. One option is to use a hash

function, where the coordinates are hashed and then used to look up parameters
from a fixed-size table of precomputed pseudo-random parameter values.

Here we will implement a noise function introduced by Ken Perlin; as such, it
is known as Perlin noise. It has a value of zero at all

�
x � y � z � integer lattice points.

Its variation comes from varying gradient vectors at each lattice point that guide
the interpolation of a function in between the points. This noise function has many
of the desired characteristics of a noise function described above and is reasonably
computationally efficient and easy to implement. See Figure 11.7 for a graph of
Perlin noise.
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Figure 11.6: generating noise from gradients at integer lattice points
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Figure 11.7: Graph of noise function; note that it is smoothly varying, doesn’t have
unexpected high-frequencies, and ranges between -1 and 1.
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A permutation table is used to map integer lattice coordinates into an index array
of interpolant values. In a pre-process we fill an array of size NOISE_PERM_SIZE
with numbers from 0 to NOISE_PERM_SIZE-1 and then randomly shuffle its order.
We then make an array of size 2*NOISE_PERM_SIZE that holds the resulting table
two times in succession.

Given an integer
�
x � y � z � lattive coordinate, then, we look up a value in the per-

mutation table as:

NoisePerm[NoisePerm[NoisePerm[ix]+iy]+iz];

where ix = x % NOISE_PERM_SIZE, and so forth. By doing three permutations
in this way, we avoid regularity that might be present if we used NoisePerm[ix+iy+iz],
where we’d get the same result if ix and iy were interchanged, etc. By replicating
the table twice, we avoid the need to compute modulus values after lookups, like
[[(NoisePerm[ix]+iy)�
Perlin Noise Data ���
#define NOISE_PERM_SIZE 256
static int NoisePerm[2 * NOISE_PERM_SIZE] = {

151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96,
53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142,�
Noise permutation table �

};

To evaluate the noise function, we first need to find the eight gradient vectors
for the cell the

�
x � y � z � point is in. Then we just need to do the 3D interpolation.�

Texture Method Definitions ��� �
Float Noise(Float x, Float y, Float z) {�

Initialize eight gradients for this cell ��
Compute gradient weights ��
Compute trilinear interpolation of weights �

}

We first get the eight gradients for the cell of the point being shaded.�
Initialize eight gradients for this cell ���
int ix = Floor2Int(x);
int iy = Floor2Int(y);
int iz = Floor2Int(z);
const Point &g000 = Gradient(ix, iy, iz);
const Point &g100 = Gradient(ix+1, iy, iz);
const Point &g010 = Gradient(ix, iy+1, iz);
const Point &g110 = Gradient(ix+1, iy+1, iz);
const Point &g001 = Gradient(ix, iy, iz+1);
const Point &g101 = Gradient(ix+1, iy, iz+1);
const Point &g011 = Gradient(ix, iy+1, iz+1);
const Point &g111 = Gradient(ix+1, iy+1, iz+1);

Given an integer lattice point, we use the permutation table to compute an off-
set value between 0 and NOISE_PERM_SIZE. We then take the low-order bits of
this to get an offset into the table of precomputed gradient directions (so long as
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NUM_GRADIENTS and NOISE_PERM_SIZE are powers of two, we can use efficient
and operations rather than expensive modulus functions.)�
Texture Method Definitions ��� �
inline const Point &Gradient(int x, int y, int z) {

x &= NOISE_PERM_SIZE-1;
y &= NOISE_PERM_SIZE-1;
z &= NOISE_PERM_SIZE-1;
int offset = NoisePerm[NoisePerm[NoisePerm[x]+y]+z];
return NoiseDirs[offset & (NUM_GRADIENTS-1)];

}

The set of gradient vectors is just the twelve vectors from the center of a cube to
its edges. The original formulation of Perlin noise also had a precomputed table of
pseudo-random gradient directions, though Perlin has more recently suggested that
the randomness from the permutation table is enough to remove regularity from the
noise function. As a bonus, fewer multiplications are needed in the remainder of
the implementation if all gradients have coordinates -1, 0, or 0. Here, we pad the
12 vector table out to 16 entries by repeating a few of them; the savings from being
able to do an and rather than a modulus to compute which gradient to use makes
this a worthwhile trade-off.�
Perlin Noise Data ��� �
#define NUM_GRADIENTS 16
static Point NoiseDirs[NUM_GRADIENTS] = {

Point(1, 1, 0), Point(-1, 1, 0), Point(1, -1, 0),
Point(-1, -1, 0), Point(1, 0, 1), Point(-1, 0, 1),
Point(1, 0, -1), Point(-1, 0, -1), Point(0, 1, 1),
Point(0, -1, 1), Point(0, 1, -1), Point(0, -1, -1),
Point(1, 1, 0), Point(-1, 1, 0), Point(0, -1, 1),
Point(0, -1, -1)

};

Given the eight gradients, we compute each ones contribution at the point being
shaded. This is just the dot product of the gradient with the offset vector from the
respective integer lattice point to the point being shaded.�
Texture Method Definitions ��� �
inline Float NoiseDot(const Point &P, Float x, Float y, Float z) {

return P.x*x + P.y*y + P.z*z;
}

�
Compute gradient weights ���
Float dx = x - ix, dy = y - iy, dz = z - iz;
Float w000 = NoiseDot(g000, dx, dy, dz);
Float w100 = NoiseDot(g100, dx-1, dy, dz);
Float w010 = NoiseDot(g010, dx, dy-1, dz);
Float w110 = NoiseDot(g110, dx-1, dy-1, dz);
Float w001 = NoiseDot(g001, dx, dy, dz-1);
Float w101 = NoiseDot(g101, dx-1, dy, dz-1);
Float w011 = NoiseDot(g011, dx, dy-1, dz-1);
Float w111 = NoiseDot(g111, dx-1, dy-1, dz-1);
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Finally, given these eight weights, we want to trilinearly interpolate between
them at the point. Rather than interpolating with dx, dy, and dz directly, though,
we run each of them through a smoothing function. This ensures that the noise
function has first and second derivative continuity as we move from lattice cell to
lattice cell.�
Texture Method Definitions ��� �
inline Float NoiseWeight(Float t) {

Float t3 = t*t*t;
Float t4 = t3*t;
return 6*t4*t - 15*t4 + 10*t3;

}
�
Compute trilinear interpolation of weights ���
Float wx = NoiseWeight(dx);
Float wy = NoiseWeight(dy);
Float wz = NoiseWeight(dz);
Float x00 = Lerp(wx, w000, w100);
Float x10 = Lerp(wx, w010, w110);
Float x01 = Lerp(wx, w001, w101);
Float x11 = Lerp(wx, w011, w111);
Float y0 = Lerp(wy, x00, x10);
Float y1 = Lerp(wy, x01, x11);
return Lerp(wz, y0, y1);

Random Polka Dots

To show a basic use of the noise function, we’ll write a polka-dot texture. This
texture divides

�
s � t � texture space into rectangular cells. Each cell has a 50%

chance of having a dot inside of it, where the dot is randomly placed inside the
cell.

PolkaDots takes the usual 2D mapping function, as well as two Textures, one
for the regions of the surface outside of the dots and one for the regions inside.�
PolkaDots Interface ���
PolkaDots(TextureMapping2D *m, Texture<T> *c1, Texture<T> *c2) {

mapping = m;
outsideDot = c1;
insideDot = c2;

}
�
PolkaDots Private Data ���
Texture<T> *outsideDot, *insideDot;
TextureMapping2D *mapping;

The evaluation function is pretty straightforward. We start by taking the
�
s � t �

texture coordinates and computing integer uCell and vCell values, which give us
the coordinates of the cell that we’re in. (See Figure 11.8.)
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Figure 11.8:

�
Texture Template Method Definitions ��� �
template <class T>
T PolkaDots<T>::Evaluate(const DifferentialGeometry &dg) const {�

Compute cell incides for dots ��
Return insideDot result if point is inside dot �
return outsideDot->Evaluate(dg);

}
�
Compute cell incides for dots ���
Float u, v, dsdx, dtdx, dsdy, dtdy;
mapping->Map(dg, &u, &v, &dsdx, &dtdx, &dsdy, &dtdy);
int uCell = Round(u), vCell = Round(v);

Once we know the cell indices, we need to decide if there is a polka dot in the
cell. Obviously, this computation needs to be consistent, so that for all times that
this routine runs for points in a particular cell, it always returns the same result.
On the other hand, we’d like the result to not be regular. Enter noise: we evaluate
the noise function at a position that is the same for all points inside this cell–
uCell+.5, vCell+.5. If this is greater than zero, we decide that there is a dot in
the cell and continue processing.

Recall that out noise function always returns zero at integer
�
x � y � z � coordinates,

so we don’t want to just evaluate it at uCell, vCell. Although the 3D noise
function would actually be evaluating noise at uCell, vCell, .5, slices through
noise with integer values for any of the are not as good as with all of them offset.

If there is a dot in the cell, we use the same trick to randomly shift the center
of the dot around; we compute a new dot position using noise to offset it from the
center of the cell.

Finally, we just need to decide if the
�
s � t � coordinates are within distance radius

of the shifted center. We compute their squared distance to the center and compare
it to the squared radius.
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Figure 11.9: 2, 4, 6 ocatves

�
Return insideDot result if point is inside dot ���
if (Noise(uCell+.5, vCell+.5) > 0) {

Float radius = .35;
Float maxShift = 0.5 - radius;
Float uCenter = uCell + maxShift *

Noise(uCell + 1.5, vCell + 2.8);
Float vCenter = vCell + maxShift *

Noise(uCell + 4.5, vCell + 9.8);
Float du = fabsf(u - uCenter), dv = fabsf(v - vCenter);
if (du*du + dv*dv < radius*radius)

return insideDot->Evaluate(dg);
}

This texture, like all procedural textures in this chapter, is an implicit texture; in
other words, the texture function is written to be able to describe the texture at any
particular point being shaded–because it does so in a way such that it squares

FBm
�
FBmTexture Interface ��� �
FBmTexture(int oct, Float roughness, TextureMapping3D *map) {

omega = roughness;
octaves = oct;
mapping = map;

}
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�
FBmTexture Private Data ���
int octaves;
Float omega;
TextureMapping3D *mapping;

�
Texture Method Definitions ��� �
Float FBm(const Point &P, Float omega, int octaves) {

Float sum = 0., lambda = 1., o = 1.;
for (int i = 0; i < octaves; ++i) {

sum += o * Noise(lambda*P.x, lambda*P.y, lambda*P.z);
lambda *= 1.99f;
o *= omega;

}
return sum;

}
�
Texture Method Definitions ��� �
Float FBmTexture::Evaluate(const DifferentialGeometry &dg) const {

Point dPdx, dPdy;
Point P = mapping->Map(dg, &dPdx, &dPdy);
return FBm(P, omega, octaves);

}

Windy Waves

A simple application of FBm can give a reasonably convincing representation
of ocean waves. This Texture is based on two observations. First, that across the
surface of a wind-swept lake (for example), some areas are relatively smooth and
some are more choppy; this comes from the natural variation of wind’s strength
from area to area. Second, that the overall form of individual waves on the surface
can be well described by FBm.�
Windy Interface ��� �
Windy(TextureMapping3D *map) {

mapping = mapping;
}

�
Windy Private Data ���
TextureMapping3D *mapping;

The evaluation function uses two calls to the FBm function. The first scales down
the point P by a factor of 10; as a result, the first call to FBm returns relatively low-
frequency variation over the object being shaded. We use this to determine the
local strength of the wind. The second call figures out the amplitude of the wave at
the particular point, independent of the amount of wind there. The product of these
two values gives the actual wave offset for the particular location. Figure 11.10
shows the result.
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Figure 11.10: windy waves

�
Texture Method Definitions ��� �
Float Windy::Evaluate(const DifferentialGeometry &dg) const {

Point dPdx, dPdy;
Point P = mapping->Map(dg, &dPdx, &dPdy);
Point Ps = Point(.1f*P.x, .1f*P.y, .1f*P.z);
Float windStrength = FBm(Ps, .5f, 3);
Float waveHeight = FBm(P, .5f, 6);
return fabsf(windStrength) * waveHeight;

}

Marble

���"� ������� � � ����� ���

2D texture mapping with images was first introduced to graphics by Blinn and
Newell (BN76).

Feibush et al were the first graphics researchers to investigate a spatially-varing
filter function, instead of using a box filter (FLC80).

Norton et al (NRS82).
Crow summed area tables (Cro84).
Williams mipmap (Wil83). Greene and Heckbert EWA (GH86b), Heckbert tex-

ture mapping survey (Hec86). Heckbert’s MS thesis (Hec89). Landsdale MS the-
sis (Lan91).

Fournier and Fiume filtering method (FF88). McCormack et al fast and anisotropic (MPFJ99).
Procedural texturing was introduced by Cook (Coo84), Perlin (Per85), and Peachey (Pea85).
Shading languages: Hanrahan and Lawson(HL90), Cook (Coo84), Perlin (Per85).

See Ebert et al (EMP � 03) and Apodaca and Gritz (AG00) for techniques for writ-
ing procedural shaders. The stuff here is similar to the shade tree approach.

Solid texture developed by Gardner (Gar84), Perlin (Per85), Peachey (Pea85).
Peachey’s chapter in Texturing and Modeling has a great summary of approaches

to noise functions (?). Worley developed a wacky new noise function (Wor96).
Perlin’s paper on the revised noise function (Per02).

Windy shader here based on Musgrave’s in texturing and modeling.
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� � ��� ����# � #

11.1 texture memory: tiling, not blowing 8-bit TIFFs into full-blown Spectrum
objects unless necessary.

11.2 feline texture filtering

11.3 Implement plugin shading language to allow user-written programs to com-
pute texture values.

11.4 detect specular highlight aliasing: gauss map, then find maximum value of
�ωh inside the spherical triangle–either

�
0 � 0 � 1 � , at a vertex, or along an edge?

Can we be sure that all �ωh will be inside the spherical triangle given by the
three points, or is that just going to be good enough?

11.5 shading with closures, multi-point-sample textures and BSDFs..
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In order to be able to see the scene we’re rendering, it’s necessary that some of
the objects in the scene emit light into the scene. In this chapter, we’ll describe
the abstract light class, which defines the basic abstractions and interfaces used for
light sources in lrt. We’ll then describe the implementations of a number of useful
light sources.� � �
��� � � ��� ��������� � �����
�
light.h* ����

Source Code Copyright �
#ifndef LIGHT_H
#define LIGHT_H
#include "lrt.h"
#include "geometry.h"
#include "transform.h"
#include "color.h"
#include "paramset.h"
#include "mc.h"�
Light Classes ��
AreaLight Classes �
#endif // LIGHT_H

�
light.cc* ����

Source Code Copyright �
#include "light.h"
#include "scene.h"�
Light Method Definitions � � � �
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All lights share three common parameters. First is a boolean that records whether
the light should cast shadows or whether it should just illuminate all objects in the
scene regardless of whether other objects may block the light. This clearly has
no basis in reality, though it can be useful for artistic effect. Second is a trans-
formation that defines the light’s coordinate system in terms of the scene’s world
coordinate system. Just like shapes, it’s often handy to be able to write a light’s
implementation assuming a particular coordinate system (e.g. a spotlight located
at the origin of its light space, shining down the � z axis.) Finally, we store the total
power emitted by the light.�
Light Classes ���
class Light {
public:�

Light Interface �
protected:�

Light Protected Data �
};

�
Light Interface ��� �
Light(bool shadows, const Transform &l2w,

const Spectrum &power) {
CastsShadows = shadows;
LightToWorld = l2w;
WorldToLight = LightToWorld.GetInverse();
Power = power;

}
�
Light Protected Data ���
bool CastsShadows;
Transform WorldToLight, LightToWorld;
Spectrum Power;

So that the Integrators can compute light reflection at a point on a surface,
Lights must be able to compute the differential irradiance arriving at a location in
the scene due to their illumination. Recall from Section 5.2 that irradiance, E , is
the flux density per area; from a point source of flux, it falls off proportionally to
the cosine of the angle of incident light with the surface normal of the receiver, and
inversely proportional to the squared distance between the two.

There are two versions of this method: one is for area light sources–lights that
are defined in terms of emission from a piece of geometry; the other is for delta-
function lights–lights that don’t have geometry associated with them but are de-
fined in terms of emission from a single point, a single direction, etc. Delta lights
are a useful mathematical abstraction, though they don’t strictly reflect reality.

Here is the differential irradiance function for area lights; the caller passes in the
Scene so that the light is able to trace shadow rays if necessary, the local differen-
tial geometry of the point being illuminated, and the direction of possible incident
illumination that the caller is interested in. If the light isn’t visible along that direc-
tion from that point, no differential irradiance should be returned. See Figure 12.1.
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Figure 12.1: differential irradiance setting

�
Light Interface ��� �
virtual Spectrum L(const Point &Ps, const Point &Pl,

VisibilityTester *) const;

The second version of the differential irradiance function is for delta light sources.
Here, it’s necessary that the light source be able to choose the incident direction �ω;
therefore, the caller passes a pointer to the direction vector, which the light must
fill in.�
Light Interface ��� �
virtual Spectrum dE(const Point &P, const Normal &N,

Vector *w, VisibilityTester *vis) const = 0;

Visibility Testing
�
Light Classes ��� �
struct VisibilityTester {

void SetSegment(const Point &p1, const Point &p2, bool castsShadows) {
r = Ray(p1, p2-p1, RAY_EPSILON, 1.f - RAY_EPSILON);
traceRay = castsShadows;

}
void SetRay(const Point &p, const Vector &d, bool castsShadows) {

r = Ray(p, d, RAY_EPSILON);
traceRay = castsShadows;

}
bool Unoccluded(const Scene *scene) const;
Spectrum Transmittance(const Scene *scene) const;

Ray r;
bool traceRay;

};
�
Light Method Definitions ��� �
bool VisibilityTester::Unoccluded(const Scene *scene) const {�

Update shadow ray statistics �
return !scene->IntersectP(r);

}
�
Light Method Definitions ��� �
Spectrum VisibilityTester::Transmittance(const Scene *scene) const {

return scene->Transmittance(r);
}
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Since shadow rays may repreent a significant fraction of overall rendering time,
it’s useful to keep track of the total number of shadow rays traced.�
Update shadow ray statistics ���
static StatsCounter nShadowRays("Lights",

"Number of shadow rays traced");
++nShadowRays;

We’ll provide two methods in the base Light class for light implementations to
use for tracing shadow rays. The first such method is Light::visible; it takes
two points in the scene and returns true if the two are mutually visible to each
other. We start out by skipping the ray test if this light doesn’t cast shadows and
otherwise construct an appropriate ray and trace it.

The second visibility method takes a point and a direction and checks to see if
there is any occlusion along the corresponding ray. This is useful for light sources
that are modeled as being infinitely far away from the scene.

� � ���  ��� ��� � � � ����#
�
pointlight.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "light.h"
#include "shapes.h"�
PointLight Classes ��
PointLight Method Definitions �
Now we can present some light source implementations. The PointLight base

class implements an isotropic point light source; it shines the same amount of light
in all directions. However, new types of point lights with more complex light
distributions may be derived from this subclass. For example, spotlights will be
defined as a sub-class of PointLight.�
PointLight Classes ���
class PointLight : public Light {
public:�

PointLight Methods �
private:�

PointLight Private Data �
};

PointLights are positioned at the origin in light space; to place them elsewhere,
the world-to-light transform should be adjusted with an additional translation as
appropriate. We precompute the world-space position of the light in the construc-
tor by transforming

�
0 � 0 � 0 � from light space to world space and precompute the

intensity for an isotropic point source as well.
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�
PointLight Method Definitions ���
PointLight::PointLight(bool shadows, const Transform &light2world,

const Spectrum &intensity)
: Light(shadows, light2world, intensity * 4. * M_PI) {
lightPos = LightToWorld(Point(0,0,0));
Intensity = intensity;

}
�
PointLight Private Data ���
Point lightPos;
Spectrum Intensity;

Point lights are defined in terms of their radiant intensity. For an isotropic point
light, the radiant intensity is constant and independent of direction.

For point lights, the differential irradiance is not defined as a function of direc-
tion; only a version of that method that returns a direction is allowed. We start by
computing the incident direction �ω and normalizing it. Next we check for occlu-
sion between the light and the point being illuminated; if the two are visible to each
other, we compute incident differential irradiance.�
PointLight Method Definitions ��� �
Spectrum PointLight::dE(const Point &P, const Normal &N,

Vector *w, VisibilityTester *visibility) const {
*w = (lightPos - P).Hat();
visibility->SetSegment(P, lightPos, CastsShadows);
return Intensity * fabs(Dot(*w, N)) /

DistanceSquared(lightPos, P);
}

Spot Light
�
spotlight.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "light.h"
#include "shapes.h"�
SpotLight Classes ��
SpotLight Method Definitions �

�
SpotLight Classes ���
class SpotLight : public Light {
public:

SpotLight(bool shadows, const Transform &light2world,
const Spectrum &, Float width, Float fall);

Spectrum dE(const Point &P, const Normal &N, Vector *w,
VisibilityTester *vis) const;�

SpotLight Member Functions �
private:�

SpotLight Private Data �
};
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Figure 12.2: Spotlights are defined by two angles, falloffStart and totalWidth. Ob-
jects inside the inner cone of angles, up to falloffStart are fully illuminated by the
light. The directions between falloffStart and totalWidth are a transition zone that
ramps down from full illumination to no illumination, such that points outside the
totalWidth cone aren’t illuminated at all. The cosine of the angle between the vec-
tor to a point p and the spotlight axis, cosθ, can easily be computed with a dot
product.

Spot lights are a handy variation on point lights; rather than shining illumination
in all directions, they light objects in a cone of directions from their position. For
simplicity, we will define the spotlight in the light coordinate system to always be
at the position

�
0 � 0 � 0 � , pointing down the � z axis. To place or orient it elsewhere

in the scene, the WorldToLight matrix can be set appropriately.
Two angles are passed in the constructor to set the extent of the SpotLight’s

cone: the overall angular width of the cone, and the angle at which fall-off from full
illumination to no illumination starts; see Figure 12.2. We precompute and store
the cosines of these angles in the spotlight object, for efficiency when computing
illumination later.�
SpotLight Method Definitions ���
SpotLight::SpotLight(bool shadows, const Transform &light2world,

const Spectrum &intensity, Float width, Float fall)
: Light(shadows, light2world, intensity) {
lightPos = LightToWorld(Point(0,0,0));
Intensity = intensity;
cosTotalWidth = cosf(Radians(width));
cosFalloffStart = cosf(Radians(fall));

}
�
SpotLight Private Data ���
Float cosTotalWidth, cosFalloffStart;
Point lightPos;
Spectrum Intensity;

SpotLight is a sub-class of PointLight, so the only method we need to imple-
ment is SpotLight::I, which gives the intensity in a particular direction w. We
start by computing the cosine of the angle between the outgoing direction and the
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� z axis; we can compare this to the cosines of the falloff and overall width angles
to see where the point lies with respect to the spot light cone. To compute the
cosine of the offset angle to a point p, we have (see Figure 12.2):

cosθ � �p �
�
0 � 0 � 0 � � � 0 � 0 � 1 �

� pz � � �p �

We can trivally determine that points with a cosine greater than the cosine of the
falloff angle are inside the cone receiving full illumination, and points with cosine
less than the width angle’s cosine are completely outside the cone.�
SpotLight Method Definitions ��� �
Spectrum SpotLight::dE(const Point &P, const Normal &N, Vector *w,

VisibilityTester *visibility) const {
*w = (lightPos - P).Hat();
visibility->SetSegment(P, lightPos, CastsShadows);
return Intensity * Falloff(-*w) * fabs(Dot(*w, N)) /

DistanceSquared(lightPos, P);
}

�
SpotLight Method Definitions ��� �
Float SpotLight::Falloff(const Vector &w) const {

Vector wl = WorldToLight(w).Hat();
Float costheta = wl.z;
if (costheta < cosTotalWidth)

return 0.;
if (costheta > cosFalloffStart)

return 1.;�
Compute falloff inside spotlight cone �

}

For points inside the transition range, we determine how far it is along between
the start of falloff and the end, and arbitrarily scale the intensity accordingly.�
Compute falloff inside spotlight cone ���
Float delta = (costheta - cosTotalWidth) /

(cosFalloffStart - cosTotalWidth);
return delta*delta*delta*delta;

Texture Projection Light
�
projectionlight.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "light.h"
#include "shapes.h"
#include "texture.h"�
ProjectionLight Classes ��
ProjectionLight Method Definitions �
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�
ProjectionLight Classes ���
class ProjectionLight : public Light {
public:

ProjectionLight(bool shadows, const Transform &light2world,
const Spectrum &intensity, Texture<Spectrum> *tex,
Float fov);

˜ProjectionLight();
Spectrum dE(const Point &P, const Normal &N, Vector *w,

VisibilityTester *vis) const;�
ProjectionLight Member Functions �

private:�
ProjectionLight Private Data �

};

Another useful light source acts like a slide projector: it takes a texture map and
projects its image out into the scene. We use a projective transformation to project
lights in the scene onto a projection plane; see Figure 12.3. A field of view value
is given with the light so that the constructor can compute an appropriate matrix.�
ProjectionLight Method Definitions ��� �
ProjectionLight::ProjectionLight(bool shadows,

const Transform &light2world,
const Spectrum &intensity, Texture<Spectrum> *tex,
Float fov)

: Light(shadows, light2world, intensity) {
projectionMap = tex;
hither = RAY_EPSILON;
yon = 1e10;
lightProjection = Perspective(fov, hither, yon);
lightPos = LightToWorld(Point(0,0,0));
Intensity = intensity;�
Cache ProjectionLight diagonal fov for sampling �

}�
ProjectionLight Private Data ���
Texture<Spectrum> *projectionMap;
Transform lightProjection;
Float hither, yon;
Point lightPos;
Spectrum Intensity;

Because ProjectionLight also inherits from PointLight, we just need to
override its I method.�
ProjectionLight Method Definitions ��� �
Spectrum ProjectionLight::dE(const Point &P, const Normal &N, Vector *w,

VisibilityTester *visibility) const {
*w = (lightPos - P).Hat();
visibility->SetSegment(P, lightPos, CastsShadows);
return Intensity * Projection(-*w) * fabs(Dot(*w, N)) /

DistanceSquared(lightPos, P);
}
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Figure 12.3: The basic setting for projection light sources. A point p in the scene
can be projected on to the plane of the projected image by dividing each of its
coordinates by its z coordinate, giving a point with z � 1. We can then use the x
and y coordinates to index into a texture.

�
ProjectionLight Method Definitions ��� �
Spectrum ProjectionLight::Projection(const Vector &w) const {

Vector wl = WorldToLight(w);�
Discard directions behind projection light ��
Project point on to projection plane ��
Compute projected light for direction �

}

We immediately discard projection points that are behind the hither and plane for
the projection. Because the projective transformation has the unfortunate property
that it projects points behind the center of projection to points in front of it, is
important in particular to discard points with a negative z value. Otherwise, given
a projected point, we wouldn’t be able to know if it was originally behind the light
(and not illuminated) or in front of it.�
Discard directions behind projection light ���
if (wl.z < hither) return 0.;

After projecting the point to the projection plane, points with coordinate values
between � 1 are inside the projection window. We then offset and scale them to get�
s � t � texture coordinates inside � 0 � 1 � 2 to use when evaluating the projection texture

map.�
Project point on to projection plane ���
Point Pl = lightProjection(Point(wl.x, wl.y, wl.z));
if (Pl.x < -1 || Pl.x > 1 || Pl.y < -1 || Pl.y > 1) return 0.;
Float s = (Pl.x + 1) * 0.5f;
Float t = (Pl.y + 1) * 0.5f;

We can now just go ahead and evaluate the texture map, setting up a fake
DifferentialGeometry for it to use.�
Compute projected light for direction ���
DifferentialGeometry dgMap(Point(Pl.x, Pl.y, 0), Vector(1,0,0),

Vector(0,1,0), Vector(0,0,0), Vector(0,0,0), s, t, NULL);
return projectionMap->Evaluate(dgMap);
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Figure 12.4: An example of a goniometric diagram specifying an outgoing light
distribution from a point light source (in 2D). The intensity for a given outgoing
direction �ω is found by interpolating the intensities of the adjacent samples.

Goniometric diagram lights
�
goniometric.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "light.h"
#include "shapes.h"
#include "scene.h"
#include "texture.h"�
GoniometricLight Classes ��
GoniometricLight Method Definitions �
The goniometric diagram describes the distribution of luminance rom a point

light source; widely used in illumination engineering to characterize lights. Here,
we’ll implement a light source that uses goniometric diagrams encoded in texture
maps to describe the emission distribution of the light.

The implementation is very similar to the point light sources defined previously
in this section; we just scale the intensity based on outgoing direction according
to the goniometric diagram’s values. Figure 12.4 shows an example in two dimen-
sions.�
GoniometricLight Classes ���
class GoniometricLight : public Light {
public:

GoniometricLight(bool shadows, const Transform &light2world,
const Spectrum &, const string &texname);�

GoniometricLight Member Functions �
private:�

GoniometricLight Private Data �
};

�
GoniometricLight Private Data ���
Point lightPos;
Spectrum Intensity;
ImageMap *imageMap;
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Goniometric diagrams are usually defined in a coordinate space where the y axis
is up, so we’ll swap y and z before using the spherical coordiantes functions...�
GoniometricLight Member Functions ��� �
Float Scale(const Vector &w) const {

Vector wp = w;
swap(wp.y, wp.z);
Float theta = SphericalTheta(wp);
Float phi = SphericalPhi(wp);
Float val = 1;
if (imageMap) imageMap->Lookup(theta / M_PI, phi / (2.f*M_PI),

0, 0, 0, 0, &val);
return val;

}

� � ��� ��� � ��� ���� ��� ��� � � � ����#
�
distantlight.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "light.h"
#include "shapes.h"
#include "scene.h"�
InfinitePointLight Classes ��
InfinitePointLight Method Definitions �

�
InfinitePointLight Classes ���
class InfinitePointLight : public Light {
public:�

InfinitePointLight Methods �
private:�

InfinitePointLight Private Data �
};

Another light source type is a directional light. It describes an emitter where at
every point in space, illumination arrives from the same direction. Light sources
like the sun (as considered from earth) can be thought of as directional light sources—
though they are actually point or area light sources, because they’re so far away,
the illumination effectively arrives in parallel beams.�
InfinitePointLight Method Definitions ���
InfinitePointLight::InfinitePointLight(bool shadows,

const Transform &light2world, const Spectrum &radiance,
const Vector &dir)

: Light(shadows, light2world, radiance) {
lightDir = -LightToWorld(dir).Hat();
L = radiance;

}
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�
InfinitePointLight Private Data ���
Vector lightDir;
Spectrum L;

Now the method for differential irradiance. Directional lights don’t quite fit
in with our previous decision to characterize lights in terms of their total power.
Interestingly enough, the total power emitted by a directional light is proportional
to the area of the scene receiving light. (Alternatively, a directional light could be
thought of as having infinite power, since a scene of infinite extent would receive
infinite energy, though this mostly illustrates a break down of the abstraction.)
Therefore, we interpret the power value as the amount of emitted radiance along
a ray from the directional light. Note that that we are using the Unoccluded()
method instead of the visible method for tracing shadow rays.�
InfinitePointLight Method Definitions ��� �
Spectrum InfinitePointLight::dE(const Point &P,

const Normal &N, Vector *w, VisibilityTester *visibility) const {
*w = lightDir;
visibility->SetRay(P, *w, CastsShadows);
return L * fabs(Dot(*w, N));

}

� � ��� ��� � � � � � ����#
�
area.cc* ����

Source Code Copyright �
#include "light.h"
#include "primitives.h"�
AreaLight Function Definitions �

�
AreaLight Classes ���
class AreaLight : public Light {
public:�

AreaLight Interface �
protected:�

AreaLight Protected Data �
};

We’ll now start to provide some functionality for area lights; these are associ-
ated with geometry in the scene that emit light. We calculate and store the area
of the light source when it is defined, because these area calculations are quite
expensive. Computation methods for surface area are described in Chapter 3.�
AreaLight Function Definitions ���
AreaLight::AreaLight(bool shadows, const Transform &light2world,

const Spectrum &power, const Reference<Shape> &s)
: Light(shadows, light2world, power) {
shape = s;
area = shape->Area();

}
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�
AreaLight Protected Data ���
Reference<Shape> shape;
Float area;

We provide two methods unique to area lights. The first evaluates the area
light’s emitted radiance (usually denoted in formulae by L) at a point on the surface
of the light for a given direction. We assume that the given point is on the surface
of the light.

For the basic area lights here, the amount of radiance emitted is the same at
all points on the light and the same for all outgoing directions. (More generally,
emission may vary depending on both of these values.) We can compute emitted
irradiance by dividing flux by the surface area (because emission is constant over
the surface); dividing this by π, the area of the hemisphere with projected solid
angle measure, gives radiance in a particular direction.�
AreaLight Interface ��� �
virtual Spectrum L(const Point &x, const Vector &w) const {

return Power/(area * M_PI);
}

It’s also handy to be able to compute emitted irradiance (often called radiosity)
at a point on the light. Here we also assume that the point x is on the light’s surface
and that the light’s emission doesn’t vary by location.�
AreaLight Interface ��� �
virtual Spectrum B(const Point &x) const {

return Power/area;
}

Finally, we give the most important interface for area lights: the differential
irradiance.�
AreaLight Function Definitions ��� �
Spectrum AreaLight::L(const Point &Ps, const Point &Pl,

VisibilityTester *visibility) const {
DifferentialGeometry hit;
Float thit;
Vector w = Pl - Ps;
Ray ray(Ps, w);
if (shape->Intersect(ray, &thit, &hit)) {

visibility->SetSegment(Ps, Pl, CastsShadows);
return L(Pl, -w);

}
return 0.;

}

We will add a method to the Surf class that makes it easy to compute the emitted
radiance at a surface point. It returns the value from the AreaLight::L method if
the primitive is an area light, or 0 otherwise.
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�
Surf Method Definitions ��� �
Spectrum Surf::Le(const Vector &wo) const {

if (primitive->areaLight)
return primitive->areaLight->L(dgGeom.P, wo);

else return Spectrum(0.);
}

Multi-Sample Area Lights

It’s often useful to be able to flag area lights for extra sampling; e.g. a large light
might need many samples to get smooth soft shadows, while a small one would
need just a few.

A convenient way to make this possible while keeping the implementation of
the Integrators simple�
AreaLight Classes ��� �
class MultiAreaLight : public Light {
public:�

MultiAreaLight Methods �
private:�

MultiAreaLight Private Data �
};

�
AreaLight Protected Data ��� �
friend class MultiAreaLight;

�
MultiAreaLight Methods ���
MultiAreaLight(AreaLight *p, int nSamples)

: Light(p->CastsShadows, p->LightToWorld, p->Power) {
parent = p;
scale = 1.f / (Float)nSamples;

}
�
MultiAreaLight Private Data ���
AreaLight *parent;
Float scale;

�
MultiAreaLight Methods ��� �
Spectrum Le(const RayDifferential &r) const;
Spectrum L(const Point &x, const Vector &w) const;
Spectrum B(const Point &x) const;
Spectrum L(const Point &Ps, const Point &Pl,

VisibilityTester *visibility) const;
Spectrum dE(const Point &P, const Normal &N,

Vector *w, VisibilityTester *vis) const;
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Figure 12.5: Uffizi latlong map� � ��� ��� � ��� ��� ��� � � � � � ����#
�
infinitelight.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "light.h"
#include "texture.h"
#include "shapes.h"
#include "scene.h"�
InfiniteAreaLight Classes ��
InfiniteAreaLight Function Definitions �

�
InfiniteAreaLight Classes ���
class InfiniteAreaLight : public Light {
public:�

InfiniteAreaLight Interface �
˜InfiniteAreaLight();

private:�
InfiniteAreaLight Private Data �

};

Another useful kind of light is the infinite area light. This is an area light source
at infinity that surrounds the entire scene; one good way to visualize it is as an
enormous sphere that casts light into the scene from every direction. One use of
infinite area lights is environment lighting: given a representation of illumination in
some environment, synthetic objects can be lit as if they were in that environment.
A widely-used representation for light for this application is the latitude-longitude
radiance map; it stores emitted radiance as a function of direction. A lat-long
environment map of the Uffizi Gallery in Florence is shown in Figure 12.5; a teapot
illuminated by the illumination from this map is shown in Figure 12.6.

Like the other lights, the InfiniteAreaLight takes a transformation matrix;
here its use is to orient the texture map. We use spherical coordinates to map
from directions on the sphere to

�
θ � φ � directions from from there to

�
u � v � texture

coordinates; the transformation describes which direction is “up”.
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Figure 12.6: Teapot in Uffizi environment

�
InfiniteAreaLight Function Definitions ��� �
InfiniteAreaLight::InfiniteAreaLight(bool shadows,

const Transform &light2world,
const Spectrum &power, Texture<Spectrum> *tex)

: Light(shadows, light2world, power) {
radianceMap = tex;

}
�
InfiniteAreaLight Private Data ���
Texture<Spectrum> *radianceMap;

Like directional lights, the total power from the infinite area light is related to the
surface area of the scene. Therefore, here we also treat the power as the radiance.�
Compute infinite light radiance for this direction ���
Spectrum L = Power;
if (radianceMap != NULL) {

Vector wh = WorldToLight(w).Hat();
Vector S, T;
CoordinateSystem(wh, &S, &T);
Float s = SphericalPhi(wh) / (2.f*M_PI);
Float t = SphericalTheta(wh) / M_PI;
DifferentialGeometry dgLight(Point(wh.x, wh.y, wh.z),

S, T, Vector(0,0,0), Vector(0,0,0), s, t, NULL);
// dgLight.ComputeDifferentials(r);

L *= radianceMap->Evaluate(dgLight);
}

Because infinite area lights need to be able to contribute radiance to rays that
don’t hit any geometry in the scene, we’ll add a method to the base Light class
that returns emitted radiance due to that light along a ray that didn’t hit anything in
the scene.

XXX how does this change/become better integrated when we have support for
volumetric stuff?? XXX
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�
Light Method Definitions ��� �
Spectrum Light::Le(const RayDifferential &) const {

return Spectrum(0.);
}

The InfiniteAreaLight’s implementation of this can reuse the fragment from
its dE method.�
InfiniteAreaLight Function Definitions ��� �
Spectrum InfiniteAreaLight::Le(const RayDifferential &r) const {

Vector w = r.D;�
Compute infinite light radiance for this direction �
return L;

}

���"� ������� � � ����� ���

Warn developed early models of light sources with non-isotropic emission dis-
tributions (War83). More recently, Barzel has described a highly parameterized
model for light sources, including many controls for controlling rate of falloff,
the area of space that is illuminated, etc. Bjorke has developed flexible controls
for controlling illuminaton for artistic effect (Bjorke 01 renderman course notes).
(The Barzel and Bjorke approaches are not physically based, however.)

Blinn and Newell first introduced the idea of environment maps and their use
for simulating illumination (BN76), though they only considered illumination of
specular objects. Greene also developed these ideas, considering anti-aliasing and
different representations for environment maps (Gre86).

Miller and Hoffman first considered using environment maps to illuminate ob-
jects with diffuse BRDFs (MH84). Debevec later extended this work (Deb98).

As for efficient ray-tracing, lights are special in that we don’t care about the
geometric details of intersection, just whether or not there is one along a given
ray. Beyond the IntersectP() stuff we already do, light buffer (HG86), shaft
culling (HW94). Minkowski sum to effectively expand primitives (or bounds of
primitives) in scene so that intersecting one ray against primitives tells if any of a
collection of rays might have intersected the actual primitives (Luk01).

XXX Mention ways of gathering up bundles of rays XXX
Hart et al generalize light shadow cache, find blockers and clip light source

geometry against them (HDG99).
� � ��� ����# � #

12.1 depth-mapped shadows for lights. Williams (Wil78), Reeves et al (RSC87).

12.2 light cache to accelerate shadow rays

12.3 Volumetric ambient light that varies with x or w
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Until now, lrt has been described under the assumption that the scene is a
collection of surfaces in a vacuum; this allowed us to assume that radiance was
unchanging along rays between surfaces. There are many situations where this
assumption is inaccurate: fog and smoke attenuate and scatter light that passes
through them, for example, and scattering by particles in the atmosphere is what
makes the sky blue and sunsets red.

This chapter introduces the mathematical description of the effects that operate
on light as it passes through participating media; simulating these effects allows us
to render images with effects including atmospheric haze, beams of light through
clouds, light passing through cloudy water, and subsurface scattering, which de-
scribes scattering from objects where light exits the object at a different place than
it enters (accounting for this effect is important for realistic rendering of translu-
cent materials, marble, and human skin). These effects are all caused by particles
suspended in a 3D region of space. Their effect on radiance depends on both the
density of particles and their composition.

This chapter first describes the basic physical processes that change radiance
along rays passing through participating media. We will then describe a basic inter-
face for modeling different types of media, the VolumeRegion base-class, and pro-
vide implementations of a number of useful representations. These VolumeRegions
will be used by VolumeIntegrators, which account for light interactions in par-
ticipating media and will be described and implemented in Section 15.9.

� � �
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Figure 13.1:� � �
��� � ! � � �  � ��� ����� � � �  � � ��� # # � #
There three main processes that affect the distribution of radiance in an environ-

ment passing through participating media.


 The first is absorption, which describes the reduction in radiance passing
from one point to another due to the absorption of energy (i.e. its conversion
to another form of energy, such as heat).


 Second is emission, which describes energy that is added to the environment
from luminous particles.


 The last is scattering, which describes how light heading in one direction
scattered to different directions due to collisions with particles.

The charactersitics of all of these properties may be homogeneous or inhomo-
geneous. Homogeneous properties are constant throughout the medium being con-
sidered, while inhomogeneous properties may vary arbitrarily throughout it.

Absorption

The first type of interaction that we will discuss is absorption. Consider thick
black smoke from a fire: the smoke obscures the light from objects behind it due
to absorption by the black smoke particles. The thicker the smoke, the less one can
see of what is behind it.

Absorption is described by the absorption cross-section, σa; it is the probability
that light is absorbed per unit distance travelled in the medium. In general, it may
vary by both position x and direction �ω, though it is normally just a function of
position. It is also in general a spectrally-varying quantity. Figure 13.1 shows
the effect of absorption along a differential length of a ray. The ray is carrying
an amount of radiance Las it enters a differential volume. Particles in the volume
absorb some of the radiance and L � dL is the amount that exits.

The change in radiance along differential ray length dtis described by the differ-
ential equation

dL
�
x � �ω � � � σa

�
x � �ω � L � x � �ω � dt �

For a ray passing along a non-differential distance between two points x and x
�

in
direction �ω � ˆx

�

� x with distance d between x and x
�

, the differential equation can
be solved to give the integral equation

e
��� d

0 σa
� x � t �ω ���ω � dt �
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Figure 13.2: emission

Figure 13.3: outscatter

Emission

In lrt, we will assume that emission in the volume is a given property of the
scene and that we can easily compute emitted radiance at any point in any direction.
Various chemical and thermal processes (or nuclear processes, e.g. in the case
of the sun), convert energy into visible wavelengths of light which illuminate the
environment. Figure 13.2 shows emission in a differential volume. If we denote
emitted radiance at a point in a volume x in a direction �ω by Le

�
x � �ω � , then the

change in radiance due to emission is

dL
�
x � �ω � � � σs

�
x � �ω � L � x � �ω � dt �

Out-scattering and extinction

The third basic light interaction is scattering. As a beam of radiance propagates
through a medium, it may collide with particles in the medium and be scattered into
different directions (see Figure 13.3). The probability of such a scattering event
occurring per unit distance is given by the scattering coefficient, σs. Similarly to
the attenuation coefficient, the change in radiance along a differential length dtis
given by

dL
�
x � �ω � � � σs

�
x � �ω � L � x � �ω � dt �

The total reduction in radiance due to absorption and out-scattering, then, is
given by σa � σs,

dL
�
x � �ω � � � � σa

�
x � �ω � � σs

�
x � �ω ��� L � x � �ω � dt �

The sum of these terms is denoted by the attenuation coefficient σt ,

σt
�
x � �ω � � σa

�
x � �ω � � σsx �ω
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Figure 13.4: beam transmittance

Figure 13.5: mult beam transmittance

Given the attenuation coefficient σt , the differential equation can be solved to
find the beam transmittance

Tr
�
x � x � � � e �

� d
0 σt � x � t �ω ���ω � dt �

where Tr denotes the beam transmittance between x and x � . (This quantity is also
often called the extinction.)

Thus, if reflected radiance from a point on a surface in a given direction is given
by L

�
x � �ω � , after accounting for extinction, the radiance at another point x � � x 	

d �ω in direction �ω is
Tr
�
x � x � � L � x � �ω ���

(See Figure 13.4.)
Two useful basic properties of beam transmittance are Tr

�
x � x � � 1, and in a

vacuum, Tr
�
x � x � � � 1 for all x � . Another important property, true in all media, is

Tr
�
x � x � � � � Tr

�
x � x � � Tr

�
x � � x � � ���

for all points x � between x and x � � . (See Figure 13.5.) This is a useful property for
volume scattering implementations, since it allows us to incrementally compute
transmittance at many points along a ray while only needing to find the product of
the previously-computed transmittance with the additional reduction.

The exponentiated term in Tr is called the optical thickness between the two
points. It is denoted by the symbol τ:

τ
�
x � x � � �

� d

0
σt
�
x 	 t �ω � dt �

In a homogeneous medium, σt , is a constant, and Beer’s law describes the attenu-
ation.

Tr
� e � σt d �
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Figure 13.6: inscatter

follows directly.
It is often useful to be able to characterize the fraction of light attenuated due

to scattering with respect to the total attenuation. This is given by the albedo α,
which ranges from zero to one.

α � σs

σa � σs

� σs

σt

It gives the fraction of light that is redistributed at each scattering event.
In media with low albedos, roughly α � 0 � 5, absorption is the dominant process,

while in high albedo media, roughly α � 0 � 5, scattering is the main determinant of
the final radiance distribution.

In-scattering

While out-scattering reduces radiance along a ray due to scattering in different
directions, in-scattering accounts for increased radiance due to radiance from other
directions; see Figure 13.6. Under the assumption that the individual particles that
cause these scattering events are separated by a few times the lengths of their radii,
it is possible to ignore interactions between these particles when describing about
scattering at some location (van81). Under these assumptions, the phase function,
p
� �ω � �ω � � , is a function of the two directions and describes the angular distribution

of scattered radiation at a point. It is the volumetric analog to the BSDF.
Phase functions are defined so that they are normalized so that for all �ω,

1
4π
�

S2
p
� �ω � �ω � � d �ω

� � 1 � (13.1.1)

In most naturally-occuring media, the phase function is a function of the angle
between the two directions �ω and �ω �

; such media are called isotropic and these
phase functions are often written as p

�
cos θ � . In exotic media, such as those with

crystalline-type structure, the phase function is a function of the values of each
of the two angles, though this is much less common. An important property of
naturally-occurring phase functions is that they are reciprocal: the two directions
can be interchanged and the phase function’s value remains unchanged.

Phase functions can be isotropic or anisotropic as well. The isotropic phase
function describes equal scattering in all directions and is thus is independent of
either of the two angles and always has a value of 1 � 4π. Anisotropic phase func-
tions depend on either the angle between the two directions or the two directions
themselves, depending on if the medium is isotropic or anisotropic, respectively.



Vector 16

380 Volume Scattering [Ch. 13

ω

ω'

Figure 13.7: The phase function describes the distribution of scattered radiance in
directions �ω �

at a point, given incident radiance along the direction �ω. Here we
have plotted the Henyey-Greenstein phase function with an asymmetry parameter
g equal to 0 � 5.

The change in radiance due to in-scattering is given by the source term,

S
�
x � �ω � � σs

�
x � �ω � �

S2
p
� �ω �

� �ω � Li
�
x � �ω � � d �ω

� �

� � ���  ���	# � ���"�	� � ��� �	#

Just as there are a wide variety of BSDF models to describe scattering from sur-
faces, a variety of phase functions have been developed, ranging from parameter-
ized models, which can be used to fit a function with a small number of parameters
to measured data, and the analytic, which are derived by directly deriving the scat-
tered radiance distribution that results from scattering from particles with known
shape and material (e.g. scattering from spherical water droplets.)

In this section, we will describe some commonly-used phase functions and pro-
vide their implementations. The simplest of them is the isotropic phase function,
which describes equal scattering in all directions. From the normalization con-
straint of Equation 13.1.1, it follows that

pisotropic
� �ω � �ω � � � 1

4π
�

�
Volume Scattering Definitions ���
Float PhaseIsotropic(const Vector &w, const Vector &wp) {

return 1.f / (4. * M_PI);
}

A number of anisotropic phase functions, describing angularly-varying scatter-
ing, are also useful. All of the anisotropic phase functions in the remainder of
this section are described in terms of the cosine of the angle between the two-
directions–see Figure 13.8. Note that we are using a different convention for the
direction of vectors at a scattering event in a volume than we used for scattering at
a surface, where both vectors faced away from the surface. This matches the usual
convention used for phase functions.

XXX p
� �ω � �ω � � gives scattering direction probability density at a point in the

volume, analogous to BRDF at a surface.
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16 Vector

Figure 13.8: phase costheta convention

If the particles have radius r that is smaller than the wavelength of light λ, the
Rayleigh model is a good fit if r � λ � 0 � 05.

prayleigh
� �ω � �ω � � � prayleigh

� �ω � �ω � � � prayleigh
�
cosθ � � 3

16π

�
1 � cos2 θ �

Wavelength-dependent Rayleigh scattering is what makes the sky blue and sunsets
red.�
Volume Scattering Definitions ��� �
Float PhaseRayleigh(const Vector &w, const Vector &wp) {

Float costheta = Dot(w, wp);
return 3.f/(16.f*M_PI) * (1 + costheta * costheta);

}

Mie scattering is when r � λ. Water droplets, fog. Nishita et al suggest two
approximations for hazy and murky atmospheric conditions

pMie � hazy
�
cosθ � � 1 �

9
4π

�
1 � cosθ

2 � 8

and

pMie � murky
�
cos θ � � 1 �

50
4π

�
1 � cosθ

2 � 32

�
Volume Scattering Definitions ��� �
Float PhaseMieHazy(const Vector &w, const Vector &wp) {

Float costheta = Dot(w, wp);
return 9.f/(4.f*M_PI) * powf(1.f + costheta*costheta, 8.f);

}
�
Volume Scattering Definitions ��� �
Float PhaseMieMurky(const Vector &w, const Vector &wp) {

Float costheta = Dot(w, wp);
return 50.f/(4.f*M_PI) * powf(1.f + costheta*costheta, 32.f);

}

Henyey-Greenstein an empirical parameterized phase function, developed for
fitting to measured data. It takes a parameter g, � 1 � g � 1 that controls the
amount and direction of anisotropy.

pHG
�
cosθ � � 1

4π
1 � g2

�
1 � g2 � 2g

�
cos θ ��� 3 � 2
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Negative values of g correspond to back-scattering, where light is mostly scattered
back toward the incident direction, and positive values correspond to forward scat-
tering. The greater the magnitude of g, the more scattering is scattered close to the
� �ω or �ω directions (for back-scattering and forward scattering, respectively.)

XXX Figure to show this.�
Volume Scattering Definitions ��� �
Float PhaseHG(const Vector &w, const Vector &wp, Float g) {

Float costheta = Dot(w, wp);
return 1.f / (4.f * M_PI) * (1.f - g*g) /

powf(1.f + g*g - 2.f * g * costheta, 1.5f);
}

Phase functions are often defined by an asymmetry parameter, g, that is the aver-
age value of the product of the phase function with the cosine of the angle between
�ω �

and �ω. The range of g is from � 1 to 1, corresponding to total back-scattering to
total forward scattering, respectively. Given an arbitrary phase function, its g value
can be computed by:

g � 1
2
�

S2
p
� �ω � �ω � � � �ω � �ω � � d �ω

�

Thus, isotropic scattering corresponds to a g of zero. Any number of phase func-
tions can satisfy this quation; the g value alone is not enough to uniquely describe
a scattering distribution. Nevertheless, the convenience of being able to easily
convert a complex scattering distribution into a simple parameterized model often
outweighs the loss in accuracy.

More complex phase functions that aren’t described well with a single asym-
metry parameter are often modeled with a weighted sum of phase functions like
Henyey-Greenstein, each with different parameter values:

p
� �ω � �ω � � �

n

∑
i � 1

wi pi
� �ω � �ω � �

where the weights, wi necessarily sum to one so that the normalization condition,
Equation 13.1.1, holds.

One final phase function was developed by Schlick as an efficient approximation
to the Henyey–Greenstein function. It has been widely used in computer graphics
due to its computational efficiency. It is

pSchlick
�
cos θ � � 1

4π
1 � g2

�
1 � gcosθ � 2

�
Volume Scattering Definitions ��� �
Float PhaseSchlick(const Vector &w, const Vector &wp, Float g) {

Float gcostheta = g * Dot(w, wp);
return 1.f / (4. * M_PI) * (1 - g*g) /

((1 - gcostheta) * (1 - gcostheta));
}
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26 Ray

� � ��� � � ! � � � 	 ��# ��� � � � ��� �

As part of the scene description, the volume-varying scattering information
can be defined by the user. The abstract VolumeRegion class provides the ba-
sic interface that describes volume scattering in a region of the scene. Multiple
VolumeRegions of different types can be used to describe different types of scat-
tering in different parts of the scene. In this section, we will describe the basic
interface as well as a handful of useful implementations.�
volume.h* ����

Source Code Copyright �
#ifndef VOLUME_H
#define VOLUME_H 1
#include "lrt.h"
#include "color.h"
#include "geometry.h"
#include "paramset.h"
#include "transform.h"�
Volume Scattering Declarations �
#endif // VOLUME_H

�
volume.cc* ����

Source Code Copyright �
#include "volume.h"�
Volume Scattering Definitions �

�
Volume Scattering Declarations ��� �
class VolumeRegion {
public:�

VolumeRegion Methods �
};

All VolumeRegions must be able to compute their axis-aligned world-space
bounding box and to check to see if a given ray intersects the region. If the ray
does intersect it, the Intersect() routine should return the parametric t range of
the segment that overlaps the volume in�
VolumeRegion Methods ��� �
virtual BBox WorldBound() const = 0;
virtual bool Intersect(const Ray &ray, Float *t0, Float *t1) const = 0;

There are four basic functions that allow VOlumeRegions to describe their pos-
sibly spatially-varying scattering properties. Given a world-space point and direc-
tion, sigma_a(), sigma_s(), and Le() return the corresponding values for the
given position and direction. The phase() method returns the value of the phase
function for the given pair of directions for the given point.�
VolumeRegion Methods ��� �
virtual Spectrum sigma_a(const Point &, const Vector &) const = 0;
virtual Spectrum sigma_s(const Point &, const Vector &) const = 0;
virtual Spectrum Le(const Point &, const Vector &) const = 0;
virtual Float phase(const Point &, const Vector &,

const Vector &) const = 0;
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For convenience. Some implementations may be able to do this more efficiently
if we know both are needed...�
Volume Scattering Definitions ��� �
Spectrum VolumeRegion::sigma_t(const Point &P, const Vector &w) const {

return sigma_a(P, w) + sigma_s(P, w);
}

Finally, the tau() method computes the optical thickness that the ray passes
through in the volume from ray(ray.mint) and ray(ray.maxt). The HomogeneousRegion
below can compute this value exactly, while more complex regions will be Monte
Carlo integration to compute it (see Section 14.5.)�
VolumeRegion Methods ��� �
virtual Spectrum tau(const Ray &ray) const = 0;

Homogeneous Region

The simplest volume representation, HomogeneousRegion, describes a region
of space bounded by a BBox with homogeneous scattering properties throughout
it. Values for σa, σs, the phase function’s g value, and the amount of emission
Leare passed to the constructor. In conjunction with a transformation from world
to volume space and an axis-aligned volume space bound, this suffices to describe
the region.�
homogeneous.cc* ����

Source Code Copyright �
#include "volume.h"�
HomogeneousRegion Declarations ��
HomogeneousRegion Definitions �

�
HomogeneousRegion Declarations ���
class HomogeneousRegion : public VolumeRegion {
public:�

HomogeneousRegion Methods �
private:�

HomogeneousRegion Private Data �
};

�
HomogeneousRegion Methods ���
HomogeneousRegion(const Spectrum &sa, const Spectrum &ss, Float gg,

const Spectrum &emit, const BBox &e,
const Transform &v2w) {

WorldToVolume = v2w.GetInverse();
sig_a = sa;
sig_s = ss;
g = gg;
le = emit;
extent = e;

}
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32 Transform
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�
HomogeneousRegion Private Data ���
Spectrum sig_a, sig_s, le;
Float g;
BBox extent;
Transform WorldToVolume;

Because the bound is maintained internally in the volume’s object space, we
need to transform it for the WorldBound() method.�
HomogeneousRegion Methods ��� �
BBox WorldBound() const { return WorldToVolume.GetInverse()(extent); }�

HomogeneousRegion Methods ��� �
bool Intersect(const Ray &r, Float *t0, Float *t1) const {

Ray ray = WorldToVolume(r);
return extent.IntersectP(ray, t0, t1);

}

Implementation of the rest of the VolumeRegion interface methods is straight-
forward; we just verify that the given point is inside the region’s extent and return
the appropriate value if so.�
HomogeneousRegion Methods ��� �
Spectrum sigma_a(const Point &p, const Vector &) const {

return extent.Inside(WorldToVolume(p)) ? sig_a : 0.;
}�

HomogeneousRegion Methods ��� �
Spectrum sigma_s(const Point &p, const Vector &) const {

return extent.Inside(WorldToVolume(p)) ? sig_s : 0.;
}�

HomogeneousRegion Methods ��� �
Spectrum sigma_t(const Point &p, const Vector &) const {

return extent.Inside(WorldToVolume(p)) ? (sig_a + sig_s) : 0.;
}�

HomogeneousRegion Methods ��� �
Spectrum Le(const Point &p, const Vector &) const {

return extent.Inside(WorldToVolume(p)) ? le : 0.;
}�

HomogeneousRegion Methods ��� �
Float phase(const Point &p, const Vector &wi, const Vector &wo) const {

if (!extent.Inside(WorldToVolume(p))) return 0.;
return PhaseHG(wi, wo, g);

}�
HomogeneousRegion Methods ��� �
Spectrum tau(const Ray &r) const {

Ray ray = WorldToVolume(r);
Float t0, t1;
if (!extent.IntersectP(ray, &t0, &t1)) return 0.;
return Distance(ray(t0), ray(t1)) * (sig_a + sig_s);

}
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Varying-Density Volumes

A number of the volume representations to come are based on the assumption
that the underlying particles throughout the medium all have the same scattering
properties, but that their density changes spatially at different points in the medium.
In order to reduce duplicated code and so that the various representations can just
focus on varying the density of the particles, we will define a DensityRegion class
that implements many of the VolumeRegion interface functions.

The DensityRegion adds a new virtual function, density() that its sub-classes
must implement. However, the sub-classes are freed from needing to implement
sigma_a(), sigma_s(), etc., since default implementations of those methods just
scale the given scattering properties with the local density at the point.�
Volume Scattering Declarations ��� �
class DensityRegion : public VolumeRegion {
public:�

DensityRegion Methods �
protected:�

DensityRegion Protected Data �
};�

DensityRegion Methods ���
DensityRegion::DensityRegion(const Spectrum &sa, const Spectrum &ss, Float gg,

const Spectrum &emit, const Transform &v2w) {
WorldToVolume = v2w.GetInverse();
sig_a = sa;
sig_s = ss;
g = gg;
le = emit;

}�
DensityRegion Protected Data ���
Transform WorldToVolume;
Spectrum sig_a, sig_s, le;
Float g;

�
DensityRegion Methods ��� �
virtual Float density(const Point &Pobj) const = 0;

�
DensityRegion Methods ��� �
Spectrum sigma_a(const Point &p, const Vector &) const {

return density(WorldToVolume(p)) * sig_a;
}�

DensityRegion Methods ��� �
Spectrum sigma_s(const Point &p, const Vector &) const {

return density(WorldToVolume(p)) * sig_s;
}�

DensityRegion Methods ��� �
Spectrum sigma_t(const Point &p, const Vector &) const {

return density(WorldToVolume(p)) * (sig_a + sig_s);
}
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�
DensityRegion Methods ��� �
Spectrum Le(const Point &p, const Vector &) const {

return density(WorldToVolume(p)) * le;
}

�
DensityRegion Methods ��� �
Float phase(const Point &p, const Vector &wi, const Vector &wo) const {

return PhaseHG(wi, wo, g);
}

3D Grids

Point-sampled data, kind of like an imagemap.
In the VolumeGrid representation, the density is stored at a regular 3D grid

of positions and is interpolated to compute the density at positions between the
sample points. Here, we read the density values from disk, thus allowing a variety
of sources of data (e.g. physical simulation in a pre-process, acquiring data from a
real object, as from a medical CT scan, etc.) The user supplies baseline values of
σa, σs, etc., all of which are just scaled by the local density at the point of interest.�
volumegrid.cc* ����

Source Code Copyright �
#include "volume.h"�
VolumeGrid Declarations ��
VolumeGrid Definitions �

�
VolumeGrid Declarations ���
class VolumeGrid : public DensityRegion {
public:�

VolumeGrid Methods �
private:�

VolumeGrid Private Data �
};

�
VolumeGrid Declarations ��� �
#define SAMP(x,y,z) (d[(z)*nx*ny + (y)*nx + (x)])
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�
VolumeGrid Definitions ���
VolumeGrid::VolumeGrid(const Spectrum &sa, const Spectrum &ss, Float gg,

const Spectrum &emit, const BBox &e, const Transform &v2w,
const string &filename)

: DensityRegion(sa, ss, gg, emit, v2w) {
extent = e;
FILE *f = fopen(filename.c_str(), "r");
if (!f) {

fprintf(stderr, "Unable to open volume file %s\n",
filename.c_str());

d = new Float[1];
d[0] = 0;
nx = ny = nz = 1;

}�
Process volume data from file �
fclose(f);

}

We support a very simple volume file format, with three integers at the start
to encode the dimensions in each direction and then an 8-bit character for each
volume sample.

XXX bad error handling, not platform independent, 16-bit or float would prob-
ably be better, etc... XXX�
Process volume data from file ���
fread(&nx, sizeof(int), 1, f);
fread(&ny, sizeof(int), 1, f);
fread(&nz, sizeof(int), 1, f);
d = new Float[nx*ny*nz];
for (int i = 0; i < nx*ny*nz; ++i) {

unsigned char c;
fread(&c, sizeof(unsigned char), 1, f);
d[i] = c * (1.f/255.f);

}
�
VolumeGrid Private Data ���
Float *d;
int nx, ny, nz;
BBox extent;

�
VolumeGrid Methods ��� �
˜VolumeGrid() { delete[] d; }

�
VolumeGrid Methods ��� �
BBox WorldBound() const { return WorldToVolume.GetInverse()(extent); }

�
VolumeGrid Methods ��� �
bool Intersect(const Ray &r, Float *t0, Float *t1) const {

Ray ray = WorldToVolume(r);
return extent.IntersectP(ray, t0, t1);

}
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�
VolumeGrid Definitions ��� �
Float VolumeGrid::density(const Point &Pobj) const {

if (!extent.Inside(Pobj)) return 0;�
Compute voxel coordinates and offsets for Pobj ��
Trilinearly interpolate density values to compute local density �

}
�
Compute voxel coordinates and offsets for Pobj ���
Float voxx = (Pobj.x - extent.pMin.x) /

(extent.pMax.x - extent.pMin.x) * (nx-1);
Float voxy = (Pobj.y - extent.pMin.y) /

(extent.pMax.y - extent.pMin.y) * (ny-1);
Float voxz = (Pobj.z - extent.pMin.z) /

(extent.pMax.z - extent.pMin.z) * (nz-1);
int vx = Clamp(Floor2Int(voxx), 0, nx - 2);
int vy = Clamp(Floor2Int(voxy), 0, ny - 2);
int vz = Clamp(Floor2Int(voxz), 0, nz - 2);
Float dx = voxx - vx;
Float dy = voxy - vy;
Float dz = voxz - vz;

�
Trilinearly interpolate density values to compute local density ���
Float d00 = Lerp(dx, SAMP(vx, vy, vz), SAMP(vx+1, vy, vz));
Float d10 = Lerp(dx, SAMP(vx, vy+1, vz), SAMP(vx+1, vy+1, vz));
Float d01 = Lerp(dx, SAMP(vx, vy, vz+1), SAMP(vx+1, vy, vz+1));
Float d11 = Lerp(dx, SAMP(vx, vy+1, vz+1), SAMP(vx+1, vy+1, vz+1));
Float d0 = Lerp(dy, d00, d10);
Float d1 = Lerp(dy, d01, d11);
return Lerp(dz, d0, d1);

Exponential Mist

Density varies linearly as a function of z

d � ae
� bPz

�
exponential.cc* ����

Source Code Copyright �
#include "volume.h"�
ExponentialMist Declarations ��
ExponentialMist Definitions �

�
ExponentialMist Declarations ���
class ExponentialMist : public DensityRegion {
public:�

ExponentialMist Methods �
private:�

ExponentialMist Private Data �
};
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�
ExponentialMist Methods ���
ExponentialMist(const Spectrum &sa, const Spectrum &ss, Float gg,

const Spectrum &emit, const BBox &e, const Transform &v2w,
Float a, Float b)

: DensityRegion(sa, ss, gg, emit, v2w) {
extent = e;
A = a;
B = b;

}
�
ExponentialMist Private Data ���
BBox extent;
Float A, B;

�
ExponentialMist Methods ��� �
BBox WorldBound() const { return WorldToVolume.GetInverse()(extent); }

�
ExponentialMist Methods ��� �
bool Intersect(const Ray &r, Float *t0, Float *t1) const {

Ray ray = WorldToVolume(r);
return extent.IntersectP(ray, t0, t1);

}
�
ExponentialMist Methods ��� �
Float density(const Point &Pobj) const {

return A * exp(-B * Pobj.z);
}

dtotal
� � t

0
d
�
t

� � dt
� � � P1 � P0 � � z1

z0

e
� zdz � A � P1 � P0 �

Bd̃
�
r � z

� e � o � r � z � d̃ � r � z � P1
� P0 � � e

� o � r � z �
�
ExponentialMist Methods ��� �
Spectrum tau(const Ray &r) const {

Ray ray = WorldToVolume(r);
Float t0, t1;
if (!extent.IntersectP(ray, &t0, &t1)) return 0.;
Float dist = Distance(ray(t0), ray(t1));
return (A * dist)/(B * ray.D.z) *

(exp(-ray(t1).z) - exp(-ray(t0).z)) *
(sig_a + sig_s);

}
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Figure 13.9: The bidirectional scattering-surface reflectance distribution function
generalizes the BRDF to account for light that exits the surface at a point other
than where it enters. It is more difficult to evaluate in practice, though subsurface
light transport can be responsible for a substantial part of the appearance of many
real-world objects.� � ���  ���	# �"� � ������ ����� ����� � � �

Foo.

The BSSRDF

There is an important assumption implicit in the BSDF and the scattering equa-
tion: that the only incident light that has an effect on the outgoing radiance at x
is also incident on the surface at x–light that hits the surface at other points x

�

is
assumed to not affect outgoing radiance at x.

Equivalently, the BSDF assumes that the distribution of incident radiance on the
surface is uniform over a relatively large area of the surface with respect to the
amount of scattering that goes on beneath the surface.

For many types of surfaces–human skin, marble, etc.–there is a significant amount
of subsurface light transport, however. Light that enters a surface at one location
may travel for some distance underneath the surface, undergoing scattering there,
before exiting at another position–see Figure 13.9. (Chapter 13 describes the me-
chanics for describing light transport and scattering through volumetric media such
as these.)

The bidirectional scattering-surface reflectance distribution function (BSSRDF)
is the formalism that describes this. It is a distribution function S

�
x

� � �ωi � x � �ωo � that
describes the proportion of outgoing differential radiance at point x in direction �ωo

due to differential irradiance at x
�

from direction �ωi.
The scattering equation for the BSSRDF requires integration over surface area

and incoming direction; it is substantially more complex than Equation 5.4.8.

Lo
�
x � �ωo � � �

A
�

S2
S
�
x

� � �ωi � x � �ωo � cosθi d �ωi dA

Fortunately, points x
�

that are far away from x generally contribute little to Lo
�
x � �ωo � .

This fact can be a substantial help in implementations.
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The books written by van de Hulst (van80) and Preisendorfer (Pre65; Pre76) are
excellent introductions to volume light transport. Chandrasekhar’s seminal book is
another excellent resource (Cha60).

The Henyey–Greenstein phase function was originally described in Henyey and
Greenstein’s 1941 paper (HG41). Detailed discussion of scattering and phase func-
tions and derivations of phase functions that describe scattering from independent
spheres, cylinders, and other simple shapes can be found in van de Hulst (van81).
In particular, extensive discussion of the commonly-used Mie and Rayleigh scat-
tering models (which describe scattering from particles approximately the size of
or larger than the wavelength of incident radiation and particles much smaller than
the wavelength of incident radiation, respectively) is available there. Hansen and
Travis’s survey article is also a good introduction to the variety of commonly-used
phase functions (?).

Blinn first introduced basic volume scattering algorithms to graphics (Bli82b).
Other important early work includes Kajiya and von Herzen (KH84), Max (Max86),
and Nishita et al (NMN87). Glassner’s book has a thorough overview of this topic
and previous applications of it in graphics (Gla95), and Max’s survey article also
concisely summarizes the topic (Max95).

Volume scattering has been applied to simulating atmospheric scattering. Work
on this topic includes Klassen (Kla87) and Nishita et al (NMN87). More recently,
Preetham et al’s SIGGRAPH paper introduced a physically rigorous and computa-
tionally efficient atmospheric and sky-lighting model (PSS99).

Subsurface scattering was first introduced to graphics by Hanrahan and Krueger (HK93),
though their approach did not accurately simualte light that entered the object at
points other than at the point being shaded. Dorsey et al applied photon maps to
simulating true subsurface scattering (DEL � 99). Other work in this area includes
papers by Pharr and Hanrahan (PH00) and Jensen et al (JMLH01; JB02).

There are a number of important applications of visualizing volumetric datasets
for medical and engineering applications–this area is called volume rendering. In
many of these applications, radiometric accuracy is substantially less important
then developing techniques that help make structure in the data apparent (e.g.
where the bones are in CT scan data.) Early papers in this area include Levoy’s (Lev88;
Lev90b; Lev90a) and Drebin et al (DCH88).

Volume datasets from Stanford. http://www.volvis.org.
In this chapter, we have ignored all issues related to sampling and anti-aliasing

of volumes, though in principle this issues should be considered, e.g. for the
case of a volume that occupies just a few pixels on the screen. Marschner and
Lobb present the theory and practice of sampling and reconstruction for three-
dimensional datasets, applying ideas similar to those in Chapter 7 (ML94).

Binary volume octree to speed up traversal of empty regions (Lev88). Classifica-
tion... Danskin and Hanrahan various techniques based on 3D pyramid of volume
data to speed traversal, use lower precision computations when contribution to final
result is low (DH92).

Rushmeier and Torrance finite element stuff (RT87).
Schramm et al?? (SGM97).



Exercises 393

� � ��� ����# � #

13.1 use depth-mapped shadowmap stuff for fast light beams through atmosphere

13.2 pass radiance into attenuation()/L() functions of VolumeIntegrator,
use their magnitudes to guide how many MC samples to take, etc...



� ���



� � � � � � � � � � � � � � � ��� ��� � �

Monte Carlo is a flexible way of using random sampling to estimate the values
of integrals. One of its key features is that it one only needs to be able to evaluate
a function to be integrated f

�
x � at arbitrary points x in order to generate estimates

of the value of � f
�
x � dx; this makes Monte Carlo relatively easy to implement. In

contrast to techniques like the trapezoid rule or more complex quadrature meth-
ods for estimating the value of integrals, Monte Carlo works especially well with
integrals over many dimensions.

In graphics, we often have difficult integrals that need to be estimated, e.g. to
compute the amount of light reflected by the BSDF at a point with the reflection
Equation 5.4.8, it is necessary integrate the incident light at a point over all di-
rections over the hemisphere. Unless one somehow has both a closed form ex-
pression for the incident lighting distribution and can compute the convolution of
the incident light with the BSDF analytically, some other method must be used.
Monte Carlo integration makes it possible to compute an estimate for the reflected
radiance simply by sampling a set of directions over the hemisphere, computing
incident radiance along them, multiplying by the BSDF’s value, and applying a
weighting term.

The main disadvantage of Monte Carlo is that it converges at a rate of just
O
�
n

� 1 � 2 � , where n is the number of samples taken; four times more samples are
needed to reduce the error by half. In images, the artifacts from insufficient Monte
Carlo sampling generally show up as noise–some pixels are much too bright and
some are much too dark. This is visually unappealing! Most of the effort involved
in implementing Monte Carlo routines is in choosing the best possible Monte Carlo
techniques to keep this error as low as possible.

� � �
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�
mc.h* ����

Source Code Copyright �
#ifndef MC_H
#define MC_H�
MC Utility Declarations ��
MC Class Declarations �
#endif

�
mc.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "geometry.h"
#include "shapes.h"
#include "mc.h"�
MC Function Definitions �

��� �
� � �	� � � � � ���	�
We will start by defining some basic terms and covering background concepts

from probability. A random variable x is a value from some domain that has some
distribution of values. The domain may be discrete (e.g. a fixed set of possibilities)
or continuous (e.g. the real numbers

�
).

For example, the result of a roll of a die is a discrete random variable sampled
from the set of events Xi

� � 1 � 2 � 3 � 4 � 5 � 6 � . Each event has a probability pi
� 1 � 6

and the sum of probabilities ∑ pi is necessarily one. We can take a continuous
random variable ξ that is uniformly distributed among the real numbers between
zero and one and map it to a discrete random variable, choosing Xi if:

i � 1

∑
j � 1

p j � ξ �
i

∑
j � 1

p j
�

For lighting applications, we might want to define a probability of sampling illu-
mination from each of a set of light sources, based on the power from each source
relative to the total power from all sources.

pi
� Φi

∑ j Φ j

�

The cumulative distribution function (cdf) P
�
xi � of a random variable is the prob-

ability that a value from the variable’s domain is less than xi:

P
�
x � � Pr � X � x � �

For the die example, P
�
2 � � 1 � 3, for instance.

The random variable that takes on all values between zero and one with equal
probability is an example of a continuous random variable. Because it has equal
probability of taking on all values within that range, it is called a uniform ran-
dom variable. We will denote it by the special symbol ξ, since we will often be
interested in using it to generate samples from other distributions.
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Another example of a continuous random variable is one that ranges over the
real numbers between 0 and 2 where the probability of it taking on any particular
value x is related to the value 2 � x: it is twice as likely for it to take on a value
around zero as it is to take one around one, etc. The probability density function
(pdf) formalizes this idea: it describes the relative probability of a random variable
taking on a particular value. The pdf p

�
x � is just the derivative of the random

variable’s cdf.

p
�
x � � dP

�
x �

dx

For uniform random variables, p
�
x � is a constant.

Pdfs are necessarily non-negative and integrate to one over their domains. For
the uniform random variable ξ, P

�
x � � x and p

�
x � � 1. We will use the notation

x � p to denote that x is a random variable with the pdf p.
Given an arbitrary interval � a � b � in the domain, the pdf can give the probability

that a random variable lies inside the interval.

P
�
x � � a � b � � � � b

a
p
�
x � dx

The Monte Carlo Estimator

We can now define the Monte Carlo estimator, which gives a method for esti-
mating the value of an integral. First, we define the expected value E � f

�
x � � of a

function f , which is the average value that f takes on over some density.

E � f
�
x � � � � f

�
x � p � x � dx (14.1.1)

Consider finding the expected value of the cosine function between 0 and π, where
p is uniform. Because p

�
x � must integrate to one over the domain, we have p

�
x � �

1 � π and

E � cos
�
x � � � � π

0

cos x
π

dx

� 1
π
�
� sinπ � sin0 �

� 0

Which is precisely what we expect.
The expected value can be estimated with the sum

E � f
�
x � � � 1

N

N

∑
i � 1

f
�
xi � � (14.1.2)

where xi � p.
We can use Equations 14.1.1 and 14.1.2 to derive the basic Monte Carlo esti-

mator. If we want to estimate the integral of some function f
�
x � (rather than the

integral of f
�
x � p � x � ) then we can set g

�
x � � f

�
x � p � x � and apply Equation 14.1.1

to see that:

� f
�
x � � 1

N

N

∑
i � 1

f
�
xi �

p
�
xi � (14.1.3)
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This is the basic Monte Carlo estimator. One way of understanding it on an intuitive
level is to see that it is necessary to compensate for samples xi that are taken with
higher probability than others by reducing their relative contribution to give less
weight in the estimate. It can be equivalently written as:

E � � f
�
x � � � 1

N

N

∑
i � 1

f
�
xi � w

�
xi � (14.1.4)

where w
�
xi � is a weight that ensures that the expected value of the sum is equal

to � f
�
x � . Thus, in Equation 14.1.3, w

�
x � � 1 � p

�
x � . We will use this form of the

Monte Carlo estimator for the remainder of the book.
As an example of Monte Carlo in action, to compute the integral of some one-

dimensional function f
�
x � over the domain � 0 � 1 � , if we randomly sample uniform

random variables ξi over the domain, the estimate is

E � � f
�
x � � � 1

N

N

∑
i � 1

f
�
xi � �

since p
�
ξ � � 1.

For multi-dimensional integration, the extension of these ideas is straightfor-
ward. Samples xi are taken from a multi-dimensional density and the estimator
is applied as usual. (Here is a key difference between MC and quadrature meth-
ods for integration in higher dimensions: the number of samples N can be chosen
completely independently from the number of dimensions.)

Sampling Random Variables

Given a random variable distributed according to some distribution, we need a
way to generate samples according to the distribution in order to use Monte Carlo.

One is rejection sampling. This is a method that first uniformly samples a value
from the domain but then rejects it with some probability that ensures that the
accepted values have the desired distribution. For example, in the 1D case, we
can generate samples with density proportional to any function f

�
x � where we

know its upper bound, M. We choose two uniform random numbers, ξ1 and ξ2. If
ξ2 � f

�
ξ1 ��� M, then we accept ξ1 as a sample. Otherwise we reject it and choose

two new random numbers. Rejection sampling is easy to implement, though it does
require that we be able to compute the upper bound of the function. Its efficiency
is closely tied to how close the bound is to the function’s value over the domain.

For pdfs that can be integrated analytically, the inversion method (also known
as the transformation method can be applied. The idea behind this is that uniform
random variables are transformed to random variables from the desired distribu-
tion. To generate a sample from an arbitrary one-dimensional pdf given a uniform
random number ξ, we need to solve the equation

ξ � � x

� ∞
p
�
x � dx

for x. It is best if this can be done analytically, though numerical techniques can be
applied as well.

For example, uniform distributions are easy to sample this way: to sample a
uniform 1D distribution of reals from � � 5 � 5 � , we compute � 5 � 10ξ. To sample
uniformly in higher-dimensional domains, additional ξi are used.
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This transformation is an instance of a more general XXX. If we have a trans-
formation from a random variable with one distribution to one with another given
by some function x

� � f
�
x � , then the relationship between their pdfs is given by

the original pdf p
�
x � and the Jacobian of the function f

�
x � . In one-dimension, this

means that

p
� �

x
� � �

�
�
�
�

∂x
∂x

�

�
�
�
� p
�
x � �

For the example above for sampling from � � 5 � 5 � ,
∂x
∂x

�
� 1

10

and the pdf is 1 � 10, which matches the value for the pdf that direct integration and
normalization of � 5 � 10ξ would give us.

Consider the sampling the density of the power function

p
�
x � � �

n � 1 � xn

over the domain � 0 � 1 � . To generate samples from the pdf, we take a uniform random
number ξ and determine which value of x � � 0 � 1 � it maps to:

ξ � �
n � 1 � � x

0
xn dx

� xn � 1

x � n
�

1� ξ

In higher dimensions, the inversion method is more tricky. We need to sample
one dimension at a time. For example, to sample from a 2D distribution p

�
x � y � , we

define two new 1D distributions:

px
�
x � � � ∞

� ∞
p
�
x � y � dy

py
�
y � x � � p

�
x � y �

� ∞
� ∞ p

�
x � y � � dy

� (14.1.5)

The first is a distribution on x, which says that the probability density for sampling
a particular x value is given by the density over y values for that x. The second
distribution is a conditional distribution that says, given that some x value has been
sampled, the distribution to sample from for y values is given by the 1D density of
x values for that x, normalized to be a valid pdf.

It is often the case that the density p
�
x � y � is separable such that p

�
x � y � � p1

�
x � p2

�
y � .

Then we can sample each dimension independently and compute the final pdf as
the product of the pdfs for each dimension.

Sampling Piecewise Constant 1D Functions

An interesting exercise is to work out how to sample from one-dimensional
piecewise-constant functions (step functions). We will first consider one-dimensional
piecewise-constant functions defined over � 0 � 1 � and will then extend the approach
to sampling two-dimensional piecewise-constant functions.

Assume that the one-dimensional function’s domain is split into N equal-sized
pieces of size ∆ � 1 � N. These regions start and end at points xi

� i � ∆, where i
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Figure 14.1:

ranges from 0 to N inclusive, and within each region, the value of the function f
�
x �

is a constant–see the left side of Figure 14.1. The value of f
�
x � is

f
�
x � �

�� � v0 : x0 � x � x1

v1 : x1 � x � x2� � � : � � �
The integral of � f

�
x � dx is

c � � 1

0
f
�
x � dx �

N � 1

∑
i � 0

∆ fi
� N � 1

∑
i � 0

fi

N
� (14.1.6)

and so it is easy to construct the pdf p
�
x � for f

�
x � by f

�
x ��� c. By direct application

of the relevant formulas, the cdf F
�
x � is a piecewise linear function defined at the

points xi by

F
�
x0 � � 0

F
�
x1 � � � x1

x0

p
�
x � dx � v0 � � N � c � � F

�
x0 � � v0 � � N � c �

F
�
x2 � � � x2

x0

p
�
x � dx � � x1

x0

p
�
x � dx � � x2

x1

p
�
x � dx � F

�
x1 � � v1 � � N � c �

� � � � � � �
Between two points xi and xi � 1, the cdf is linearly increasing with slope vi � c.

Recall that in order to sample f
�
x � we need to find the value x

�

such that

ξ � � x
�

0
p
�
x � dx � F

�
x

� � �

Because the cdf is monotonically increasing, the value of x
�

must be between the xi

and xi � 1 such that F
�
xi � � ξ and ξ � F

�
xi � 1 � .

To be able to determine this efficiently, we will first provide a function that takes
the set of values vi of f

�
x � and computes the values of the cdf at xi. It also returns

the integral of f
�
x � in the user-supplied variable c.�

MC Function Definitions ���
void ComputeStep1dCDF(Float *f, int nSteps, Float *c, Float *cdf) {�

Compute integral of step function at xi ��
Transform step function integral into cdf �

}
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We start by computing the integral of f
�
x � , using Equation 14.1.6. We will store

the result in the cdf array for now so that we don’t need to allocate additional
temporary space for it. We allocate nSteps+1 floats for the cdf array because if
f
�
x � has N step values, then we need to store the value of the cdf at each of the

N � 1 values of xi.�
Compute integral of step function at xi ���
int i;
cdf[0] = 0.;
for (i = 1; i < nSteps+1; ++i)

cdf[i] = cdf[i-1] + f[i-1] / nSteps;

Now that the value of the integral over all of � 0 � 1 � is stored in cdf[nSteps], we
can normalize the cdf by dividing through by this value.�
Transform step function integral into cdf ���

*c = cdf[nSteps];
for (i = 1; i < nSteps+1; ++i)

cdf[i] /= *c;

Sampling the function from the cdf is handled by the SampleStep1d function.�
MC Function Definitions ��� �
Float SampleStep1d(Float *f, Float *cdf, Float c,

int nSteps, Float u, Float *weight) {�
Find surrounding cdf segments ��
Return offset along current cdf segment �

}

First, we need to find the pair of cdf values that straddle ξ. Because the cdf
array is monotonically increasing (and is thus a sorted array), we can use a binary
search function from the C++ standard library: lower_bound takes a pointer to the
start of the array and a pointer one past the end of the array as well as the value to
search for. We take the pointer that it returns and turn it into an integer offset into
the array with a bit of pointer arithmetic.�
Find surrounding cdf segments ���
Float *ptr = std::lower_bound(cdf, cdf+nSteps+1, u);
int offset = (int) (ptr-cdf-1);

Now that we know the pair of cdf values, we can compute x
�

. First, we determine
how far ξ is between cdf[offset] and cdf[offset+1]. Because the cdf is linear,
x

�

is that far between xi and xi � 1–see Figure 14.1, right. The weight for this sample
is 1 � p

�
x

� � : since we have the normalization value c, p
�
x � � f

�
x ��� c and the weight

is easily computed.�
Return offset along current cdf segment ���
u = (u - cdf[offset]) / (cdf[offset+1] - cdf[offset]);
*weight = f[offset] / (c * nSteps);
return (offset + u) / nSteps;

Sampling Piecewise Constant 2D Functions

We can use the routines for sampling piecewise constant one-dimensional func-
tions to build routines for sampling piecewise constant two-dimensional functions.
This helps give some intuition for the meaning of Equation 14.1.5.
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Figure 14.2:

Consider a two-dimensional function f
�
x � y � defined over a grid on � 0 � 1 � 2 with

Nx steps in one dimension and Ny steps in the other dimension. As above, the width
of the sections are ∆x

� 1 � Nx and ∆y
� 1 � Ny. See Figure 14.2.

Define an auxiliary one-dimensional function fx
�
x � by

fx
�
x � � � 1

0
f
�
x � y � dy �

Ny
� 1

∑
i � 0

f
�
x � y � ∆y

Now, to generate a sample from f given uniform random numbers ξ1 and ξ2, we
follow a two-step process. First, we want to sample an x

�

value using the pdf px of
fx
�
x � . Second, given that x

�

value, we want to sample a y
�

value from the associated
column of f

�
x � y � using the pdf from the function f

�
x

� � y � . The value of the pdf for
the resulting sample is the product of the pdfs for each of the individual samples.�
MC Function Definitions ��� �
Constant2DSampler::Constant2DSampler(Float *_f, int _nx, int _ny) {
#if 0

f = f;
nx = _nx;
ny = _ny;�
Compute fx

�
x � cdf ��

Compute y column cdfs �
#endif
}

�
Constant2DSampler Private Data ���
Float *f, *fx;
int nx, ny;
Float *xcdf;
Float **ycdfs;
Float xc, *ycs;
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401 ComputeStep1dCDF
402 Constant2DSampler
401 SampleStep1d

�
Compute fx

�
x � cdf ���

fx = new Float[nx];
for (int x = 0; x < nx; ++x) {

fx[x] = 0.;
for (int y = 0; y < ny; ++y)

fx[x] += f[y*nx + x];
}
xcdf = new Float[nx];
ComputeStep1dCDF(fx, nx, &xc, xcdf);

�
Compute y column cdfs ���
ycdfs = new Float *[nx];
ycs = new Float[nx];
Float *ftmp = new Float[ny];
for (int x = 0; x < nx; ++x) {

for (int y = 0; y < ny; ++y)
ftmp[y] = f[y*nx + x];

ycdfs[x] = new Float[ny];
ComputeStep1dCDF(ftmp, ny, &ycs[x], ycdfs[x]);

}
delete[] ftmp;

�
MC Function Definitions ��� �
void Constant2DSampler::Sample(Float u1, Float u2, Float *x, Float *y, Float *weight) const {
#if 0

Float xweight, yweight;
*x = SampleStep1d(fx, xcdf, nx, u1, &xweight);
int xoffset = int(*x * nx);
*y = SampleStep1d(ycdfs[xoffset], ny, u2, &yweight);
*weight = *xweight * *yweight;

#endif
}

To understand these equations, consider the case of sampling among x � y dis-
crete points in a 2D grey-scale texture map image, where the probability density at
each pixel is proportional to the intensity of the pixel. The first pdf says that we
should pick an x from the distribution according to the sum of the intensities of the
pixels in the column of y values above each particular x. The second says that, once
we have picked an x, we should choose a y from the column of pixels according to
their 1D distribution of intensities.

Sampling Piecewise Linear Functions

It is useful to be able to importance sample piecewise linear 1D functions. Here
we will assume that we have some function f

�
x � defined by a set of values vi. The

first value, v0 is the value of f
�
0 � , and the rest of the values are defined at equal

steps ∆: xi
� i � ∆ and vi

� f
�
xi � . See Figure 14.3.

To be able to efficiently sample this function, we will precompute its CDF and
store it in an array, such that the i’th element of the array is the value of the CDF
F
�
x � at F

�
i∆ � .
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∆
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Figure 14.3:

�
MC Function Definitions ��� �
void ComputeLinear1dCDF(Float *values, int nValues, Float delta,

Float *cdf) {�
Compute integral of piecewise linear function ��
Compute piecewise linear function’s cdf �

}

To compute the normalization constant, we first need to compute the integral
� f

�
x � dx. We will incrementally compute the integral, storing the value � xi

x0
f
�
x � dx

in the i’th element of the cdf array. It is easy to see that the area of the shaded
region (and thus the value of � x1

x0
f
�
x � dx in Figure 14.3 is

� 1
2

v0 �
1
2

v1 � ∆ �

Similarly, the area of the region next to it is

� 1
2

v1 �
1
2

v2 � ∆ �

Since � x2

x0

f
�
x � dx � � x1

x0

f
�
x � dx � � x2

x1

f
�
x � dx �

we can compute successive values of the integral from previous ones:�
Compute integral of piecewise linear function ���
int i;
cdf[0] = 0;
for (i = 1; i < nValues; ++i)

cdf[i] = cdf[i-1] +
(0.5f * values[i-1] + 0.5f * values[i]) * delta;

We can now compute the cumulative distribution function at each of the points
xi. The last element of the integral array, cdf[nValues-1] is equal to the integral
of f

�
x � over the entire domain, so it gives us the normalization constant c to turn

the integral into a valid CDF.�
Compute piecewise linear function’s cdf ���
Float c = 1.f / cdf[nValues-1];
for (i = 1; i < nValues; ++i)

cdf[i] *= c;
cdf[nValues-1] = 1.;
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x

ξ
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1

Figure 14.4:

To sample this function, we need to take a point ξ and compute the offset x
�

such
that

ξ � � x
�

x0

F
�
x � dx �

Because we have precomputed the values of F
�
x � at the points xi, we start out by

finding which the pair of adjacent points xi and xi � 1 where F
�
xi � � ξ � F

�
xi � 1 � .

Given those two, we then compute the sample point x
�

between them.�
MC Function Definitions ��� �
Float SampleLinear1dCDF(Float *values, Float *cdf, int nValues,

Float dx, Float u) {
Float *ptr = std::lower_bound(cdf, cdf+nValues, u);
int o = (int) (ptr-cdf-1);�
Compute offset delta along segment �
return (o+delta) * dx;

}

Because the CDF a is monontically increasing function, we can do a binary
search among its elements to find the two that surround xi–see Figure 14.4, which
is a graph of the CDF F

�
x � of a piecewise linear function. The segments between

adjacent values of F
�
xi � are quadratic curves. We can reuse the same code chunk

to compute this value as was used for the piecewise constant case.
Now that we know which particular pair

�
xi � xi � 1 � straddles the uniform random

number ξ; we now need to compute the corresponding x
�

value where ξ � F
�
x

� � .
To simplify the problem, we can remap this problem to an equivalent one–see Fig-
ure 14.5. Consider the CDF for just the particular segment from f

�
xi � to f

�
xi � 1 � :

if we define a new linear function g
�
x � where g

�
0 � � vi and g

�
1 � � vi � 1 then we

have

G
�
x � � vix � 1

2 x2 � vi � 1 � vi �
1
2

�
vi � vi � 1 �

We remap ξ to ξ
�

, a value between 0 and 1 by

ξ
� � ξ � f

�
xi �

f
�
xi � 1 � � f

�
xi �

and then solve for ξ
� � G

�
∆ � . This gives us a quadratic equation; solving it gives

an offset ∆ between 0 and 1. This offset tells us how far between xi and xi � 1 x
�

lies.
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Figure 14.5:

�
Compute offset delta along segment ���
Float regionInt = 0.5f * (values[o] + values[o+1]);
Float uPrime = (u - cdf[o]) / (cdf[o+1] - cdf[o]);
Float A = .5f * (values[o+1] - values[o]) / regionInt;
Float B = values[o] / regionInt;
Float C = -uPrime;
Float t0, delta;
bool ok = Quadratic(A, B, C, &t0, &delta);
Assert(ok && (t0 < 0 || t0 > 1) && (delta >= 0.f && delta <= 1.f));

Variance: Causes and Cures

The battle against variance is the basis of most of the work in optimizing Monte
Carlo. Variance is

V
�
x � � E � � x � E

�
x ��� 2 � �

It is an expression of how far off the estimator is expected to be from the correct
result. Variance in Monte Carlo ray-tracing shows up in images as bright spots
or noise in the image. Unfortunately, due to Monte Carlo’s convergence rate, it
is necessary to quadruple the number of samples taken to reduce variance by half.
Fortunately, there are a number of effective techniques that can substantially reduce
variance with little additional work.

Importance sampling is based on the observation that the estimator will converge
more quickly if the samples are taken from a distribution p

�
x � that is similar to the

function f
�
x � in the integrand. In a sense, the idea is that by concentrating work

where the value of the integrand is relatively high, the estimate is generated more
efficiently.

If it were possible to sample directly from a distribution where that was propor-
tional to the integrand at all points x, then the estimator would have zero variance,
since

f
�
x �

p
�
x �
� c

and so for any sample x, Equation 14.1.3 gives the same (correct) result. For this
case, clearly Monte Carlo isn’t necessary. When we can approximate f

�
x � (or some

part of f
�
x � ) a sampling distribution, though, we can improve efficiency.

If the integrand is a product or sum of two functions f
�
x � and g

�
x � , we might

want to try to find sampling distributions that work well for each one individually.
If we can’t directly compute a pdf for them by computing a normalization constant
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that makes them integrate to one over the domain, we might try to find simpler,
integrable functions that are similar to them. It is crucial that the density used for
importance sampling have non-zero value anywhere that f

�
x � � 0 for the Monte

Carlo estimator to be accurate.
Another approach that works well is to stratify the random variables ξ that are

used with the inversion method. If we are taking N samples to compute the Monte
Carlo estimator, we will generally have lower variance if we split the range � 0 � 1 �
into N equal-sized buckets and take a single sample from each one. Stratification
usually gives a result with lower variance: it can be shown that the resulting vari-
ance is expected to be the sum of the variances of each of the sub-regions–if the
integrand is smooth or generally well-behaved in some of the regions, then the re-
sult will be better. Stratification should never increase variance. This is precisely
what the JitterSampler in Chapter 7 is doing.

XXX could describe stratified more generally, as partition sampling region into
N cells, generate one random sample uniformly inside each cell. Then compute
weighted estimate as

N

∑
i � 1

wi f
�
xi �

where weight wi equals the area/volume of the i’th region.
Here is the definition of a function that generates a two-dimensional stratified

sampling pattern. The user passes in a pointer to an array that can hold at least
2*rootSamples*rootSamples Floats; successive pairs of them hold the result-
ing sample pattern.�
MC Function Definitions ��� �
void StratifiedSample2D(Float *samples, int rootSamples) {

Float delta = 1.f / rootSamples;
for (int i = 0; i < rootSamples; ++i)

for (int j = 0; j < rootSamples; ++j) {
*samples++ = (i + RandomFloat()) * delta;
*samples++ = (j + RandomFloat()) * delta;

}
}

Stratification can be applied to sampling over higher dimensions, though it doesn’t
scale well beyond a few; in two dimensions, for instance, the domain is divided into
a grid and one sample is taken from inside each grid cell. This approach can lead to
very high numbers of samples taken for high-dimensional integrals, so other meth-
ods of generating “good” distributions are generally used in that setting–see the
further reading section of this chapter for pointers. One approach is called Latin
Hypercube sampling (in graphics, sometimes this is called N-rooks sampling.)

Latin hypercube sampling is a two-step process. To take n samples in a d-
dimensional domain � 0 � 1 � d , the domain is split into nd cubes. A sample position is
chosen inside each of the n cubes along the diagonal. Then, for each dimension,
we intependently permute the sample points in that dimension.
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�
MC Function Definitions ��� �
void LatinHypercube(Float *samples, int nSamples, int nDim) {

int i, j;�
Generate samples along diagonal ��
Permute in each dimension �

}�
Generate samples along diagonal ���
Float delta = 1.f / nSamples;
for (i = 0; i < nSamples; ++i)

for (j = 0; j < nDim; ++j)
samples[nDim * i + j] = (i + RandomFloat()) * delta;

To do the permutation, we loop over the samples, processing one dimension at
a time. We use a utility funciton, Permute, to generate a random permutation of
integers from 0 to nSamples-1 and then use this to determine the permutation of
sample points for each dimension in turn.�
Permute in each dimension ���
for (i = 0; i < nDim; ++i) {

int *permuteTable = (int *)alloca(nSamples * sizeof(int));
Permute(permuteTable, nSamples);
for (j = 0; j < nSamples; ++j) {

int other = permuteTable[j];
swap(samples[nDim * j + i], samples[nDim * other + i]);

}
}

Generating a random permutation of integers from 0 to n-1 is easy; we first fill
in the table with the integers in order and then randomly shuffle them.�
MC Function Definitions ��� �
void Permute(int *table, int n) {

int i;
for (i = 0; i < n; ++i)

table[i] = i;
for (i = 0; i < n; ++i)

swap(table[i], table[RandomInt() % n]);
}

A final approach is to introduce bias into the computation: sometimes know-
ingly computing an estimate that isn’t correct in the limit can nonetheless lead to
lower variance. An estimator is unbiased if its expected value is equal to the correct
answer. If not, the difference

β � E � � f � � � f

is the amount of bias.
An example Kalos and Whitlock shows how bias can sometimes be good (KW86,

p36–37). Consider the problem of computing an estimate of the mean value of a
set of uniform random numbers over � 0 � 1 � . One could use the estimator

1
N

N

∑
x � 1

xi �
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or one could use the biased estimator

1
2

max
�
x1 � x2 � � � � � xn �

It can be shown that the first estimator is in fact unbiased, but has variance with
order O

�
1 � N � . The second estimator’s expected value is 0 � 5N � � N � 1 � �� 0 � 5; so it

is biased, though its variance is O
�
2 � N2 � , which is much better. For large values

of N, the second estimator may be preferred.
The pixel reconstruction method described in Section 7.6 can also be understood

as a biased estimator. Considering it as a Monte Carlo estimation problem, we’d
like to compute an estimate of:

p
�
x � y � � �

x
�

y
f
�
x � x

� � y � y
� � L � x � � y � � dx

�

dy
�

(14.1.7)

where p
�
x � y � is a final pixel value, f

�
x � y � is the pixel filter function, L

�
x � y � is the

image radiance function, and the integral in the denomenator serves to normalize
the filter function. For simplicity, we assume here that the pixel filter function has
been normalized so that �

x
�

y
f
�
x

� � y � � dx
�

dy
� � 1 �

Because we have chosen image plane samples uniformly, all samples have the
same weight, which we will denote by wc; thus, the unbiased Monte Carlo estima-
tor of Equation 14.1.7 is

p
�
x � y � � wc

N

N

∑
i � 1

f
�
x � xi � y � yi � L

�
xi � yi � �

This gives a different result than the pixel filtering equation we used previously,
Equation 7.6.2, which was:

p
�
x � y � � ∑i f

�
x � xi � y � yi � L

�
xi � yi �

∑i f
�
x � xi � y � yi �

�

The biased estimator is still generally used in practice, because it gives a result
with less variance. For example, if all radiance values L

�
xi � yi � have a value of one,

the biased estimator will reconstruct an image where all pixel values are exactly
one. However, the unbiased estimator will reconstruct pixel values that are not all
one. In this manner, the variance that is added to more complex images by the un-
biased estimator is a more objectionable artifact than the bias from Equation 7.6.2.



410 Monte Carlo Integration [Ch. 14

��� ���  � � � !$�  ��� ����� ��#
Stratified

if integrand has different mean in different strata, reduction in variance

Latin hypercube

Low-discrepancy sequences

Refer back to low-discrepancy stuff in sampling chapter.
The Koksma-Hlawka theorem separates the error in QMC evaluation of integrals

into two parts, one due to the quality of the set of points used and one due to the
function being integrated. Given an integral

I � ���
0 � 1 � s f

�
x1 � � � � � xs � dx1

� � � dxs �

and a set of sample points P � �
p1 � � � � � pN � , consider an estimate of the form

Î � 1
N

N

∑
i � 1

f
�
pi � �

The Koksma-Hlawka theorem says that

� I � Î � � V
�
f � D �N

�
P � � (14.2.8)

Thus, the error is split into a component V
�
f � that depends only on the function

being integrated and a component D �N
�
P � that depends only on the point sequence.

Therefore, so long as V
�
f � is bounded (and it isn’t always bounded), the lower we

can make the discrepancy of the points, the lower the maximum error will be.
In s dimensions, it is possible to get sequences such that

D �N
�
P � � O

� �
log N � s � 1

N � �

In particular, note that for s � 1,

D �N
�
P � � O

�
1
N � �

As the number of dimensions increases, we can’t do as well as we can in 1D, but
it’s nearly as good. Note that this convergence rate is much better than the O

�
N

� 1
2 �

that standard Monte Carlo gives. Note that not only will
�
log N � s � 1 not always be

small, but that the V
�
f � term can be the dominant factor in the error anyway, so

improvements in the sample sequence have less effect.
V
�
F � is called the total variation. It’s easy to define in one dimension:

V
�
F � � � 1

0
� f � �

x � � dx �
if the derivative f

� �
x � is continuous. Basically, it’s the integral of the total height

of all the monotonic segments of f :
In two or more dimensions, if f is discontinuous, the variation is infinite and the

bounds 14.2.8 are meaningless. In three or more dimensions, if f
�

is discontinuous,
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the variation is infinite. In general, in s dimensions, the first s � 2 derivatives of
f must be continuous for V

�
f � to be bounded. In spite of the lack of theoretical

bounds when V
�
f � is unbounded, however, QMC can still do better than standard

MC in practice.
QMC can be a big win when doing numerical integration; keep in mind, though,

that discontinuities in the integrand prevent it from being as powerful as one might
expect from theoretical bounds in the presence of smooth integrands. Another
complication is that classic estimates of variance can’t be computed when using
QMC, since computing an estimate again will always give the same result.

(t,m,s)-nets

A family of low discrepancy sequences called (t,s)-sequences and (t,m,s)-nets has
been constructed based on looking at the distributions of points with respect to b-
ary boxes: these are axis aligned boxes, coincident with the lines of

� 1
b � i. They are

defined by:

E � s

∏
i � 1

� aib
� di � � ai � 1 � b � di � � di � 0 � 0 � ai � bdi �

Where ∏ denotes a product of intervals over all dimensions.
For example, with b � 5 and s � 3, valid boxes include 1 � 1

5 �
1
5 , 1

25 �
1

125 � 1,
etc.

(t,s)-sequences are infinite sequences with low discrepancy with respect to b-
ary boxes, and (t,m,s)-nets are finite sequences with similarly good discrepancy;
details of the construction of these sequences was beyond the scope of the lecture.

(t,m,s)-nets have some particularly nice properties. By definition, s is the num-
ber of dimensions we are integrating over, 0 � t � m, and the total number of
points N � bm. (t,m,s)-nets are constructed so that if E is a b-ary box with volume
λ
�
E � � bt � m � then

� � xi � E � � bt �
The best case of this is when t � 0; then any b-ary box of size b

� m will have
exactly one point in it–exactly what we’d want!

��� ���  � � � !�� � � � ��� ��� � ��� � �����	� � ��� ��#

We will now show how to use importance sampling to sample BSDFs (this can
be used to compute integrals of the reflection functions from Chapter 9, for ex-
ample.) Given some point on a surface, we often wish to compute the reflection
integral that gives outgoing radiance in a direction ωo.

Lo
�
x � ωo � � �

Ω
fr
�
x � ωi � ωi � Li

�
ωi � cosθidωi

� (14.3.9)

Our task here is to define probability densities that do a good job of matching
the BSDF term of the integrand; the better we do at importance sampling such that
we choose directions where the integrand has a relatively high value, the lower
the variance will be in the final result. Because it’s difficult to know when all of
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the terms will simultaneously have high values, we’ll concentrate on strategies for
sampling each one of them. Later, we’ll show how combining the samples together
from multiple strategies works gives excellent results.

Uniform Hemisphere Sampling

The simplest possible approach for generating sample directions is to choose all
directions over the hemisphere with equal probability. A simple approach based on
rejection sampling works well for this. We randomly choose a point in the three-
dimensional cube over � � 1 � 1 � 3. If the chosen point is inside the unit sphere, then
we accept it and use it to construct a normalized direction vector from the origin.
Otherwise we reject it. The code below implements this method, ending by flip-
ping directions in the lower hemisphere such that they are in the upper hemisphere
around

�
0 � 0 � 1 � . (It is critical that we reject directions that are outside the unit

sphere–otherwise we would take more samples in the directions toward the corners
of the cube than in other directions.)

This sampling method is a good one to keep handy: because it has non-zero
probability of sampling any direction on the hemisphere, it can be used to properly
sample any reflective BSDF. It’s therefore good to have around to help debug more
sophisticated BSDF sampling methods.�
MC Function Definitions ��� �
Vector RejectionSampleHemisphere() {

Vector wo;�
Sample BxDF hemisphere uniformly to compute wo �
return wo;

}
�
Sample BxDF hemisphere uniformly to compute wo ���
while (1) {

wo = Vector(RandomFloat(-1, 1), RandomFloat(-1, 1),
RandomFloat(-1, 1));

if (wo.LengthSquared() < 1.f) break;
}
wo = wo.Hat();
if (wo.z < 0.) wo.z *= -1;

Because we are sampling uniformly over the hemisphere, the weighting function
is straightforward; it is a constant that we just need to normalize over the domain.
Thus, we have

1 � �
Ω

p
�
ω � dω

� �
Ω

cdω

� � 2π

0
� π � 2

0
c sinθdθdφ

� 2πc

so p
�
x � � 1 � 2π.



Sec. 14.3] Sampling Reflection Functions 413

513 max
16 Vector

�
MC Function Definitions ��� �
Float UniformHemisphereWeight() {

return 1.f / (2.f * M_PI);
}

Though this approach will give the right result for any reflective BSDF in the
limit, it will generally have high variance for two reasons. First, because it doesn’t
use a fixed number of random numbers to sample the direction, we can’t apply
stratified sampling. Second, many BSDFs reflect substantially more light in some
directions than others; the importance sampling method we use should reflect this.

We can address the first shortcoming by deriving a transformation from uniform
random numbers ξ1 and ξ2 to uniform directions

�
θ � φ � on the unit sphere. Because

we want to sample uniformly, the density function is a constant. Furthermore,
because dω � sinθdθdφ, we can sample θ and φ separately.

For θ, we need to solve ξ1
� � x

0 sinθdθ for θ. Some algebra gives us:

θ � arccos
�
1 � ξ1 �

To sample φ, we just have φ � 2πξ2.
To compute a vector direction, we use the spherical angle formula, which gives

us:

x � � 1 � z2 cosφ

y � � 1 � z2 sinφ
z � cos θ � 1 � ξ1

�
MC Function Definitions ��� �
Vector UniformSampleHemisphere(Float u1, Float u2) {

Float z = 1 - u1;
Float r = sqrtf(max(0.f, 1.f - z*z));
Float phi = 2 * M_PI * u2;
Float x = r * sinf(phi);
Float y = r * cosf(phi);
return Vector(x, y, z);

}

And over the sphere as well...
To sample the sphere uniformly over its area, we can use a variation on the sam-

pling method derived previously for uniformly sampling directions on the hemi-
sphere. For sampling over a sphere of radius r, the coordinates work out to be:

x � 2r � ξ1
�
1 � ξ1 � cosφ

y � 2r � ξ1
�
1 � ξ1 � sinφ

z � 1 � 2ξ1
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�
MC Function Definitions ��� �
Vector UniformSampleSphere(Float u1, Float u2) {

Float z = 1.f - 2.f * u1;
Float r = sqrtf(max(0.f, 1.f - z*z));
Float phi = 2.f * M_PI * u2;
Float x = r * sinf(phi);
Float y = r * cosf(phi);
return Vector(x, y, z);

}

We would like to sample a direction θ uniformly over the cone of directions
around the center direction ωc up to that maximum angle.

1 � c � θmax

0
1sinθdθ

� c
�
� cos θmax � 1 �

So p
�
θ � � c � 1 � � 1 � cos θmax � and the weighting function w

�
θ � � 1 � cosθmax.

To sample a particular offset angle,

ξ � 1�
1 � cosθmax � �

θ
�

0
sinθdθ

ξ
�
1 � cosθmax � � 1 � cosθ

�

cosθ
� � 1 � ξ

�
1 � cosθmax �

θ
� � arccos

�
1 � ξ

�
1 � cosθmax ���

Actually cosθ
�

is what we want anyway for spherical angles centered around ωc.�
MC Function Definitions ��� �
Vector UniformSampleCone(Float u1, Float u2, Float costhetamax) {�

Uniformly sample θ and φ in cone �
return Vector(cosf(phi) * sintheta, sinf(phi) * sintheta, costheta);

}
�
Uniformly sample θ and φ in cone ���
Float costheta = Lerp(u1, costhetamax, 1.f);
Float sintheta = sqrtf(1.f - costheta*costheta);
Float phi = u2 * 2.f * M_PI;

�
MC Function Definitions ��� �
Vector UniformSampleCone(Float u1, Float u2, Float costhetamax,

const Vector &x, const Vector &y, const Vector &z) {�
Uniformly sample θ and φ in cone �
return cosf(phi) * sintheta * x + sinf(phi) * sintheta * y +

costheta * z;
}

�
MC Function Definitions ��� �
Float UniformConeWeight(Float cosThetaMax) {

return 1.f / (2.f * M_PI * (1.f - cosThetaMax));
}
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Figure 14.6: Malley’s method: to sample direction vectors from a cosine-weighted
distribution, uniformly sample points on the unit disk and project them up to the
unit sphere.

Cosine-weighted hemisphere sampling

A better importance sampling function samples directions from a cosine-weighted
distribution over the hemisphere. This is a good approach for Lambertian sur-
faces, where fr is a constant. Because we know that the integral in Equation 14.3.9
weights the result by a cosine term, we will generate ωi directions that are more
likely to be close to the top of the hemisphere than the bottom, where the cosine
term has a small value.

We’ll be using a technique called Malley’s method to generate these cosine-
weighted points. The idea behind Malley’s method is that if we choose points
uniformly from the unit disk and then generate directions by projecting the points
on the disk up to the hemisphere above it, the resulting distribution of directions
will be a cosine distribution–see Figure 14.6.�
MC Utility Declarations ��� �
inline Vector CosineSampleHemisphere(Float u1, Float u2) {

Vector ret;
ConcentricSampleDisk(u1, u2, &ret.x, &ret.y);
ret.z = sqrtf(max(0.f, 1.f - ret.x*ret.x - ret.y*ret.y));
return ret;

}

We will make this the default BxDF sampling method; only the BxDFs where a
more effective sophisticated approach can be derived need to override this. As with
the method that sampled uniformly over the hemisphere, this one also has non-zero
probability of sampling all directions, so can be used for any reflective BxDF.�
BxDF Method Definitions ��� �
Spectrum BxDF::sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2, Float *wt) const {
Float x, y;
ConcentricSampleDisk(u1, u2, &x, &y);�
Compute final direction with Malley’s method �
*wt = Weight(wi, *wo);
return f(wi, *wo);

}

To generate uniform points on the disk, we could use the two-dimensional ana-
log to the rejection method we used to generate uniform random directions on the
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sphere. We can do better by deriving a mapping from a pair of uniform random
numbers ξ1 and ξ2 to points on the unit disk.

Consider the unit disk, described in polar coordinates
�
u � v � �

� 2 by:

�
x � y � � f

�
u � v � � �

usin 2πv� ucos 2πv �

We might be tempted to take a pair of uniform random numbers ξ1 and ξ2 and
use them to compute

�
x � y � with this equation. The problem with this is that by

uniformly sampling the radius, we are no longer uniformly sampling points
�
x � y � .

For example, if we are equally likely to choose the radii of � 001 and � 999, then
same number of samples will be taken around the circles at r � � 001 and r � � 999.
This is not a uniform sampling of the unit disk, though–too many samples will be
taken close to the center of the disk, and not enough around the outside.

It can be shown that we should be sampling the radius r with a probability den-
sity function such that the circle of a given radius is sampled with probability pro-
portional to its circumference. Applying the usual normalization-and-inversion
approach to deriving sampling techniques, we have:

1 � c � 1

0
2πrdr

� 2πc
1
2

�
12
� 02 �

� πc

so the normalization constant is c � 1 � π. Given a uniform random variable ξ, the
radius we sample should be

ξ � 1
π
� r

0
2πrdr

� 2 � r

0
rdr

� 2
1
2

r2

so r � � ξ. Given this radius, we then sample uniformly in direction θ, picking all
points around the circle with equal probability.�
MC Function Definitions ��� �
void UniformSampleDisk(Float u1, Float u2, Float *x, Float *y) {

Float r = sqrtf(u2);
Float theta = 2.0f * M_PI * u1;
*x = r * cosf(theta);
*y = r * sinf(theta);

}

Though this mapping solves the problem at hand, it tends to distort, such that ar-
eas on the unit square are elongated and/or compressed when mapped to the disk.
Furthermore, it has a seam; points that are far apart on the square map map to
nearby points on the disk (e.g.

� � 5 � � 01 � and
� � 5 � � 99 � ). A number of researchers
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Figure 14.7: The concentric mapping maps squares to circles, giving a less dis-
torted mapping than the first method shown for uniformly sampling points on the
unit disk.

y

x r

θ

Figure 14.8: Triangular wedges of the square are mapped into
�
r� θ � pairs in pie-

shaped slices of the circle.

have shown that Shirley’s concentric mapping, which doesn’t have these disadvan-
tages, gives lower variance in practice.

The concentric mapping maps points in the square � � 1 � 1 � 2 to the unit disk by
uniformly mapping concentric squares to concentrc circles–see Figure 14.7.

The mapping turns wedges of the square into slices of the disk. For example,
points in the shaded area of the square in Figure 14.7 are mapped to

�
r� θ � by

r � x

θ � y
x

See Figure 14.8. The other four quadrants are handled analogously.�
MC Function Definitions ��� �
void ConcentricSampleDisk(Float u1, Float u2,

Float *dx, Float *dy) {
Float r, theta;�
Map uniform random numbers to � � 1 � 1 � 2 ��
Map square to

�
r� θ ���

*dx = r*cosf(theta);
*dy = r*sinf(theta);

}

�
Map uniform random numbers to � � 1 � 1 � 2 ���
Float sx = 2 * u1 - 1;
Float sy = 2 * u2 - 1;
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�
Map square to

�
r� θ ������

Handle degeneracy at the origin �
if (sx >= -sy) {

if (sx > sy) {�
Handle first region �

}
else {�

Handle second region �
}

}
else {

if (sx <= sy) {�
Handle third region �

}
else {�

Handle fourth region �
}

}
theta *= M_PI / 4;

�
Handle degeneracy at the origin ���
if (sx == 0.0 && sy == 0.0) {

*dx = 0.0;
*dy = 0.0;
return;

}
�
Handle first region ���
r = sx;
if (sy > 0.0)

theta = sy/r;
else

theta = 8.0f + sy/r;

The remaining cases are analogous and are elided.
Once we have a point on the unit disk, it is straightforward to compute the z value

of this point on the sphere for Malley’s method, since we know that x2 � y2 � z2 �
1. We wrap up by setting the output wo variable and then flipping the sampled
direction so that it lies on the same hemisphere (above or below the surface as the
incident direction.)�
Compute final direction with Malley’s method ���
Float z = sqrtf(max(0.f, 1.f - x*x - y*y));
*wo = Vector(x, y, z);
if (wi.z * wo->z < 0.) *wo = -*wo;

We know that Malley’s method generates samples in a cosine distribution, so
p
�
ω � ∝ cos θ. We need to normalize this distribution so that it’s a valid pdf.
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514 INV PI
155 Spectrum
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1 � c �
Ω

cos ωdω

1
c

� � 2π

0
� π � 2

0
cosθ sinθdθdφ

c � 1
π

Thus p
�
ω � � cosω � π and the weight method is:�

BxDF Method Definitions ��� �
Float BxDF::Weight(const Vector &wi, const Vector &wo) const {

return fabsf(wo.Hat().z) * INV_PI;
}

This sampling method is a fine one for Lambertian reflectors, so we won’t over-
ride the method for Lambertian or OrenNayar BxDFs.�
BxDF Method Definitions ��� �
Spectrum BRDFToBTDF::sample_f(const Vector &wi, Vector *wo, Float u1, Float u2,

Float *wt) const {
Spectrum f = brdf->sample_f(wi, wo, u1, u2, wt);
*wo = -*wo;
return f;

}
�
BxDF Method Definitions ��� �
Float BRDFToBTDF::Weight(const Vector &wi, const Vector &wo) const {

return brdf->Weight(wi, -wo);
}

Sampling the Blinn microfacet distribution

More complex BxDFs to sample are those based on microfacet distribution func-
tions (See Section 9.4.) There, the BxDF is a product of three main terms, D, G,
and F , which is then divided by two cosine terms. Here we will describe how to
importance sample the D part of the Blinn model; trying to develop a sampling
method that accounted for all of the terms simultaneously would be difficult, and
it’s the D term that accounts for most of the variation in the BxDF’s value.

All MicrofacetDistributions must implement sampling and weighting func-
tions, each with the same signature as the corresponding BxDF function.�
MicrofacetDistribution Interface ��� �
virtual void sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2) const = 0;
virtual Float Weight(const Vector &wi, const Vector &wo) const = 0;

Microfacet BxDFs, then, just forward on the sampling and weight requests to
their distribution function.
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�
BxDF Method Definitions ��� �
Spectrum Microfacet::sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2, Float *wt) const {
distribution->sample_f(wi, wo, u1, u2);
*wt = distribution->Weight(wi, *wo);
return f(wi, *wo);

}
�
BxDF Method Definitions ��� �
Float Microfacet::Weight(const Vector &wi,

const Vector &wo) const {
return distribution->Weight(wi, wo);

}

Recall that Blinn’s microfacet distribution function is D � �
n � 1 � � cos θH � n,

where cosθH
� �

N � H � . Because the value of φ doesn’t affect D, the pdf ph
�
θ � φ �

is separable into ph
�
θ � and ph

�
φ � . ph

�
φ � is constant, with a value of 1 � � 2π).

As usual, to sample θH , we must first normalize it, so that � π � 2
0 p

�
θ � dω � 1.

1 � c � π � 2

0

�
n � 1 � cosn θH sinθHdθH

� c
�
� cosn � 1 π

2
� cosn � 1 0 �

c � 2π

Thus, our pdf ph
�
θ � is

�
n � 1 � cosn θH . To sample from the distribution given a

uniform random number ξ, we solve:

ξ � � θ

0

�
n � 1 � cosn θH sinθHdθH

ξ � cosn � 1 0 � cosn � 1 θ
n

�
1� 1 � ξ � cosθ

Since ξ is a uniform random number, so is 1 � ξ, so we can simplify this to
cosθ � n

�
1� ξ. Since the value φ doesn’t affect the value of D, we sample it uni-

formly: φ � 2πξ2.
We’re not quite done yet, however. Because we have sampled from the half-

angle vector distribution, we need to account for the fact that this is a different
distribution than the incident angle distribution. Therefore, we must adjust for the
change in variable between the space we’re generating samples in and the space
that we’re actually integrating in. When we sample using the microfacet distribu-
tion, what we’re computing is:

�
Ω

fr
�
ωi � ωr � L

�
ωi � cosθi dωH

In order to convert to an integral over solid angle, we must multiply by the Jacobian
∂ωi � ∂ωH :

�
Ω

fr
�
ωi � ωr � L

�
ωi � cos θidωH

∂ωi

∂ωH

� �
Ω

fr
�
ωi � ωr � L

�
ωi � cos θidωi

� Lo
�
x � ωr �
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Figure 14.9: The adjustment for change of variable from sampling from the half-
angle distribution to sampling from the indicent direction distribution can be de-
rived with an observation about the relative angles involved.

Consider the spherical coordinate system oriented about ωo–see Figure 14.9.
The differential solid angles dωi and dωH are sinθidθidφi and sinθH dθHdφH , re-
spectively.

dωi

dωH

� sinθidθidφi

sinθHdθH dφH

Because ωi is computed by reflecting ωo about ωH , θi
� 2θH . Thus,

dωi

dωH

� sin2θH 2dθH dφH

sin θHdθHdφH

� 4cos θH sinθH

sinθH� 4cos θH
� 4

�
ωi
� H � � 4

�
ωo
� H �

Therefore, the pdf is p
�
θ � � ph

�
θ � 4 � ωi

� H � .
After all that work, the sampling function is actually quite straightforward. We

sample a cos θ and a φ value and convert them to a direction vector using spheri-
cal angles; we want to compute a H vector as the vector with that offset from the
normal direction. Because our BSDF evaluation setting places the normal direc-
tion along

�
0 � 0 � 1 � , however, basic application of spherical angles gives us the H

direction.
XXX what if wi is in lower hemisphere XXX�

BxDF Method Definitions ��� �
void Blinn::sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2) const {
Float costheta = powf(u1, 1.f / (exponent+1));
Float sintheta = sqrtf(max(0.f, 1.f - costheta*costheta));
Float phi = u2 * 2.f * M_PI;
Vector H = SphericalDirection(sintheta, costheta, phi);�
Compute incident direction by reflecting about H �

}

All that’s left to do in the last line of code is to apply the formula for reflection
of a vector about another vector; see Figure 14.10.
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H
ωo

−ωo

ωi

d

2d

Figure 14.10: The reflection of a direction ωo about the direction H can be com-
puted by first taking the offset � ωo from the origin, giving the vector beneath the
surface. We then add two times the distance d, which is given by the projection of
ωo onto H (which is given by their dot product) to give us the direction ωi above
the surface.

�
Compute incident direction by reflecting about H ���
*wo = -wi + 2.f * Dot(wi, H) * H;

The weighting function is also straightforward.�
BxDF Method Definitions � 	 �
Float Blinn::Weight(const Vector &wi, const Vector &wo) const {

if (wi.z * wo.z < 0.) return 0;
Vector H = (wi + wo).Hat();
Float costheta = fabsf(H.z);
return ((exponent + 1.f) * powf(costheta, exponent)) /

(4.f * Dot(wo, H));
}

Anisotropic

Sampling: as above, sample H vector, then compute reflected and update weight.
First, here’s how to map to sample the first quadrant of the hemisphere, φ ��

0 � π � 2 � :
φ � arctan

���
nu 	 1
nv 	 1

tan � πξ1

2 �	�
and then

cosθ � ξ � nu cos2 φ � nv sin2 φ � 1 ��
 1

2

More generally, see if ξ1 � �
0 � � 25 � , � � 25 � � 5 � , � � 5 � � 75 � , or

� � 75 � 1 � . Then remap it
to
�
0 � 1 � , sample as above, and add 0, π � 2, π, or 3π � 2 to φ.
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�
BxDF Method Definitions ��� �
void Anisotropic::sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2) const {
Float phi, costheta;�
Sample from first quadrant and remap to hemisphere �
Float sintheta = sqrtf(max(0.f, 1.f - costheta*costheta));
Vector H = SphericalDirection(sintheta, costheta, phi);�
Compute incident direction by reflecting about H �

}
�
Sample from first quadrant and remap to hemisphere ���
if (u1 < .25f)

sampleFirstQuadrant(4.f * u1, u2, &phi, &costheta);
else if (u1 < .5f) {

u1 = 4.f * (.5f - u1);
sampleFirstQuadrant(u1, u2, &phi, &costheta);
phi = M_PI - phi;

}
else if (u1 < .75f) {

u1 = 4.f * (u1 - .5f);
sampleFirstQuadrant(u1, u2, &phi, &costheta);
phi += M_PI;

}
else {

u1 = 4.f * (1.f - u1);
sampleFirstQuadrant(u1, u2, &phi, &costheta);
phi = 2.f * M_PI - phi;

}
�
BxDF Method Definitions ��� �
void Anisotropic::sampleFirstQuadrant(Float u1, Float u2,

Float *phi, Float *costheta) const {
*phi = atanf(sqrtf((ex+1)*(ey+1)) * tanf(M_PI * u1 * 0.5f));
Float cosphi = cosf(*phi), sinphi = sinf(*phi);
*costheta = powf(u2, 1.f/(ex * cosphi * cosphi +

ey * sinphi * sinphi + 1));
}

�
BxDF Method Definitions ��� �
Float Anisotropic::Weight(const Vector &wi, const Vector &wo) const {

if (wi.z * wo.z < 0.) return 0;
Vector H = (wi + wo).Hat();
return D(H) / (4.f * Dot(wo, H));

}

Lafortune

XXX and now do Lafortune sampling stuff...



ConcentricSampleDisk 417
CoordinateSystem 21

Hat 19
Lafortune 292
Luminance 243

max 513
RandomInt 515
Spectrum 155
Vector 16

424 Monte Carlo Integration [Ch. 14

�
BxDF Method Definitions ��� �
Spectrum Lafortune::sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2, Float *wt) const {
int comp = RandomInt() % (nLobes+1);
if (comp == nLobes) {

Float x, y;
ConcentricSampleDisk(u1, u2, &x, &y);�
Compute final direction with Malley’s method �

}
else {�

Sample lobe comp for Lafortune BRDF �
}
*wt = Weight(wi, *wo);
return f(wi, *wo);

}
�
Sample lobe comp for Lafortune BRDF ���
Float xlum = x[comp].Luminance();
Float ylum = y[comp].Luminance();
Float zlum = z[comp].Luminance();
Float costheta = powf(u1, 1.f / (exponent[comp].Luminance() + 1));
Float sintheta = sqrtf(max(0.f, 1.f - costheta*costheta));
Float phi = u2 * 2.f * M_PI;
Vector lobeCenter = Vector(xlum * wi.x, ylum * wi.y, zlum * wi.z).Hat();
Vector lobeX, lobeY;
CoordinateSystem(lobeCenter, &lobeX, &lobeY);
*wo = SphericalDirection(sintheta, costheta, phi, lobeX, lobeY,

lobeCenter);
�
BxDF Method Definitions ��� �
Float Lafortune::Weight(const Vector &wi, const Vector &wo) const {

Float pdfSum = fabsf(wo.z) / M_PI;
for (int i = 0; i < nLobes; ++i) {

Float xlum = x[i].Luminance();
Float ylum = y[i].Luminance();
Float zlum = z[i].Luminance();
Vector lobeCenter =

Vector(wi.x * xlum, wi.y * ylum, wi.z * zlum).Hat();
Float e = exponent[i].Luminance();
pdfSum += (e + 1.f) * powf(max(0.f, Dot(wo,lobeCenter)), e);

}
// balance heuristic
return pdfSum / (1.f + nLobes);

}

FresnelBlend

XXX and now do FresnelBlend sampling stuff...
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�
BxDF Method Definitions ��� �
Spectrum FresnelBlend::sample_f(const Vector &wi, Vector *wo,

Float u1, Float u2, Float *wt) const {
if (u1 < .5) {

u1 = 2.f * u1;
Float x, y;
ConcentricSampleDisk(u1, u2, &x, &y);�
Compute final direction with Malley’s method �

}
else {

u1 = 2.f * (u1 - .5f);
distribution->sample_f(wi, wo, u1, u2);

}
*wt = Weight(wi, *wo);
return f(wi, *wo);

}
�
BxDF Method Definitions ��� �
Float FresnelBlend::Weight(const Vector &wi, const Vector &wo) const {

return .5f * fabsf(wo.z) / M_PI +
.5f * distribution->Weight(wi, wo);

}

Reflectance

We will now show how the Monte Carlo sampling routines can be used to esti-
mate the reflectance integrals (defined in Section 9.1) for arbitrary BSDFs.

Recall that the hemispherical-directional reflectance is given by:

ρdh
�
ω � � 1

π
�

Ω
fr
�
ω � ω � � dω

� �

To estimate its value for a particular BxDF, we take a fixed number of samples of
the estimator. (Depending on the application and accuracy requirements, the caller
may want to have control of the number of samples used.)�
BxDF Method Definitions ��� �
Spectrum BxDF::rho(const Vector &w) const {

Spectrum r = 0.;
const int nSamples = 4;
Float samples[2*nSamples*nSamples];
StratifiedSample2D(samples, nSamples);
for (int i = 0; i < nSamples*nSamples; ++i) {�

Estimate one term of ρdh �
}
return r / (nSamples*nSamples);

}

Computing the estimate is straightforward; we just importance sample the BxDF
and apply the Monte Carlo estimator.
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�
Estimate one term of ρdh ���
Vector wi;
Float wt;
Spectrum f = sample_f(w, &wi, samples[2*i], samples[2*i+1], &wt);
if (wt > 0.) r += f * fabsf(wi.z) / wt;

The hemispherical-hemispherical reflectance can be estimated similarly. Given

ρhh
� 1

π
�

Ω
�

Ω
fr
�
ωi � ωr � dωidωr �

to estimate a term of ρhh, we need to sample two vectors, ωi and ωo. We first sample
ωo uniformly over the hemisphere; because our BxDF sampling routine expects the
outgoing ray to be passed in, we need to sample one using a different approach.
Fortunately, uniform sampling over the hemisphere works well for this.

We then sample the other direction with the BxDF::Sample_f routine. We then
just compute the estimate by multiplying the function’s value by the two weights.�
BxDF Method Definitions ��� �
Spectrum BxDF::rho() const {

Spectrum r = 0.;
const int nSamples = 10;
Float samples[4*nSamples];
LatinHypercube(samples, nSamples, 4);
for (int i = 0; i < nSamples; ++i) {�

Estimate one term of ρhh �
}
return r / (M_PI*nSamples);

}
�
Estimate one term of ρhh ���
Vector wo, wi;
wo = UniformSampleHemisphere(samples[4*i], samples[4*i+1]);
Float weight_o = 2.f * M_PI, weight_i;
Spectrum f = sample_f(wo, &wi, samples[4*i+2], samples[4*i+3], &weight_i);
if (weight_i > 0.)

r += f * fabsf(wi.z * wo.z) / (weight_o * weight_i);

Sampling BSDFs

Now that we have defined methods to sample individual BxDFs, we define the
overall sampling method for the BSDF class. Here we have one or more individual
BxDFs that we know how to sample individually, but where we want to sample
the BSDF that results from the bunch of them together. Our simple solution is
to randomly pick among the BxDFs, with an equal probability of choosing each
one. We then use the chosen BxDF’s BxDF::Sample_f method to sample the actual
direction.

Because the sampling methods operate in the canonical BSDF coordinate sys-
tem, we need to transform the directions to and from world space as well.
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�
BSDF MC Methods ���
Spectrum BSDF::sample_f(const Vector &wiW, Vector *woW,

Float u1, Float u2, Float *wt,
bool *specularBounce) const {

Vector wi = WorldToLocal(wiW);
u_int which = RandomInt() % (brdfs.size() + btdfs.size());
BxDF *bxdf = NULL;
Float bwt;
if (which < brdfs.size()) {

bxdf = brdfs[which];
bwt = rWeights[which];

}
else {

bxdf = btdfs[which - brdfs.size()];
bwt = tWeights[which - brdfs.size()];

}

Vector wo;
Spectrum f = bwt * bxdf->sample_f(wi, &wo, u1, u2, wt);
*specularBounce = bxdf->IsSpecular();
*woW = LocalToWorld(wo);

*wt = 0.f;
if (!*specularBounce) {

if (which < brdfs.size()) {
for (u_int i = 0; i < brdfs.size(); ++i)

if (brdfs[i] != bxdf) {
*wt += brdfs[i]->Weight(wi, wo);
f += rWeights[i] * brdfs[i]->f(wi, wo);

}
}
else {

for (u_int i = 0; i < btdfs.size(); ++i)
if (btdfs[i] != bxdf) {

*wt += btdfs[i]->Weight(wi, wo);
f += tWeights[i] * btdfs[i]->f(wi, wo);

}
}

}
*wt /= (brdfs.size() + btdfs.size());

return f;
}

To compute the weight for the chosen sample, the natural thing to do would be
to call the BxDF::weight method of the BxDF we used for sampling the direction.
Instead, we will use a technique called multiple importance sampling that takes a
weighted average of all of the BxDF’s weights for the sampled direction.
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Multiple importance sampling was developed to give a new tool to address vari-
ance. The most objectionable variance in rendered images is very bright spikes in
some pixels; this happens when the pdf is a bad match to the function f being sam-
pled, and f happens to have a relatively large value where the pdf is a relatively
small value. The result is that the estimate f � p in the Monte Carlo estimator is
unexpectedly large, and a spike results.

When one is estimating integrals that are a product of functions, � f
�
x � g � x � dx,

it is often the case that one has one sampling method that works well to sample
f individually and another that works well to sample g. The typical approach
had been to partition a set of N samples between the two sampling methods and
compute an estimate by

E � � f
�
x � g � x � � � 1

N

�
N � 2

∑
i � 1

f
�
xi � g

�
xi � w f

�
xi � �

N

∑
i � N � 2 � 1

f
�
xi � g

�
xi � wg

�
xi ���
(14.3.10)

where w f
�
x � is 1 � p f

�
x � and p f is the pdf for the random variable used for sampling

f and wg is defined similarly.
It can be shown that a better approach is to still estimate the integral by taking

some samples from p f and some from pg. We take the first N f samples from p f

and the rest, Ng, from pg and compute the weighting function wc for the estimator

E � � f
�
x � g � x � � � 1

N

N

∑
i � 1

f
�
xi � g

�
xi �

wc
�
xi �

as

wc
�
xi � � N f

N f � Ng
w f
�
xi � � Ng

N f � Ng
wg
�
xi �

The estimate of � f
�
x � g � x � still has the correct expected value and furthermore

that the variance of the estimate usually be much better than, and will certainly be
no worse than the variance of Equation 14.3.10.

Because we sampled each BxDF with equal probability, we equally weight the
values of their BxDF::weight methods to compute the overall weight for the BSDF.

XXXXX Balance heuristic XXXXX�
BSDF MC Methods ��� �
Float BSDF::Weight(const Vector &wiW, const Vector &woW) const {

Vector wi = WorldToLocal(wiW), wo = WorldToLocal(woW);
Float wt = 0;
u_int i;
for (i = 0; i < brdfs.size(); ++i)

wt += brdfs[i]->Weight(wi, wo);
for (i = 0; i < btdfs.size(); ++i)

wt += btdfs[i]->Weight(wi, wo);
return wt / (brdfs.size() + btdfs.size());

}

Specular reflection and transmission
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XXX should explain here how sampling delta functions fits into all this nicely..
implicit delta function in f , but one over delta in weight, so just cancel them out
here and it’s all fine...

XXXX but these guys return weight of zero for any other ray...�
SpecularReflection Methods ��� �
Spectrum sample_f(const Vector &wi, Vector *wo, Float u1, Float u2,

Float *wt) const {
*wt = 1.;
return f_delta(wi, wo);

}
�
SpecularReflection Methods ��� �
Float Weight(const Vector &wi, const Vector &wo) const {

return 0.;
}

�
SpecularTransmission Methods ��� �
Spectrum sample_f(const Vector &wi, Vector *wo, Float u1, Float u2,

Float *wt) const {
*wt = 1.;
return f_delta(wi, wo);

}
�
SpecularTransmission Methods ��� �
Float Weight(const Vector &wi, const Vector &wo) const {

return 0.;
}��� ���  � � � !�� � � � � � ���  � �"� ��� #
XXX need interfaces all around for stuff like photon tracing–not sure what those

should look like. Need to return area densities rather than solid angle, etc.

Basic Interface

Incident radiance. Can give point P and optionally normal N at P as well. If
normal is given, can be used for smarter sampling of points on the light, to pick
ones that are visible.

XXX what about transmission type issues here, though? XXX�
Light Interface ��� �
virtual Spectrum Sample_L(const Point &P, Float u1, Float u2, Vector *wo, Float *weight,

bool *deltaLight, VisibilityTester *) const = 0;
virtual Spectrum Sample_L(const Point &P, const Normal &N, Float u1, Float u2,

Vector *wo, Float *weight, bool *deltaLight,
VisibilityTester *) const;

Sample a ray for shooting enrgy from the light�
Light Interface ��� �
virtual Spectrum Sample_L(const Scene *scene, Float u1, Float u2,

Float u3, Float u4, Ray *ray, Float *weight,
bool *deltaLight) const = 0;
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Return solid angle weight for sampling the given direction w from the point and
normal. Doesn’t need to be implemented; default gets weight from only point
version (corresponding to default implementation of the sampleL() that ignores N
and calls the P-only one.�
Light Interface ��� �
virtual Float Weight(const Point &P, const Normal &,

const Vector &w) const {
return Weight(P, w);

}
�
Light Interface ��� �
virtual Float Weight(const Point &,

const Vector &) const = 0;
�
Light Method Definitions ��� �
Spectrum Light::Sample_L(const Point &P, const Normal &N, Float u1, Float u2,

Vector *wo, Float *weight, bool *deltaLight,
VisibilityTester *visibility) const {

return Sample_L(P, u1, u2, wo, weight, deltaLight, visibility);
}

Delta function lights

XXX Actually, this is wrong, since pointlight is based on intensity, not radiance.
Effect is that radiance should be multplied by a delta function. But then the weight
should have one over a delta function, so it all cancels out... XXX�
PointLight Method Definitions ��� �
Spectrum PointLight::Sample_L(const Point &P, Float u1, Float u2,

Vector *wo, Float *weight, bool *deltaLight,
VisibilityTester *visibility) const {

*wo = (lightPos - P).Hat();
*weight = DistanceSquared(lightPos, P);
*deltaLight = true;
visibility->SetSegment(P, lightPos, CastsShadows);
return Intensity;

}
�
PointLight Method Definitions ��� �
Spectrum PointLight::Sample_L(const Scene *scene, Float u1, Float u2,

Float u3, Float u4, Ray *ray, Float *weight,
bool *deltaLight) const {

ray->O = lightPos;
ray->D = UniformSampleSphere(u1, u2);
*weight = 1.f / (4.f * M_PI);
*deltaLight = true;
return Intensity;

}
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�
PointLight Method Definitions ��� �
Float PointLight::Weight(const Point &, const Vector &) const {

return 0.;
}

Spotlight is similar; just need to comupte outgoing “radiance” differently. Plus,
for sampling a direction for shooting, we can be clever and only sample directions
in the spotlight cone.�
SpotLight Method Definitions ��� �
Spectrum SpotLight::Sample_L(const Point &P, Float u1, Float u2,

Vector *wo, Float *weight, bool *deltaLight,
VisibilityTester *visibility) const {

*wo = (lightPos - P).Hat();
*weight = DistanceSquared(lightPos, P);
*deltaLight = true;
visibility->SetSegment(P, lightPos, CastsShadows);
return Intensity * Falloff(-*wo);

}
�
SpotLight Method Definitions ��� �
Spectrum SpotLight::Sample_L(const Scene *scene, Float u1, Float u2,

Float u3, Float u4, Ray *ray, Float *weight,
bool *deltaLight) const {

ray->O = lightPos;
Vector v = UniformSampleCone(u1, u2, cosTotalWidth);
ray->D = LightToWorld(v);
*weight = UniformConeWeight(cosTotalWidth);
*deltaLight = true;
return Intensity * Falloff(ray->D);

}

Same issues for ProjectionLight as for SpotLight...�
GoniometricLight Method Definitions ��� �
Spectrum GoniometricLight::Sample_L(const Point &P, Float u1, Float u2,

Vector *wo, Float *weight, bool *deltaLight,
VisibilityTester *visibility) const {

*wo = (lightPos - P).Hat();
*weight = DistanceSquared(lightPos, P);
*deltaLight = true;
visibility->SetSegment(P, lightPos, CastsShadows);
return Intensity * Scale(-*wo);

}
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�
GoniometricLight Method Definitions ��� �
Spectrum GoniometricLight::Sample_L(const Scene *scene, Float u1, Float u2,

Float u3, Float u4, Ray *ray, Float *weight,
bool *deltaLight) const {

ray->O = lightPos;
ray->D = UniformSampleSphere(u1, u2);
*weight = 1.f / (4.f * M_PI);
*deltaLight = true;
return Intensity * Scale(ray->D);

}
�
GoniometricLight Method Definitions ��� �
Float GoniometricLight::Weight(const Point &, const Vector &) const {

return 0.;
}

Distant light source.�
InfinitePointLight Method Definitions ��� �
Spectrum InfinitePointLight::Sample_L(const Point &P, Float u1, Float u2,

Vector *wo, Float *weight, bool *deltaLight,
VisibilityTester *visibility) const {

*wo = lightDir;
*weight = 1;
*deltaLight = true;
visibility->SetRay(P, *wo, CastsShadows);
return L;

}

Shooting is interesting. Need to explain this carefully...�
InfinitePointLight Method Definitions ��� �
Spectrum InfinitePointLight::Sample_L(const Scene *scene,

Float u1, Float u2, Float u3, Float u4,
Ray *ray, Float *weight, bool *deltaLight) const {�

Choose point on disk oriented toward infinite light direction ��
Set ray origin and direction for infinite light ray �
*deltaLight = true;
*weight = 1.f / (M_PI * worldRadius * worldRadius);
return L;

}
�
Choose point on disk oriented toward infinite light direction ���
Point worldCenter;
Float worldRadius;
scene->BoundingSphere(&worldCenter, &worldRadius);
Vector v1, v2;
CoordinateSystem(lightDir, &v1, &v2);
Float d1, d2;
ConcentricSampleDisk(u1, u2, &d1, &d2);
Point Pdisk = worldCenter + worldRadius * (d1 * v1 + d2 * v2);
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�
Set ray origin and direction for infinite light ray ���
ray->O = Pdisk + worldRadius * lightDir;
ray->D = -lightDir;

�
InfinitePointLight Method Definitions ��� �
Float InfinitePointLight::Weight(const Point &, const Vector &) const {

return 0.;
}

Infinite Area Lights

Sample according to cosine weighting, but over the entire sphere around the hit
point.�
InfiniteAreaLight Function Definitions ��� �
Spectrum InfiniteAreaLight::Sample_L(const Point &P,

const Normal &N, Float u1, Float u2,
Vector *wo, Float *weight, bool *deltaLight,
VisibilityTester *visibility) const {�

Sample cosine-weighted direction on unit sphere ��
Compute weight for cosine-weighted infinite light direction ��
Transform direction to world space �
*deltaLight = false;
// XXX yuck
visibility->SetRay(P, *wo, CastsShadows);
return Le(Ray(P, *wo));

}
�
Sample cosine-weighted direction on unit sphere ���
Float x, y, z;
ConcentricSampleDisk(u1, u2, &x, &y);
z = sqrtf(max(0.f, 1.f - x*x - y*y));
if (RandomFloat() < .5) z *= -1;
*wo = Vector(x, y, z);

This is just like for cosine-weighted hemisphere sampling, except we’re doing
cosine-weighted sphere...�
Compute weight for cosine-weighted infinite light direction ���
*weight = fabsf(wo->z) / (2.f * M_PI);

Just like BSDF stuff, can use the local coordinate system vectors of the shading
point to transform from our canonical sampling space out to world space...�
Transform direction to world space ���
Vector v1, v2;
CoordinateSystem(Vector(N).Hat(), &v1, &v2);
*wo = Vector(v1.x * wo->x + v2.x * wo->y + N.x * wo->z,

v1.y * wo->x + v2.y * wo->y + N.y * wo->z,
v1.z * wo->x + v2.z * wo->y + N.z * wo->z);
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�
InfiniteAreaLight Function Definitions ��� �
Float InfiniteAreaLight::Weight(const Point &, const Normal &N,

const Vector &w) const {
return fabsf(Dot(N, w)) / (2.f * M_PI);

}

Area of sphere is 4π, so...�
InfiniteAreaLight Function Definitions ��� �
Spectrum InfiniteAreaLight::Sample_L(const Point &P,

Float u1, Float u2, Vector *wo, Float *weight,
bool *deltaLight, VisibilityTester *visibility) const {

*wo = UniformSampleSphere(u1, u2);
*weight = 1.f / (4.f * M_PI);
*deltaLight = false;
visibility->SetRay(P, *wo, CastsShadows);
return Le(Ray(P, *wo));

}
�
InfiniteAreaLight Function Definitions ��� �
Float InfiniteAreaLight::Weight(const Point &, const Vector &) const {

return 1.f / (4.f * M_PI);
}

XXXX also need to handle this guy...
Two uniform random points on a sphere give uniformly distributed lines through

the volume enclosed by the sphere. (Find citation for this–spherical lightmaps
paper?)

Ugh, is that the right weight?�
InfiniteAreaLight Function Definitions ��� �
Spectrum InfiniteAreaLight::Sample_L(const Scene *scene,

Float u1, Float u2, Float u3, Float u4,
Ray *ray, Float *weight, bool *deltaLight) const {�

Choose two points p1 and p2 on scene bounding sphere �
ray->O = p1;
ray->D = (p2-p1).Hat();
*deltaLight = false;
*weight = 1.f / ((4 * M_PI * worldRadius * worldRadius) *

(4 * M_PI * worldRadius * worldRadius));
Spectrum L = Le(*ray);
ray->D *= -1.;
return L;

}
�
Choose two points p1 and p2 on scene bounding sphere ���
Point worldCenter;
Float worldRadius;
scene->BoundingSphere(&worldCenter, &worldRadius);
Point p1 = worldCenter + worldRadius * UniformSampleSphere(u1, u2);
Point p2 = worldCenter + worldRadius * UniformSampleSphere(u3, u4);
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�
InfiniteAreaLight Function Definitions ��� �
Spectrum InfiniteAreaLight::dE(const Point &P, const Normal &N,

Vector *wo, VisibilityTester *visibility) const {
*wo = Vector(0,0,0);
return 0.;

}

Area Lights

We need to sample over the surfaces of area lights to do the direct lighting inte-
gral...

First, we will define a set of methods on Shapes to sample random points on
their surfaces.�
Shape Interface ��� �
virtual Point Sample(Float u1, Float u2, Normal *Ns) const {

Severe("Unimplemented Shape::Sample method called");
return Point();

}
�
Shape Interface ��� �
virtual Point Sample(const Point &P,

Float u1, Float u2, Normal *Ns) const {
return Sample(u1, u2, Ns);

}
�
Shape Interface ��� �
virtual Point Sample(const Point &P, const Normal &N,

Float u1, Float u2, Normal *Ns) const {
return Sample(P, u1, u2, Ns);

}

Sampling Disk Shapes is just like sampling a point on the unit disk, except we
account for the value of phiMax and we use the value of Disk::height for the z
value...�
Disk Methods ��� �
Point Disk::Sample(Float u1, Float u2, Normal *Ns) const {

Float r = radius * sqrtf(u2);
Float phi = phiMax * u1;
Point p = Point(r * cosf(phi), r * sinf(phi), height);
*Ns = ObjectToWorld(Normal(0,0,1)).Hat();
return ObjectToWorld(p);

}

For most shapes, our sampling methods will sample uniformly over the surface
of the shape. We will eventually get tricky with sphere below and override this
there, but the same Shape::weight function can be used for all Shapes to compute
one over the probability density for choosing to sample a particular direction.

These two are with respect to solid angle...
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�
Shape Interface ��� �
virtual Float Weight(const Point &P, const Normal &N,

const Vector &dir) const {
return Weight(P, dir);

}
�
Shape Interface ��� �
virtual Float Weight(const Point &P, const Vector &dir) const {�

Intersect sample ray with area light geometry ��
Convert light sample weight to solid angle measure �
return weight;

}

First see if a ray from the shading point in the given direction hits the area light
in the first place. If not, then there is clearly zero probability that the light’s sample
method would have sampled that direction. Otherwise, we get the differential ge-
ometry for the corresponding sample point on the light, which will come in handy
below.�
Intersect sample ray with area light geometry ���
DifferentialGeometry dgLight;
Ray ray(P, dir);
Float thit;
if (!Intersect(ray, &thit, &dgLight)) return 0.;
ray.maxt = thit;

We can now compute the sample weight for this sample. We start by computing
the weight with respect to the area measure over the shape; since we chose sam-
ples originally based on uniform area sampling over the surface, straightforward
integration shows that the sample weight is just equal to the shape’s area.

However, the integrals we are solving for these light transport problems are
written as integrals over solid angle over the unit sphere. Therefore, to convert
a pdf expressed in terms of area to one in terms of solid angle, multiply by the
Jacobian:

∂ωi

∂A
� r2

cosθo

where θo is the angle between the ray leaving the light source and the light’s surface
normal, and r2 is the distance between the point on the light and the point being
shaded.�
Convert light sample weight to solid angle measure ���
Vector dirHat = dir.Hat();
Float weight = Area() * DistanceSquared(P, ray(ray.maxt)) /

fabsf(Dot(dgLight.Nn, -dirHat));

With respect to area. Default assumes uniform sampling.�
Shape Interface ��� �
virtual Float Weight(const Point &Pshape) const {

return 1.f / Area();
}
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Figure 14.11: To sample points on a spherical light source, we can uniformly sam-
ple within the cone of directions around a central vector ωc with a angular spread
of up to θ.

Uniform sampling on cylinders is straightforward; just pick a height and a φ
value uniformly, compute the corresponding point, and compute the�
Cylinder Methods ��� �
Point Cylinder::Sample(Float u1, Float u2,

Normal *Ns) const {
Float h = Lerp(u1, zmin, zmax);
Float t = u2 * phiMax;
Point p = Point(radius * cosf(t), radius * sinf(t), h);
*Ns = ObjectToWorld(Normal(p.x, p.y, 0.)).Hat();
return ObjectToWorld(p);

}

XXX handle partial spheres XXX�
Sphere Methods ��� �
Point Sphere::Sample(Float u1, Float u2, Normal *Ns) const {

Point P = Point(0,0,0) + radius * UniformSampleSphere(u1, u2);
*Ns = ObjectToWorld(Normal(P.x, P.y, P.z)).Hat();
return ObjectToWorld(P);

}

Though this approach will give a correct estimate, we can reduce variance by
being careful to not sample points on the sphere that we know aren’t visible to
the point being shaded (e.g. points on the back side of the sphere, as seen from
the point. Figure 14.11 shows the basic two-dimensional setting for an alternate
approach.

Here, what we’d like to do is uniformly sample directions over the solid angle
that the sphere subtends as seen from the point being shaded. We can sample
directions from this cone of directions by sampling an offset θ from the center
vector ωc and then sampling a rotation angle φ around the vector.



CoordinateSystem 21
DifferentialGeometry 47

DistanceSquared 23
Hat 19
max 513

Normal 23
Point 21
Ray 26

Sphere 55
Sphere::radius 57

UniformConeWeight 415
UniformSampleCone 414

Vector 16

438 Monte Carlo Integration [Ch. 14

As seen from point being shaded, the sphere subtends an angle of

θmax
� arcsin

�
r� P � c � � � arccos 1 �

�
r� P � c � � 2

where r is the radius of the sphere and c is its center–see Figure 14.11.�
Sphere Methods ��� �
Point Sphere::Sample(const Point &P,

Float u1, Float u2, Normal *Ns) const {�
Compute coordinate system for sphere sampling ��
Sample uniformly on sphere if P is inside it ��
Sample sphere uniformly inside subtended cone �

}
�
Compute coordinate system for sphere sampling ���
Point Pcenter = ObjectToWorld(Point(0,0,0));
Vector wc = (Pcenter - P).Hat();
Vector wcX, wcY;
CoordinateSystem(wc, &wcX, &wcY);

�
Sample uniformly on sphere if P is inside it ���
if (DistanceSquared(P, Pcenter) < radius*radius)

return Sample(u1, u2, Ns);

�
Sample sphere uniformly inside subtended cone ���
Float cosThetaMax = sqrtf(max(0.f, 1.f - radius*radius /

DistanceSquared(P, Pcenter)));
DifferentialGeometry dgSphere;
Float thit;
Point Ps;
Ray r(P, UniformSampleCone(u1, u2, cosThetaMax, wcX, wcY, wc));
if (!Intersect(r, &thit, &dgSphere)) Ps = Pcenter - radius * wc; // !@$!$
else Ps = r(thit);
*Ns = Normal(Ps - Pcenter).Hat();
return Ps;

Already in solid angle measure. Woo woo.�
Sphere Methods ��� �
Float Sphere::Weight(const Point &P, const Vector &dir) const {

Point Pcenter = ObjectToWorld(Point(0,0,0));
if (DistanceSquared(P, Pcenter) < radius*radius)

return Shape::Weight(P, dir);
Float cosThetaMax = sqrtf(max(0.f, 1.f - radius*radius /

DistanceSquared(P, Pcenter)));
return UniformConeWeight(cosThetaMax);

}

Putting it all together, we can now do area light sampling, just delegating the
calls to the Shape.
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�
AreaLight Function Definitions ��� �
Spectrum AreaLight::Sample_L(const Point &P,

const Normal &N, Float u1, Float u2,
Vector *wo, Float *wt, bool *deltaLight,
VisibilityTester *visibility) const {

Normal Ns;
Point Ps = shape->Sample(P, N, u1, u2, &Ns);
*wo = (Ps - P).Hat();
*wt = shape->Weight(P, N, *wo);
*deltaLight = false;
return L(P, Ps, visibility);

}
�
AreaLight Function Definitions ��� �
Spectrum AreaLight::Sample_L(const Point &P,

Float u1, Float u2, Vector *wo, Float *wt,
bool *deltaLight, VisibilityTester *visibility) const {

Normal Ns;
Point Ps = shape->Sample(P, u1, u2, &Ns);
*wo = (Ps - P).Hat();
*wt = shape->Weight(P, *wo);
*deltaLight = false;
return L(P, Ps, visibility);

}
�
AreaLight Function Definitions ��� �
Spectrum AreaLight::Sample_L(const Scene *scene, Float u1, Float u2,

Float u3, Float u4, Ray *ray, Float *weight,
bool *deltaLight) const {

Normal Ns;
ray->O = shape->Sample(u1, u2, &Ns);
ray->D = UniformSampleSphere(u3, u4);
// one sided lights? if (Dot(ray->D, Ns) < 0.) ray->D *= -1;
*weight = shape->Weight(ray->O);
*deltaLight = false;
return L(ray->O, ray->D);

}
�
AreaLight Function Definitions ��� �
Float AreaLight::Weight(const Point &P, const Normal &N,

const Vector &w) const {
return shape->Weight(P, N, w);

}
�
AreaLight Function Definitions ��� �
Float AreaLight::Weight(const Point &P, const Vector &w) const {

return shape->Weight(P, w);
}
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�
AreaLight Function Definitions ��� �
Spectrum AreaLight::dE(const Point &P, const Normal &N, Vector *wo,

VisibilityTester *visibility) const {
Normal Ns;
Point Ps = shape->Sample(P, N, 0.5, 0.5, &Ns);
*wo = (Ps - P).Hat();
return L(P, Ps, visibility) * fabsf(Dot(N, *wo)) /

shape->Weight(P, N, *wo);
}

Multi-Area Lights
�
MultiAreaLight Methods ��� �
Spectrum Sample_L(const Point &P, Float u1, Float u2, Vector *wo, Float *weight,

bool *deltaLight, VisibilityTester *) const;
Spectrum Sample_L(const Point &P, const Normal &N, Float u1, Float u2,

Vector *wo, Float *weight, bool *deltaLight,
VisibilityTester *) const;

Spectrum Sample_L(const Scene *scene, Float u1, Float u2,
Float u3, Float u4, Ray *ray, Float *weight,
bool *deltaLight) const;

�
MultiAreaLight Methods ��� �
Float Weight(const Point &P, const Normal &N, const Vector &w) const;
Float Weight(const Point &P, const Vector &w) const;

��� ���  � � � !�� � � � � ! � � �  ����� ����� � ���

XXXX do MC actually...�
Volume Scattering Definitions ��� �
Spectrum DensityRegion::tau(const Ray &r) const {

Float t0, t1;
if (!Intersect(r, &t0, &t1)) return 0.;
Spectrum t(0.);

#define NUM 1
for (int i = 0; i < NUM; ++i) {

Float tt = Lerp(((Float)i + RandomFloat())/NUM, t0, t1);
Point P = r(tt);
t += sigma_a(P, r.D) + sigma_s(P, r.D);

}
return t * Distance(r(t0), r(t1)) / NUM;

}

We will wrap up by defining sampling methods for atmospheric scattering, as
described in Chapter 13.

Beer’s law says that e
� αx describes how much unattenuated light remains in a

beam after travelling some distance x through a medium. Say that we have traced a
ray through a scene and it has hit an object at a distance d. We then might want to
randomly sample a point along the ray according to how much light remains; we’d
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like to focus our sampling on the parts where the light energy is strongest. First,
we need to transform the exponential function into a valid pdf:

1 � c � d

0
e

� αxdx

� �
c
α
�
e

� αd
� 1 �

� c
α
�
1 � e

� αd �

So
c � α � � 1 � e

� αd � �
Following similar steps, we can now determine how to sample a distance d

�

given a uniform random number ξ:

ξ � α
1 � e � αd � d

�

0
e

� αxdx

� 1 � e
� αd

�

1 � e � αd

ξ
�
1 � e

� αd � � 1 � e
� αd

�

e
� αd

� � 1 � ξ
�
1 � e

� αd �
� αd

� � log
�
1 � ξ

�
1 � e

� αd ���
d

� � �
log

�
1 � ξ

�
1 � e

� αd ���
α

To sample Henyey-Greenstein, Equation ??, it’s just:

cos θ � � 1� 2g �
�

1 � g2
�
� 1 � g2

1 � g � 2gξ
� 2 �

If g �� 0, otherwise cosθ � 1 � 2ξ
XXX put it all together, show how you sample that, then sample φ, make a little

coordinate system and you’re off....�
Foo ���
double evalHG(double g, double costheta) {

return (1 - g*g) / powf(1 + g*g - 2*g*costheta, 1.5);
}

�
Foo ��� �
double sampleHG(double g, double u, double *pdf) {

if (fabsf(g) < 1e-5) {
*pdf = 1.;
return 1.f - u * 2.;
}
double cost = -1.f / (2.0 * g) * (1 + g*g - sqr((1 - g*g)/(1-g+2*g*u)));
*pdf = evalHG(g, -cost);
return cost;

}
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Spanier and Gelbard (SG69)
Kalos and Whitlock (KW86)
Fishman (Fis96). Liu book (Liu01).
Cook et al (CPC84; Coo86).
Shirley thesis (Shi90a)
Shirley et al on light source sampling (SWZ96).
Shirley square to disk mapping (SC97)
Veach thesis (Vea97), includes multiple importance sampling stuff (VG95).
Keller on QMC stuff (Kel96), cite other stuff here as well
Dutre GI compendum
Monte Carlo/Quasi Monte Carlo website http://www.mcqmc.org.

� � ��� ����# � #

14.1 Do the derivation for the HG importance sampling function

14.2 Sample cone light source. Like sampling a partial disk, then project up onto
the cone...
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� � � � � ��� � � � � � �

This chapter brings ideas and code of the preceding chapters together to com-
pute the radiance along rays in the scene. These radiance values are the key to
image formation in the camera as well as the basis of sophisticated algorithms to
simulate light transport in the scene. In this chapter we will describe a number
of integrator implementations; we use the term integrator generically, to describe
a class that handles evaluating the integral equation called the rendering equation
that describes how light interacts with geometry in a scene. As the Camera gen-
erates rays, they are handed off to the SurfaceIntegrator that the user selected;
the integrator is then responsible for doing appropriate shading and lighting com-
putations to compute the radiance scattered back along the ray. We will provide a
few different SurfaceIntegrators, each providing a different level of accuracy
in its modelling of light transport.�
transport.h* ����

Source Code Copyright �
#ifndef TRANSPORT_H
#define TRANSPORT_H
#include "lrt.h"
#include "primitives.h"
#include "color.h"
#include "light.h"
#include "reflection.h"
#include "sampling.h"
#include "materials.h"�
Integrator Declarations �
#endif // TRANSPORT_H

� � �
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�
transport.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "primitives.h"
#include "color.h"
#include "light.h"
#include "scene.h"
#include "reflection.h"
#include "sampling.h"
#include "materials.h"
#include "transport.h"�
Integrator Method Definitions ��
Integrator Utility Functions �
There is just a single function that SurfaceIntegrators must implement, L,

which returns the radiance along the ray. The parameters are the following:

1. scene: a pointer to the Scene being rendered. The integrator will query the
scene for information about the lights and geometry present, etc.

2. ray: the ray along which the scattered radiance should be evaluated.

3. sample: a pointer to a Sample generated by the Sampler for this ray; some
integrators will use some of its entries for Monte Carlo sampling.

4. alpha: the opacity of the surface that was hit should be set in this output
variable; it should be zero if no surface was hit.

L returns a Spectrum that holds the radiance along the ray.�
SurfaceIntegrator Method Declarations ��� �
virtual Spectrum L(const Scene *scene,

const RayDifferential &ray, const Sample *sample,
Float *alpha) const = 0;

�
SurfaceIntegrator Method Declarations ��� �
virtual Sample *AllocateSample(const Scene *scene) const = 0;

� � �
� � ��� � � � ��� � � ����# � �"� � � � ����� ��� �

In order to compute how much radiance is traveling along a particular ray in the
scene, we need to have a be able to describe how light is distributed in the scene.
For example, bright light shining on a deep red object may cause a reddish tint on
nearby objects in the scene, or a glass may focus the light into caustic patterns on
a tabletop. The light transport equation describes the distribution of light along
any particular ray in the scene in terms of the distribution of light in the rest of the
scene; it forms the basis for the light transport algorithms we will implement in
this chapter.

The light transport equation (often called the rendering equation) is built on the
assumptions that:
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Figure 15.1: trace operator


 Radiometry is a reasonable descriptive framework for the scene–i.e. wave
optics effects are unimportant.


 The scene is modeled as a collection of surfaces in a vacuum–atmospheric
effects are unimportant. (We will relax this assumption later in Section XXX
when we define the volume light transport equation.)


 The scene is in equilibrium: the distribution of light in the scene isn’t chang-
ing as a function of time. Because light travels so quickly compared to the
time-scales used in rendering typical scenes, this assumption isn’t particu-
larly limiting.

We would like to be able to express the outgoing radiance from a point on a sur-
face x in direction �ω, Lo

�
x � �ω � . This can be separated into radiance that is directly

emitted by the surface if it is an area light source, Le, and radiance that is scattered
by the surface, Ls due to incident illumination from other objects. The emitted ra-
diance is a known property of the scene, and the scattered radiance is given by the
scattering equation, 5.4.8. Combining these, we have:

Lo
�
x � �ω � � Le

�
x � �ω � � �

S2
Li
�
x � �ω i � f

� �ω i � �ωo � � cosθi � d �ω i
�

Because there are no atmospheric effects, radiance is constant along rays through
free space as long as they don’t intersect a surface. Therefore, we can relate the
incident radiance at a point x in terms of the outgoing radiance from another point
x

�

–see Figure 15.1. If we define the ray-casting function t
�
x � w � as returning the

first surface point x
�

intersected by a ray from x in the direction �ω, we can write the
incident radiance at x in terms of outgoing radiance at x

�

:

Li
�
x � �ω � � Lo

�
t
�
x � �ω � � � �ω � �

(Assume for now that the scene is closed, such that the ray-casting function is
always defined.)

We can now combine these two expressions into the light transport equation,
which gives outgoing radiance at a point in terms of outgoing radiance at other
points:

L
�
x � �ω � � Le

�
x � �ω � � �

S2
L
�
t
�
x � �ω i � � � �ωi � f

� �ω i � �ωo � � cos θi � d �ωi � (15.1.1)
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where for simplicity we have replaced the Lo symbols with L.

Implications of delta distributions

implicit delta distributions in BxDF and weight values, why they cancel out but
also anhillate other stuff...� � ����� ��� � ����� ������� � � �����"�

�
whitted.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "transport.h"
#include "scene.h"�
WhittedIntegrator Declarations ��
WhittedIntegrator Method Definitions �
In 1979, Turner Whitted developed a new rendering algorithm based on recur-

sive evaluation of the light transport equation (though the light transport equation
wasn’t known as such in graphics until 1986.) The key insight was that light scat-
tered by perfectly specular surfaces (like mirrors or glass objects) could be mod-
elled with recursive ray-tracing. When a specularly reflective or transmissive object
is hit by a ray, new rays are traced in the reflected and refracted directions to evalu-
ate incident radiance along those directions, and shadow rays are used to determine
which lights are visible at the point being shaded. The radiance along the spawned
rays is scaled appropriately and added to the radiance scattered from the original
point. By continuing this process recursively, realistic images of multiple reflection
and refraction can be generated. The implementation of the Whitted Integrator is
presented in chapter 1; the reader should review it in the now complete context of
lrt.

To understand Whitted’s algorithm in terms of the light transport equation, we’ll
first partition the integral into terms with delta functions in the integrands and terms
without delta functions. If we have two functions f

�
x � and g

�
x � where

f
�
x � � f1

�
x � � f2

�
x �

g
�
x � � g1

�
x � � g2

�
x �

then

� f
�
x � g � x � dx � � � f1

�
x � � f2

�
x ��� � g1

�
x � � g2

�
x ��� dx

� � f1
�
x � g1

�
x � dx � � f2

�
x � g1

�
x � dx � � f1

�
x � g2

�
x � dx � � f2

�
x � g2

�
x � dx �

We can separate the BSDF and Li terms of the light transport equation into delta
and non-delta BSDF components and delta and non-delta illumination components.
We have the partitioned light transport equation

L
�
x � �ω � � Le

�
x � w � � �

S2
L∆
�
t
�
x � �ω i � � � �ωi � f∆

� �ωi � �ωo � � cos θi � d �ωi � �
S2

L
�
t
�
x � �ω i � � � �ωi � f∆

� �ωi � �ωo � � cos θi dωi

�
S2

L∆
�
t
�
x � �ω i � � � �ωi � f

� �ωi � �ωo � � cos θi � d �ωi � �
S2

L
�
t
�
x � �ω i � � � �ωi � f

� �ω i � �ωo � � cos θi � d �ωi
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444 AllocateSample
5 Scene

where terms with a ∆ subscript have delta componetnts and regular terms do not
have delta components. (XXX better typographical convention? XXX)

The first integral term is easy to handle; it has a value of zero with probability
one, since the two delta functions will in general never be non-zero for the same
direction. The next term is where specular reflection and transmission are taken
care of. The delta function in the BSDF determines the directions in which we
need to trace reflected and transmitted rays and a recursive call to the Whitted
integrator gives us their radiance.

�
S2

L
�
t
�
x � �ω i � � � �ωi � f∆

� �ωi � �ωo � � cosθi � d �ω i
� ∑

specular

f
� �ω � �ωi � L

�
x � �ω i �

Delta light source integral also a sum:

�
S2

L∆
�
t
�
x � �ω i � � � �ωi � f

� �ωi � �ωo � � cos θi � d �ωi
� ∑

lights

f
� �ω � �ωi � � cos θi � Ilight�

xlight � x
�

2V
�
xlight � x � �

where V
�
x � x � � is the visibility function that gives the value one if the two points

are visible to each other and zero if they are occluded.
And the last term is ignored by this guy...�

WhittedIntegrator Declarations ���
class WhittedIntegrator : public SurfaceIntegrator {
public:�

WhittedIntegrator Methods �
private:�

WhittedIntegrator Private Data �
};

�
WhittedIntegrator Private Data ���
int maxDepth;
mutable int rayDepth;

�
WhittedIntegrator Methods ��� �
Sample *WhittedIntegrator::AllocateSample(const Scene *scene) const {

vector<int> none;
return new Sample(none, none);

}

� � ��� 	 � � ��� � � � � ��� � � � ������� � � �����
�
�
directlighting.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "transport.h"
#include "scene.h"�
DirectLighting Declarations ��
DirectLighting Method Definitions �
Another interesting integrator only considers direct lighting from light sources

in the scene at the point being shaded. It completely ignores indirect lighting that
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bounces off other objects in the scene, even including specular reflection and trans-
mission. Nevertheless, it is an interesting integrator since it allows us to focus on
some of the key details of direct lighting without worrying about the full light trans-
port equation. Furthermore, some of the fragments developed here will be used in
subsequent integrators that solve the complete light transport equation.�
DirectLighting Declarations ���
class DirectLighting : public SurfaceIntegrator {
public:�

DirectLighting Methods �
private:�

DirectLighting Private Data �
};

�
DirectLighting Methods ��� �
Sample *AllocateSample(const Scene *scene) const {

vector<int> num;
if (strategy == SAMPLE_ALL_UNIFORM)

num.push_back(scene->lights.size());
else

num.push_back(1);
return new Sample(num, num);

}

L
�
x � �ω � � Le

�
x � �ω � � �

Ω
fr
� �ω � �ωi � Ld

�
x � �ω i � � cosθi � d �ωi (15.3.2)

where Ld
�
x � �ω i � includes only light that is directly emitted from light sources.

The basic form of the DirectLighting::L() method is similar to WhittedIntegrator::L();
the Scene::Intersect() method is called to find the first visible surface along
the ray, etc. We won’t include the implementation of DirectLighting::L() here
in order to focus on its key fragment,

�
Compute direct lighting at hit point � .�

Compute direct lighting for DirectLighting integrator ���
const Point &P = surf.dgShading.P;
const Normal &N = surf.dgShading.Nn;
if (scene->lights.size() > 0) {

Vector wo = -ray.D.Hat();�
Apply direct lighting strategy �

}

Context for this fragment:


 P = surf.dgShading.P;


 N = surf.dgShading.Nn;


 bsdf is initialized to BSDF at the hit point

We support three different strategies for computing direct lighting; all compute
an unbiased estimate of reflection from direct lighting at the point being shaded,
though they show off different approaches to the problem. An enumerant records
which one has been selected.



Sec. 15.3] Direct Lighting Integrator 449

450 UniformSampleAllLights
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�
DirectLighting Private Data ���
enum LightStrategy { SAMPLE_ALL_UNIFORM, SAMPLE_ONE_UNIFORM,

SAMPLE_ONE_WEIGHTED } strategy;

�
Apply direct lighting strategy ���
switch (strategy) {

case SAMPLE_ALL_UNIFORM: {
L += UniformSampleAllLights(scene, P, N, wo, bsdf,

sample, 0);
break;

}
case SAMPLE_ONE_UNIFORM: {

L += UniformSampleOneLight(scene, P, N, wo, bsdf,
sample, 0);

break;
}
case SAMPLE_ONE_WEIGHTED: {

L += WeightedSampleOneLight(scene, P, N, wo, bsdf,
sample, 0, avgY, avgYsample, cdf, overallAvgY);

break;
}

}

The three approaches to sampling lights for direct lighting can be understood in
terms of a discrete probability density defined for each of the lights. Consider the
term of the direct lighting equation that we’re concerned with here:

�
Ω

fr
� �ω � �ωi � Ld

�
x � �ωi � � cos θi � d �ωi

�

This can be broken into a sum over the lights in the scene

lights

∑
i � 1

�
Ω

fr
� �ω � �ωi � Ld � i �

�
x � �ω i � � cos θi � d �ωi �

where Ld � i � denotes incident radiance from the ith light. We can estimate each
term of this sum individually, adding the results together. This is the most basic
direct lighting strategy, where each light is sampled with probability one, and is
implemented in

�
Sample all lights with uniform probability � . The fragment that

computes the estimate for light will be defined shortly, after we have described
the other light sampling strategies (all of which use this fragment as well.)
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�
Integrator Utility Functions ���
Spectrum UniformSampleAllLights(const Scene *scene, const Point &P,

const Normal &N, const Vector &wo, BSDF *bsdf,
const Sample *sample, int sampleDepth) {

Spectrum L(0.);
for (u_int i = 0; i < scene->lights.size(); ++i) {

Light *light = scene->lights[i];
L += EstimateDirect(scene, light, P, N, wo, bsdf,

sample, sampleDepth, i, scene->lights.size());
}
return L;

}

Alternatively, we might just want to trace a single shadow ray to one of the lights.
We can randomly select one light, which gives a uniform probability 1 � nlights of
selecting each particular light. Then, we estimate direct lighting for only that one
light, weighting the result by a factor of nlights to compensate. (Because we used
a probability of 1 of selecting each light in the first strategy, additional weighting
was necessary there.)�
Integrator Utility Functions ��� �
Spectrum UniformSampleOneLight(const Scene *scene, const Point &P,

const Normal &N, const Vector &wo, BSDF *bsdf,
const Sample *sample, int sampleDepth) {

int nLights = int(scene->lights.size());
int lightNum = RandomInt() % nLights;
Light *light = scene->lights[lightNum];
return (Float) nLights *

EstimateDirect(scene, light, P, N, wo, bsdf, sample,
sampleDepth, 0, 1);

}

It’s possible to be even more creative in choosing the individual light sampling
probabilities. In fact, we’re free to set the probabilities any way we like, so long
as we weight the result appropriately and there is non-zero probability of sampling
any light that contributes to the reflection at the point. The better a job we do at
setting the probabilities so that the probability of sampling a light is proportional
to the light’s contribution to reflection at the point, the more efficient the Monte
Carlo estimator will be and the fewer rays will be needed to reach a particular level
of variance. (XXX just like importance sampling other stuff...)

XXX Emphasize issue of handling large numbers of light sources, e.g. in a
densely occluded building, not just making the most out of simple situations XXX

Here we’ll use a strategy that tries to adapt over the course of rendering the
image, increasing the relative probability of sampling lights that have made a large
contribution to reflection for previous samples. For example, for a light that is
always shadowed, we will reduce the probability of sampling it, focusing instead
on lights that are contributing illumination. So long as the probability of sampling
that light never goes to zero, the result will remain unbiased.

We will start with a uniform probability for sampling each of the lights. After
a light has been chosen, a running average of reflected radiance due to that light
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is updated. By evaluating the importance of each light according to the amount
of light reflected rather than the amount of incident light, we also account for the
effect of the BSDF; if the BSDF is very glossy, a bright light may have much less
effect on the image than a dimmer light that is often along the specular reflection
direction.

for each weight, store a weight, so that relative weights give relative probability
of sampling lights. to make a discrete pdf, sum the weights and divide all by the
sum. to make a discrete cdf, take sum of weights up to ith one. to choose a light,
take a uniform random number,

weight is exponentially decaying average of reflected luminance ȳ. can be com-
puted incrementally...

ȳi �
�
1 � α � yi � α ȳi � 1

where α controls rate of decay. XXX why luminance: perceptually based... XXX
We’ll keep track of both the running average of reflected luminance from each

light source as well as running average of reflected luminance from the light sources
we sampled. This allows us to determine the relative importance of different
lights...�
DirectLighting Private Data ��� �
mutable Float *avgY, *avgYsample, *cdf;
mutable Float overallAvgY;

Until we find a light source that contributes reflected light, overallAvgY will
be zero. In this case, we just sample a single light with uniform probability. This
gives us a reflected luminance value we can use to start updating the running aver-
ages with. Otherwise, we choose a light according to its previous contribution and
update�
Integrator Utility Functions ��� �
Spectrum WeightedSampleOneLight(const Scene *scene, const Point &P,

const Normal &N, const Vector &wo, BSDF *bsdf,
const Sample *sample, int sampleDepth,
Float *&avgY, Float *&avgYsample, Float *&cdf,
Float &overallAvgY) {

int nLights = int(scene->lights.size());�
Initialize avgY array if necessary �
Spectrum L(0.);
if (overallAvgY == 0.) {�

Sample one light uniformly and initialize luminance arrays �
}
else {�

Choose light according to average reflected luminance �
L = EstimateDirect(scene, light, P, N, wo, bsdf,

sample, sampleDepth, 0, 1);�
Update avgY array �
L /= lightSampleWeight;

}
return L;

}
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We can’t allocate space for avgY until the first time the L() method is called;
we don’t know how many lights are in the scene until then.�
Initialize avgY array if necessary ���
if (!avgY) {

avgY = new Float[nLights];
avgYsample = new Float[nLights];
cdf = new Float[nLights+1];
for (int i = 0; i < nLights; ++i)

avgY[i] = avgYsample[i] = 0.;
}

To use the relative light weights to select a light source, we first use them to
compute a discrete pdf over the light sources. We can then generate a uniform
random sample value and use it to search through the cdf to find the appropriate
light.�
Sample one light uniformly and initialize luminance arrays ���
L = UniformSampleOneLight(scene, P, N, wo, bsdf, sample, sampleDepth);
Float luminance = L.Luminance();
overallAvgY = luminance;
for (int i = 0; i < nLights; ++i)

avgY[i] = luminance;

XXX trade-off of wasting time sampling lights that have never done us any
good, just to check and see if as we move around the image thing have changed,
versus not noticing when the set of important lights changes... emphasize that this
a demonstration of the idea, not necessarily the best for all applications... XXX

XXX would be nice to have a good sample point here rather than randomfloat?
XXX�
Choose light according to average reflected luminance ���
Float c, lightSampleWeight;
for (int i = 0; i < nLights; ++i)

avgYsample[i] = max(avgY[i], .1f * overallAvgY);
ComputeStep1dCDF(avgYsample, nLights, &c, cdf);
Float t = SampleStep1d(avgYsample, cdf, c, nLights, RandomFloat(),

&lightSampleWeight);
int lightNum = min(Float2Int(nLights * t), nLights-1);
Light *light = scene->lights[lightNum];

�
Update avgY array ���
Float luminance = L.Luminance();
avgY[lightNum] =

ExponentialAverage(avgY[lightNum], luminance, .99f);
overallAvgY =

ExponentialAverage(overallAvgY, luminance, .999f);

�
Global Inline Functions ��� �
inline Float ExponentialAverage(Float avg, Float val, Float alpha) {

return (1.f - alpha) * val + alpha * avg;
}
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Figure 15.2: sample BSDF vs sample light..

Estimating the direct lighting integral

Having chosen a particular light to estimate direct lighting from, we need to
estimate the value of the integral

�
Ω

fr
� �ω � �ωi � Ld

�
x � �ω i � � cos θi � d �ωi

for that light. To compute this estimate, we need to sample one or more directions
�ωi and apply the Monte Carlo estimator. There is now an interesting decision to
be made: should we use the BSDF’s importance sampling method or the light’s
importance sampling method to choose the direction?

Figure 15.2 shows the problem we face. On the left, the BSDF is very specular
and the light source is relatively large. Sampling the BSDF will be effective at
finding directions where the integrand’s value is large, while sampling the light
will be less effective: most of the samples will be black since the BSDF is zero
for most of the directions to the light source, while some of the samples will be
excessively bright. When the light happens to sample a point in the BSDF’s glossy
region, the light will return a high sample weight due to its large size, which will
cause a spike in the image (XXX need to explain this very carefully XXX).

On the other hand, sometimes sampling the light is the right strategy; on the
right side of Figure 15.2, the BSDF is non-zero over many directions and the light
is relatively small. It will be far more effective to choose points on the light to
compute �ωi, since the BSDF will have trouble finding directions where there is
non-zero incident radiance from the light.

Rather than needing to choose between these two approaches, we can sample
from both of them. And rather than just averaging the results, we will apply a tech-
nique called multiple importance sampling. The idea behind multiple importance
sampling is that when estimating an integral of the form

� f
�
x � g � x � dx �

where we have a method to importance sample both f
�
x � and g

�
x � , we should draw

samples from both of their distributions. Then, rather than weighting the samples
with one over the probability density from the distribution they were drawn from,
each sample is instead weighted by

1
N f � Ng

�
∑
N f

f
�
xi � g

�
xi �

ŵ f
�
xi � � ∑

Ng

f
�
xi � g

�
xi �

ŵg
�
xi � � �
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where N f is the number of samples taken from f ’s importance sampling method,
Ng is the number of samples taken from g’s, and ŵ f and ŵg are special weighting
functions that take into account all of the different ways that a sample x i could have
been generated, rather than just the particular one that was used.

A good choice for this weighting function is the balance heuristic.

ŵ
�
x � � ∑

k

Nk

N
wk
�
x �

The balance heuristic is a provably good way to weight samples to reduce variance.
The general approach of multiple importance sampling is particularly helpful

because it encourages one to develop different sampling strategies for tricky inte-
grals: each strategy doesn’t have to do a good job at capturing all of the charac-
teristics of the integrand, but so long as one of the strategies used is a good one
for the particular conditions where the integrand is being evaluated, substantially
improved results (in the form of reduced variance) can be had.

XXX intuition for why this reduces variance: reduces the surprise factor, when
one sampling method is expecting the integrand to have a small value–its pdf is
small for a particular sample–but the integrand actually has a large value due to
other factors not accounted for in the pdf. So long as one of the sampling methods
catches the factor that made the integrand large, multiple importance sampling
helps get rid of the spikes... XXX�
Integrator Utility Functions ��� �
Spectrum EstimateDirect(const Scene *scene, const Light *light,

const Point &P, const Normal &N, const Vector &wo,
BSDF *bsdf, const Sample *sample, int sampleDepth,
int sampleNum, int totSamples) {

Spectrum Ld(0.);�
Find light and BSDF sample values for direct lighting estimate ��
Sample light source with multiple importance sampling ��
Sample BSDF with multiple importance sampling �
return Ld;

}
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�
Find light and BSDF sample values for direct lighting estimate ���
Float ls1, ls2, bs1, bs2;
if (sample && sampleDepth < sample->nLightSamples.size() &&

totSamples == sample->nLightSamples[sampleDepth] &&
sampleDepth < sample->nBSDFSamples.size() &&
totSamples == sample->nBSDFSamples[sampleDepth]) {
ls1 = sample->light[sampleDepth][2*sampleNum];
ls2 = sample->light[sampleDepth][2*sampleNum+1];
bs1 = sample->bsdf[sampleDepth][2*sampleNum];
bs2 = sample->bsdf[sampleDepth][2*sampleNum+1];

}
else {

ls1 = RandomFloat();
ls2 = RandomFloat();
bs1 = RandomFloat();
bs2 = RandomFloat();

}

For sampling the light, it’s pretty straightforward application of the Monte Carlo
sampling routines and the balance heuristic...

XXX explain delta function issues for this XXX�
Sample light source with multiple importance sampling ���
Vector wi;
Float lightWeight, bsdfWeight, weight;
bool deltaLight;
VisibilityTester visibility;
Spectrum Li = light->Sample_L(P, N,

ls1, ls2, &wi, &lightWeight, &deltaLight, &visibility);
if (lightWeight > 0. && !Li.Black() && visibility.Unoccluded(scene)) {

if (deltaLight)
weight = lightWeight;

else {
bsdfWeight = bsdf->Weight(wo, wi);
weight = .5f * lightWeight + .5f * bsdfWeight;

}
Ld += bsdf->f(wo, wi) * fabsf(Dot(wi, N)) * Li *

visibility.Transmittance(scene) / weight;
}

XXX BSDF is only slightly more tricky, where we need a Ld() utility method
that computes incident radiance from only the given light source; other lights are
ignored XXX

Don’t do MIS for specular stuff, since other technique has no chance of finding
it. Or, in a sense, the implicit delta function in the weight for the specular guy
swamps the weight of the non-specular guy.
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�
Sample BSDF with multiple importance sampling ���
bool specularBounce;
Spectrum f = bsdf->sample_f(wo, &wi,

bs1, bs2, &bsdfWeight, &specularBounce);
if (specularBounce)

weight = bsdfWeight;
else {

lightWeight = light->Weight(P, N, wi);
weight = .5f * lightWeight + .5f * bsdfWeight;

}�
Compute Ld from selected light �

�
Compute Ld from selected light ���
Surf lightSurf;
if (scene->Intersect(Ray(P, wi), &lightSurf) &&

lightSurf.primitive->areaLight == light)
Ld += f * lightSurf.Le(-wi) / weight;

� � ��� ������� � � �"! ��� ���  ������#
The introduction of the light transport equation to graphics led to a flurry of

work in rendering, giving a sound theoretical basis for evaluating rendering algo-
rithms. For instance, the path-tracing algorithm in Section 15.5 below is based on
recursively evaluating all of the terms of the light transport equation rather than
just the delta function terms that whitted considered.

Using the light transport integral equation as the basis for deriving rendering
algorithms naturally leads to approaches that start with a ray from the camera
and compute radiance estimates by recursively calling the integrator with new rays
found by sampling the BSDF at each intersection position. Thinking of the light
transport equation in this way limits the set of sampling techniques that one might
apply to evaluating it. For example, ray tracing two paths–one starting from the
camera and one starting from a light in the scene and connecting them up in the
middle can be a more effective light transport technique than just tracing rays from
the eye.

In this section, we will introduce the path integral form of the light transport
equation. It has the form of sums over paths of various numbers of bounces of
light in the scene, where the first vertex of the path is on the image plane and the
last is one a light source. This form makes it more natural to develop creative ways
of generating light transport paths through the scene and to apply more general
integration techniques, which in turn can lead to lower-variance results.

To derive the path integral form, we start with the three-point form of the light
transport equation. The integral over incident directions �ωi and x is replaced with
an integral over points x

�

in the scene. First, we define outgoing radiance from a
point x

�

to a point x
� �

by
L
�
x

�

� x
� � � � L

�
x

� � �ω � �
if x

�

and x
� �

are mutually visible and �ω � �x � �

� x
�

. We can also write the BSDF at x
�

as
f
�
x � x

�

� x
� � � � f

�
x

� � �ωi � �ωo � �
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Figure 15.3: The three-point form of the light transport equation converts the in-
tegral to be over the domain of points on surfaces in the scene, rather than over
directions over the sphere. It is a key transformation for deriving the path integral
form of the light transport equation.

where �ωi
���x � x

�

and �ωo
� �x � �

� x
�

. Substituting these into the light transport equa-
tion and applying the term to convert an integral over solid angle into an integral
over area, we have

L
�
x

�

� x
� � � � Le

�
x

�

� x
� � � � �

A
L
�
x � x

� � f
�
x � x

�

� x
� � � G � x � x

� � dA
�
x � �

where A is the area of all of the surfaces of the scene. The G
�
x � x

� � term accounts
for cos θi term in the original integral and the change of variables from integral
over solid angle to integral over area. It is:

G
�
x � x

� � � V
�
x � x � � � cos θ � � cos θ

� �
�

x � x
� � 2

�

We can now start to expand out the three-point light transport equation. Here
are the first few terms that give incident radiance at a point x from another point x0,
where x0 is the first point on a surface along the ray from x in direction x0 � x.

L
�
x0 � x � � Le

�
x0 � x ���

�
A

Le
�
x1 � x0 � f

�
x1 � x0 � x � G � x1

� x0 � dA
�
x1 ���

�
A2

Le
�
x2 � x1 � f

�
x2 � x1 � x0 � G

�
x2
� x1 �

f
�
x1 � x0 � x � G � x1

� x
� � dA

�
x2 � dA

�
x1 � � �����

The pattern becomes clear, and we have

L
�
x

�

� x � � Le
�
x

�

� x � �
∞

∑
i � 1

Pi
�

x̄ � (15.4.3)

where Pi
�

x̄ � gives the light scattered over paths with i vertices through the scene:

Pi
�

x̄ � � �
A

����� �
A

Le
�
xi � xi � 1 � G

�
xi
� xi � 1 �

�
i � 1

∏
j � 1

f
�
x j � 1 � x j � x j � 1 � G

�
x j
� x j � 1 � � dA

�
x1 � ����� dA

�
xi � �
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Given Equation 15.4.3 and given a particular length i, all we need to do to es-
timate the radiance due to paths of length i is to sample a set of vertices in the
scene xi to generate a path and then to evaluate Pi for those vertices. Whether we
generate those vertices by starting a path from the camera, the light, both ends, or
a point in the middle is a detail that only affects how the weights for the Monte
Carlo estimates are computed. We will see how this formulation leads in practice
to practical light transport algorithms in the following two sections.

XXX need to define path throughput somewhere in here! XXX� � ���  ����� � � ����� � �
�
path.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "transport.h"
#include "scene.h"�
PathIntegrator Declarations ��
PathIntegrator Method Definitions �
Now that we have derived the path integral form of the light transport equation,

we’ll show how it can be used to derive the path tracing light transport algorithm.
Path tracing generates paths of various numbers of scattering events, starting at
the eye and ending at light sources in the scene. It is essentially an extension of
Whitted’s method to include both delta-function and non-delta BSDFs and light
sources, rather than just the delta function terms.

Although it is slightly easier to derive path tracing directly from the basic light
transport equation, approaching it from the path integral form helps build under-
standing of the path integral equation and will make the generalization to bidirec-
tional path tracing, where paths are generated starting from the lights as well as
from the eye easier to understand.

Given the path integral form of the LTE, we need to estimate the value of

L
�
x

�

� x � � Le
�
x

�

� x � �
∞

∑
i � 1

Pi
�

x̄ �

for a given eye ray from x that first intersects the scene at x
�

. There are two pieces
to this problem:

1. How do we estimate the value of the sum of the infinite number of Pi
�

x̄ �
terms

2. Given a particular Pi
�

x̄ � term, how do we estimate its value.

XXX just introduce RR more directly: say “here is the algorithm, here is how
the weighting works, and the result is unbiased... XXX

v
� � � v � p ξ � p

0 otherwise

Expected value is then �
1 � p � � 0 � p � v � p � v�



Sec. 15.5] Path Tracing 459

For the first problem, we will apply a Monte Carlo technique known as Russian
roulette. Recall that we defined a discrete probability density function over the
lights in the scene for the direct lighting integrator in Section 15.3. Here, we will in
a similar manner define a probability for sampling each of the terms of the infinite
sum. For example, we might define the probability of sampling the ith term as

pi
� 1

4i � 1
�

Along the same lines as the direct lighting example, when we randomly decided to
go ahead and sample the ith term according to the probability pi, we would need
to weight it’s estimate by 1 � pi to make the estimate unbiased.

To turn this approach into an algorithm that still doesn’t require us to loop over
an infinite number of terms, we will incrementally decide whether to sample the
ith term only if we also decided to sample the i � 1st term. Once we decide not
to sample a particular term, we don’t sample any of the subsequent ones. This ap-
proach works so long as the probability of sampling each term is a non-increasing
sequence. For example, for the probabilities pi above, we equivalently have

p1
� 1

pi
� pi

c pi � 1

where pi
c, the probability that sampling continues after the ith term, is 1 � 4.

Thus, in pseudo-code, we can estimate the sum by:

Float estimate = 0;
Float continueProbability = 1./4.;
Float weight = 1.;
for (int i = 1; ; ++i) �
estimate += P(i) * weight;
if (RandomFloat() > continueProbability) break;
weight /= continueProbability;
�
return estimate;

This block of code both samples the ith term with a probability 1 � 4i � 1 and
weights it by the weight 4i � 1 if it is sampled, giving us an unbiased estimate of
the sum. By expressing the probability of sampling the ith term in terms of the
i � 1st term and only considering the ith term if the i � 1st term was sampled, we
are able to do all this without needing to explicitly consider the infinite number of
terms.

There is almost total freedom in how the continuation probabilities pi
c are se-

lected: we’re free to use any information we’d like to set them so long as the
weight is updated appropriately when we decide to continue. However, poorly
chosen Russian roulette weights can substantially increase variance: consider if
we immediately applied Russian roulette to all of the camera rays with a contin-
uation probability of � 01: we’d only trace 1% of the eye rays, weighting each of
them by 1 � � 01 � 100. The resulting image would numerically be just as correct
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Figure 15.4:

as if we hadn’t applied Russian roulette, though visually the result would be terri-
ble: mostly black pixels with a few very bright ones. One of the exercises at the
end of this chapter discusses this problem further and describes a technique called
efficiency optimized Russian roulette that tries to set Russian roulette weights in a
way that minimizes variance.

For path tracing, we can take advantage of the fact that overall, paths with more
vertices along them will generally scatter less light than paths with fewer vertices;
this is a natural consequence of conservation of energy in BSDFs. In the implemen-
tation below, we will always estimate the first few terms Pi

�
x̄ � and will then start to

consider termination, setting Russian roulette weights based on the throughput of
the path we’ve constructed.

We now need a way to estimate a particular term Pi
�

x̄ � ; we need i � 1 vertices to
specify the path, where the last vertex, xi, is on a light source. The first vertex, x0,
is determined by the camera ray’s first intersection point (see Figure 15.4.)

XXX somewhere need to make clear this doesn’t work in the presence of delta
BSDFs, it’s just an example... XXX

Looking at the form of Pi
�

x̄ � , the most natural thing to do is to sample xi accord-
ing to the differential area of objects in the scene, such that it’s easyally probable
to sample any point on an object in the scene for xi as any other point. We could
define a discrete probability over the n objects in the scene; if each has surface area
Ai, then the probability of sampling a vertex on the jth object should be

p j
� A j

∑k Ak

�

Then, given a method to sample a point on the jth object with uniform probabil-
ity, the pdf for sampling any particular point on object j is 1 � A j. Thus, the overall
probability density for sampling the point is

A j

∑k Ak

1
A j

�

And thus, all samples xi have the same weight

1

∑k Ak

�
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It’s reassuring that they all have the same weight, since our intent was to choose
among all points on surfaces in the scene with equal probability.

Given the set of points x0 � x1 � � � � � xi � 1, we can then sample xi on a light source
in the scene, defining probabilities appropriately. Although we could use the same
technique used for sampling path vertices, this would lead to high variance, since
for all of of the paths where xi wasn’t on the surface of an emitter, the path would
have zero value. Better is to sample over the areas of only the emitting objects.

We then have all of the information we need to evaluate the estimate of Pi
�

x̄ � ;
it’s just a matter of evaluating each of the terms.

We could be much more creative about how we set the sampling probabilities:
for example, if we knew that indirect illumination from a few ojbects contributed to
most of hte lighting in the scene, we could assign a higher probability to generating
samples xi on those objects, updating the sample weights appropriately.

There are, however, two main disadvantages to sampling paths in this manner.
First, many of the paths will have no contribution if they have pairs of adjacent
vertices that are not mutually visible. Consider applying the area sampling method
above in a complex building model: unless we made sure that vertices are usually
in the same room as adjacent vertices, they will almost always have a wall or two
between them, giving no contributino for the path. The second issue is that the
sampling method doesn’t account for the BSDFs in the scene; if there are very
glossy BSDFs, many paths will have low contribution since the points in f

�
x i � 1 �

xi � xi � 1 � will cause the BSDF to have a small value (XXX and actually, totally
misses specular stuff... XXX)

Therefore, the classic approach to path tracing is to construct the path incremen-
tally, starting from x0. At each vertex, the BSDF is sampled to generate a direction;
the next vertex xi � 1 is found by tracing a ray from xi in the sampled direction and
choosing the closest intersection. This approach simultaneously solves both of the
problems described in the paragraph above.

Because we are constructing the path by sampling BSDFs according to solid
angle, we need to apply the correction to convert from the probability density ac-
cording to solid angle to a density according to area (recall Section 5.3):

pA
� p �ω

�
� �xi � xi � 1

�
� 2� cosθ

� �
XXX review that XXX

Note that this just causes some of the terms of the geometric term G
�
x � x

� � to
cancel and that we already know that xi and xi � 1 must be mutually visible since we
traced a ray between them.

Thus, the basic path tracing is, in pseudo-code:

P(n) �
throughput = 1;
wo = -eyeRay.D.Hat();
x[0] = trace(eyeRay);
for (i = 1; i < n; ++i)) �
wi = sample_BSDF(x[i-1], wo, &wi);
throughput *= f(x[i-1], wo, wi) *
sampleWeight(x[i-1], wo, wi) * | cos(theta) |;
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x[i] = trace(x[i-1], wi);
�
x[n] = sampleLights();
return Le(x[n], (x[n-1] - x[n])) * throughput * lightWeight(x[n]);
�

In our implementation below, we will make one last refinement: as we are con-
structing paths for a given camera ray, we will re-use the vertices of the previous
path of length i � 1 when constructing the path of length i. This means that we
just need to trace two more rays for each extra Pi

�
x̄ � term that we evaluate, rather

then i � 1 rays. This introduces correlation among all of the Pi
�

x̄ � terms in the sum,
though in practice this is more than made up for by the improved efficiency from
tracing fewer rays.

Now on to the implementation...�
PathIntegrator Declarations ���
class PathIntegrator : public SurfaceIntegrator {
public:

Spectrum L(const Scene *scene, const RayDifferential &ray, const Sample *sample, Float *alpha) const;
Sample *AllocateSample(const Scene *scene) const;

};
�
PathIntegrator Method Definitions ���
Sample *PathIntegrator::AllocateSample(const Scene *scene) const {

vector<int> num;
for (int i = 0; i < 5; ++i)

num.push_back(1);
return new Sample(num, num);

}
�
PathIntegrator Method Definitions ��� �
Spectrum PathIntegrator::L(const Scene *scene,

const RayDifferential &r, const Sample *sample,
Float *alpha) const {�

Declare common path integration variables �
int pathLength = 0;
while (1) {�

Find next vertex of path ��
Add emitted light for first segment only ��
Evaluate BSDF at hit point ��
Randomly sample illumination from one light source ��
Randomly sample BSDF to get new path direction ��
Clean up from integration ��
Possibly terminate the path �
++pathLength;

}
return L;

}
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10 dgShading
19 Hat

579 lights
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450 UniformSampleOneLight
16 Vector

�
Declare common path integration variables ���
Spectrum pathThroughput = 1.;
Spectrum L = 0.;
Ray ray = r;
bool specularBounce = false;

�
Find next vertex of path ���
Surf surf;
if (!scene->Intersect(ray, &surf)) {

for (u_int i = 0; i < scene->lights.size(); ++i)
L += pathThroughput * scene->lights[i]->Le(ray);

if (pathLength == 0 && alpha) {
if (L != 0.) *alpha = 1.;
else *alpha = 0.;

}
break;

}
if (pathLength == 0) {

r.maxt = ray.maxt;
if (alpha) *alpha = 1.;

}

Note that we don’t count Le if we hit an area light source...
XXX believe that specular bounce check isn’t right now that we’re using shared

direct lighting code? XXX�
Add emitted light for first segment only ���
if (pathLength == 0 || specularBounce)

L += pathThroughput * surf.Le(-ray.D);

�
Randomly sample illumination from one light source ���
const Point &P = surf.dgShading.P;
const Normal &N = surf.dgShading.Nn;
Vector wi;
Vector wo = -ray.D.Hat();
L += pathThroughput * UniformSampleOneLight(scene, P, N, wo, bsdf,

sample, pathLength);

XXXX So here it’s wasteful to sample BSDF twice with same random numbers,
once for direct lighting, once for path tracing...
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�
Randomly sample BSDF to get new path direction ���
Float bs1, bs2;
if (pathLength < sample->nBSDFSamples.size()) {

Assert(sample->nBSDFSamples[pathLength] == 1);
bs1 = sample->bsdf[pathLength][0];
bs2 = sample->bsdf[pathLength][1];

}
else {

bs1 = RandomFloat();
bs2 = RandomFloat();

}
Float weight;
Spectrum f = bsdf->sample_f(wo, &wi, bs1, bs2,

&weight, &specularBounce);
if (f == Spectrum(0.) || weight == 0.)

break;
pathThroughput *= f * fabsf(Dot(wi, N)) / weight;
ray = Ray(P, wi);

�
Possibly terminate the path ���
if (pathLength > 3) {

Float continueProbability = .2f;
if (RandomFloat() > continueProbability)

break;
pathThroughput /= continueProbability;

}

� � ��� � � ��� � ��� � ��� ����!  ����� � � ����� � �
�
bidirectional.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "transport.h"
#include "scene.h"
#include "mc.h"�
Bidirectional Local Declarations ��
Bidirectional Method Definitions �
The path tracing algorithm described in the previous section was the first general

light transport algorithm in graphics, handling both a wide variety of geometric
objects as well as area lights and general BSDF models. Although it works well
for many scenes, it can exhibit high variance in the presence of particular tricky
lighting conditions. For example, consider the setting shown in Figure 15.5; a light
source is illuminating a small area on the ceiling, such that the rest of the room
is only illuminated by indirect lighting bouncing from that area. If we only trace
paths starting from the eye, we will almost never happen to sample a vertex in the
illuminated region before we trace a shadow ray to the light. Most of the paths will
have no contribution, while a few of them–the ones that happen to hit the small
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Figure 15.5:

region on the ceiling–will have a large contribution. The resulting image will have
high variance.

Difficult lighting settings like this can be handled more effectively by construct-
ing paths that start from the eye on one end, from the light on the other end, and
are connected in the middle with a visibility ray. This bidirectional path tracing
algorithm is a generalization of the standard path tracing algorithm; for the same
amount of computation, it can give substantially lower variance. XXX say some-
thing about adjoint algorithms in general XXX

XXX x0 versus x1 XXX
The path integral LTE makes it easy to understand how to construct a bidirec-

tional algorithm. As with standard path tracing, the first vertex, x1, is found by
computing the first intersection along the camera ray, and the last vertex is found
by sampling a point on a light source in the scene. Here we will label the last vertex
as y1, so that we can construct a path of not-initially-determined length “backward”
from the light.

In the basic bidirectional algorithm, we go forward from the eye to create a sub-
path x1 � x2 � � � � � xi and backward from the light to compute a subpath y1 � y2 � � � � � y j .
Each sub-path is usually computed incrementally by sampling the BSDF at the
previous vertex, though other sampling approaches can be used in the same way as
was described for standard path tracing. (Weights for each vertex are computed in
the same manner as well.) In either case, in the end, we have a path

x̄ � x1 � � � � � xi � y j � � � � � y1
�

We need to trace a shadow ray between xi and y j to make sure they are mutually
visible; if so, the path carries light from the light to the camera and we can evaluate
the path’s contribution directly.

There are three refinements to the basic algorithm that improve its performance
in practice. The first two are analogous to improvements made to path tracing.


 First, we will re-use sub-paths: given a path x1 � � � � � xi � y j � � � � � y1, we will eval-
uate transport over all of the paths generated by connecting all the various
combinations of prefixes of the two paths together. If the two paths have i and
j vertices, respectively, then a total of i ����� j unique paths can be constructed
from them, ranging in length from 2 to i � j vertices long. XXX number
of paths of length n � � � � XXX. Each such path built this way only requires
that a visibility check be performed by tracing a shadow ray between the last
vertices of each of the sub-paths.



AllocateSample 444
Assert 498

RayDifferential 26
Scene 5

Spectrum 155

466 Light Transport [Ch. 15


 The second optimization is to ignore the paths generated in the path-reuse
stage that only use one vertex from the light sub-path and instead to use
the optimized direct lighting code that we developed for the direct lighting
integrator. This gives a lower-variance result than using the vertex on the
light sampled for the light sub-path, since it allows us to both use multiple
importance sampling with the BSDF and to use stratified sampling patterns.


 The third optimization, left as an exercise, is to use multiple importance sam-
pling to re-weight paths. Recall the example of a light pointed up at the ceil-
ing, indirectly illuminating a room. As described so far, bidirectional path
tracing will improve the result substantially by greatly reducing the number
of paths with no contribution, since the paths from the light will be effective
at finding those light transport routes. However, the image will still suffer
from variance due to paths with excessively large contributions, for example
from paths from the eye thathappened to find the bright spot in the ceiling.
We can apply MIS, recognizing that for a path with n vertices, there are ac-
tually n � 1 ways we could generate a path with that length–e.g. a 4 vertex
path could have been built from one eye vertex and three light vertices, two
of each kind of vertex, or three eye vertices and one light vertex. Given a
particular path sampled in a particular way, we can compute the weights for
each of the other ways the path could have been generated and apply the
balance heuristic.

�
Bidirectional Local Declarations ��� �
class BidirIntegrator : public SurfaceIntegrator {
public:

Spectrum L(const Scene *scene, const RayDifferential &ray, const Sample *sample, Float *alpha) const;
Sample *AllocateSample(const Scene *scene) const;

private:�
BidirIntegrator Private Methods �

};
�
Bidirectional Method Definitions ���
Sample *BidirIntegrator::AllocateSample(const Scene *scene) const {

Assert(1 == 0);
return NULL;

}
�
Bidirectional Method Definitions ��� �
Spectrum BidirIntegrator::L(const Scene *scene, const RayDifferential &ray,

const Sample *sample, Float *alpha) const {
Spectrum L(0.);�
Generate eye and light sub-paths ��
Connect bidirectional path prefixes and evaluate throughput �
return L;

}

XXX should use sample here, etc...
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�
Generate eye and light sub-paths ���
#define MAX_VERTS 8
BidirVertex eyePath[MAX_VERTS], lightPath[MAX_VERTS];
int nEye = generatePath(ray, eyePath, MAX_VERTS);
if (nEye == 0) {

// XXX handle ray with no intersection and reurn
}�
Choose light for bidirectional path ��
Sample ray from light source to start light path �
int nLight = generatePath(lightRay, lightPath, MAX_VERTS);

�
Choose light for bidirectional path ���
int lightNum = RandomInt() % scene->lights.size();
Light *light = scene->lights[lightNum];
Float lightWeight = Float(scene->lights.size());

�
Sample ray from light source to start light path ���
Ray lightRay;
Float lightSampleWeight;
bool deltaLight;
Float u[4];
for (int i = 0; i < 4; ++i)

u[i] = RandomFloat();
Spectrum Le = light->Sample_L(scene, u[0], u[1], u[2], u[3],

&lightRay, &lightSampleWeight, &deltaLight);

�
Bidirectional Local Declarations ��� �
struct BidirVertex {

BSDF *bsdf;
Point P;
Normal N;
Vector wi, wo;
Float bsdfWeight, dAWeight;
bool isSpecular;

};
�
Bidirectional Method Definitions ��� �
int BidirIntegrator::generatePath(const Ray &r, BidirVertex *vertices,

int maxVerts) const {
// XXX careful if we reuse the same Ray, then make sure mint/maxt are reset!

return 0; // keep the compiler happy.
}
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�
Connect bidirectional path prefixes and evaluate throughput ���
for (int i = 1; i <= nEye; ++i) {

for (int j = 1; j <= nLight; ++j) {
if (j == 1) {�

Handle direct lighting for bidirectional integrator �
continue;

}
L += evalPath(scene, eyePath, i, lightPath, j) /

weightPath(eyePath, i, lightPath, j);

}
}

�
Bidirectional Method Definitions ��� �
Float BidirIntegrator::weightPath(BidirVertex *eye, int nEye,

BidirVertex *light, int nLight) const {
return Float(nEye + nLight - 1);

}

XXX splatting for caustics, review indexing stuff carefully, etc...�
Bidirectional Method Definitions ��� �
Spectrum BidirIntegrator::evalPath(const Scene *scene, BidirVertex *eye, int nEye,

BidirVertex *light, int nLight) const {
if (!visible(scene, eye[nEye].P, light[nLight].P))

return 0.;
Spectrum L(1.);
for (int i = 0; i < nEye; ++i) {

BidirVertex *e = &eye[i];
L *= e->bsdf->f(e->wi, e->wo) * G(eye[i], eye[i+1]) /

e->dAWeight; // XXX bsdf weight?
}
Vector w = light[nLight].P - eye[nEye].P;
L *= eye[nEye].bsdf->f(eye[nEye].wi, w) *

G(eye[nEye], light[nLight]) *
light[nLight].bsdf->f(-w, light[nLight].wi);

for (int i = nLight-1; i >= 0; --i) {
BidirVertex *l = &light[i];
L *= l->bsdf->f(l->wi, l->wo) * G(light[i], light[i-1]) /

l->dAWeight; // XXXX
}
return L;

}
�
Bidirectional Method Definitions ��� �
Float BidirIntegrator::G(const BidirVertex &v0, const BidirVertex &v1) {

Vector w = (v1.P - v0.P).Hat();
return fabsf(Dot(v0.N, w) * Dot(v1.N, -w)) /

DistanceSquared(v0.P, v1.P);
}
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�
Bidirectional Method Definitions ��� �
bool BidirIntegrator::visible(const Scene *scene, const Point &P0,

const Point &P1) {
Ray ray(P0, P1-P0, RAY_EPSILON, 1.f - RAY_EPSILON);
return !scene->IntersectP(ray);

}� � ���  ������� � � � � � � � �
�
photonmap.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "transport.h"
#include "scene.h"
#include "mc.h"
#include "kdtree.h"�
Photonmap Local Declarations ��
Photonmap Method Definitions �
Even with multiple importance sampling to reweight paths, for some scenes

it can take a large number of rays (and correponsind compute time) to generate
images without objectionable noise. One approach to this problem has been the
development of biased approaches to solving the LTE. Photon mapping, described
in this section, and irradiance caching, described in the enxt section, have been two
successful biased methods for light transport.

By introducing bias, these methods produce images without the high-frequency
noise artifacts that unbiased Monte Carlo techniques are prone to. They can often
do so using relatively litttle additional computation compared to basic techniques
like Whitted-style ray tracing. This efficiency comes at a price, however: one key
characteristic of unbiased Monte Carlo techinques is that variance decreases in a
predictable and well-characterized manner as more samples are taken. As such, if
an image was computed with an unbiased technique and has no noise, we can be
extremely confident that the image correctly represents the lighting in the scene.
With a biased solution method, however, error estimates aren’t well defined for
the approaches that have been developed so far; if the image doesn’t have visual
artifacts, it still may have substantial error. And given an image with artifacts,
increasing the sampling rate with a biased technique doesn’t necessarily eliminate
artifacts in a predictable way.

The basic idea behind photon mapping is that in a pre-process, a set of paths
from the light source are generated, each one carrying energy from the lights into
the scene. At each vertex of each path, the incident energy arriving at each surface
that the path intersects is recorded, a new outgoing direction is chosen to continue
the path, and the photon’s energy is adjusted by the surface’s BSDF. After a certain
number of these samples have been computed, a data structure–the photon map–is
built, storing information about the distribution of light in the scene. The photon
map is based on a general three-dimensional data structure that allows fast queries
of how many photons are nearby a given point. Because the data structure is decou-
pled from the scene geometry, the algorithm isn’t limited to parametric geometric
representations, for example.
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At rendering-time, the photon map is used to comptue reflected light at each
point being shaded. The usual approach is to use photons that are close to the cur-
rent point under the assumption that the information they carry about illumination
at nearby points can be used to construct an estimate of illumination at the shading
point. The more photons there are around the point and the more energy they are
carrying, the more light we estimate is illuminating the point. The estimated illu-
mination at the point is used in conjunction with the surface’s BSDF to compute
the reflected light; Figure 15.6 shows the basic idea.

There is great flexibility in how these basic ideas are applied in practice. A few
examples in include:


 Direct lighting from light sources is usually handled with conventional tech-
niques, by tracing shadow rays, so the photon map doesn’t store a photon at
the first surface a path intersects; only at the subsequent vertices. This keeps
the quality of the direct lighting estimate high, since the reconstruction step
in the photon map tends to blur the incident illumination estimate. (How-
ever, preview images can be rendered very quickly by storing photons at the
first bounce and not tracing shadow rays at all.


 For very glossy or specular BSDFs, it’s often better to sample the BSDF
and trace rays into the scene to estimate incident illumination, rather than
using the photons, because the incident photons may be from directions that
don’t contribute much to the BSDF. This is an analogous situation to the one
of sampling points on light sources versus sampling the BSDF to compute
direct lighting–sometimes sampling the BSDF is the only effective way to
find important lighting paths.


 We may only care about some of the illumination paths from the light. For
example, one of the most effective applications of the photon map is to com-
pute caustics–the bright areas of focused light that happen when illumina-
tion scatters one or more times from specular objects before arriving at a
non-specular surface, upon which the caustic is cast. To do so, we only
store paths where the first n vertices of the path are at specular surfaces, for
n � 1, and where the last vertex is at a non-specular surface. The path is fin-
ished when the photon hits a non-specular surface, at which point a photon
is stored.

This flexibility in how the algorithm is applied can be handy–there is opportunity
to adapt the basic technique to many lighting situations. However, one must be
careful that illumination isn’t “double counted”, once from the photon map, and
once from another sampling technique.

There are two sub-problems to solve in a photon-mapping implementation:


 The paths from the lights must be constructed and a data structure built from
them.


 That data structure then must be used to compute some components of inci-
dent illuminatino at rendering-time.

Here we will show an implementation of photon mapping that efficiently com-
putes images with caustics; we will only follow paths that interact with one or more
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Figure 15.6: photon basic

specular surfaces, and only store photons (and terminate the path) when the path
reaches a non-specular surface. We have already made an arbitrary choice here:
we are following paths that hit specular surfaces, but are ignoring paths that hit
very glossy surfaces. As a glossy surface approaches being perfectly smooth, its
scattering behavior approaches that of a perfect specular reflector, yet we treat such
surfaces differently. XXX.�
Photonmap Local Declarations ��� �
class PhotonIntegrator : public SurfaceIntegrator {
public:�

PhotonIntegrator Methods �
private:�

PhotonIntegrator Private Data �
};

XXX make clear the changing illumination error problem–e.g. a small wall, etc.
XXX

The user gives the photon map integrator two parameters: the number of photons
to be stored in the scene, nStored, and the number of photons to use for illumi-
nation estimates at shading-time, nLookup. The more photons that are stored, the
better the illumination estimates will be–it will be less necessary to use photons
far from the point being shaded, reducing the error from changing illumination in
the scene. How to choose the number to lookup is slightly less clear; the more that
are used, the smoother the illumination estimate will be, since a larger number of
photons will be used to reconstruct it. If too many are used, however, the result
will tend to be too blurry, while too few gives a splotchy appearence. Usually 50
to 100 is a good choice.

also make maxLength and searchRadius parameters.
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�
Photonmap Method Definitions ���
PhotonIntegrator::PhotonIntegrator(int ns, int nl, int mdepth,

Float mdist) {
nStored = ns;
nLookup = nl;
maxDist = mdist;
maxDepth = mdepth;
tree = NULL;
unsuccessfulShooting = false;
pathLength = 0;

}
�
PhotonIntegrator Private Data ���
u_int nStored, nLookup;
mutable int pathLength;
int maxDepth;
Float maxDist;

�
Photonmap Method Definitions ��� �
Sample *PhotonIntegrator::AllocateSample(const Scene *scene) const {

vector<int> num;
for (int i = 0; i < 3; ++i)

num.push_back(scene->lights.size());
return new Sample(num, num);

}
�
Photonmap Method Definitions ��� �
Spectrum PhotonIntegrator::L(const Scene *scene,

const RayDifferential &ray, const Sample *sample,
Float *alpha) const {

if (!tree && !unsuccessfulShooting) {�
Shoot photons and create kd-tree �

}�
Compute reflected radiance with photon map �

}

Building the photon map

The first time the integrator’s L() method is called, we build the photon map.
The body of the while() loop in the fragment below handles the generation of a
single path from a light source out into the scene and the storage of the resulting
photon, if any, in the photons array. We keep track of the total number of paths
generated in nshot; if we find that we have generated many paths without success-
fully storing any photons in the scene, we give up and the unsuccessfulShooting
variable is set to true. (For example, this might happen if there weren’t any spec-
ular objects in the scene.)
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�
Shoot photons and create kd-tree ���
vector<PhotonData> photons;
photons.reserve(nStored);�
Initialize photon shooting statistics �
while (photons.size() < nStored) {

++nshot;�
Give up if we’re not finding any specular surfaces ��
Trace a photon path and store contribution �

}
if (!unsuccessfulShooting) {�

Normalize photon dE values and build tree �
}

We may need to shoot many more photons than are stored, for example due to
photons that leave the scene without intersecting any objects, or for the caustic
photon mapper here, photons that first hit a non-specular surface.�
PhotonIntegrator Private Data ��� �
mutable KdTree<PhotonData, PhotonProcess> *tree;
mutable bool unsuccessfulShooting;

�
Initialize photon shooting statistics ���
static StatsCounter nshot("Integrator",

"Number of photons shot from lights");
�
Give up if we’re not finding any specular surfaces ���
if (nshot > 500000 && (!photons.size() || nshot / photons.size() > 10000)) {

cerr << "No luck shooting photons!!!" << endl;
unsuccessfulShooting = true;
break;

}

Using Halton sequence in four dimensions to get good coverage of the space.
Is nice since we don’t need to decide ahead of time how many points we want; no
matter how many we ask for, they are well-distributed...

Recall Section 7.4.
XXX review measures and weights for sampling carefully!�

Trace a photon path and store contribution ���
Float u[4];
u[0] = RadicalInverse(nshot, 2);
u[1] = RadicalInverse(nshot, 3);
u[2] = RadicalInverse(nshot, 5);
u[3] = RadicalInverse(nshot, 7);�
Choose light to shoot photon from ��
Generate photonRay from light source �
if (!L.Black()) {�

Follow photon to non-specular surface and store in photons array �
}

Here as with the direct lighting sampler, we might want to be more creative. Dy-
namically adjust discrete sampling pdfs based on which ones are finding specular
paths, sample based on power, ...



BSDF 298
dgGeom 10

DifferentialGeometry 47
Hat 19

Light 358
lights 579
Normal 23
Point 21

push back 494
RandomInt 515

RayDifferential 26
size 494

Spectrum 155
StatsRatio 501

Surf 10
Vector 16

474 Light Transport [Ch. 15

�
Choose light to shoot photon from ���
int nLights = int(scene->lights.size());
Light *light = scene->lights[RandomInt() % nLights];
Float lightWeight = 1.f / nLights;

�
Generate photonRay from light source ���
RayDifferential photonRay;
Float weight;
bool isDeltaLight;
Spectrum L = light->Sample_L(scene, u[0], u[1], u[2], u[3],

&photonRay, &weight, &isDeltaLight);
L /= weight * lightWeight;

�
Follow photon to non-specular surface and store in photons array ���
bool hitSpecular = false;
int nBounces = 0;
Surf photonSurf;
BSDF *photonBSDF = 0;
static StatsRatio specularHits("Integrator",

"Photons that hit specular surface", true);
specularHits.add(0, 1);
while (scene->Intersect(photonRay, &photonSurf)) {

L *= scene->Transmittance(photonRay);
delete photonBSDF;
photonBSDF = photonSurf.GetBSDF(photonRay);�
Handle non-specular photon hit ��
Handle specular photon hit ��
Possibly terminate photon path �

}
delete photonBSDF;

XXX what to do about shading normals?�
Handle non-specular photon hit ���
if (hitSpecular &&

photonBSDF->NumComponents() > photonBSDF->NumSpecular())
photons.push_back(PhotonData(photonSurf.dgGeom, L,

-photonRay.D.Hat()));
�
Photonmap Local Declarations ��� �
struct PhotonData {

PhotonData() { }
PhotonData(const DifferentialGeometry &dg, const Spectrum &L,

const Vector &w)
: P(dg.P), N(dg.Nn), dE(L), wi(w) { }

Point P;
Normal N;
Spectrum dE;
Vector wi;

};
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�
Handle specular photon hit ���
if (photonBSDF->NumSpecular() > 0) {�

Record photon specular hit statistics �
hitSpecular = true;
int specComponent = RandomInt() % photonBSDF->NumSpecular();
Vector wi;
Spectrum fr = photonBSDF->f_delta(specComponent,

-photonRay.D, &wi);
if (fr.Black())

break;
L *= fr * Float(photonBSDF->NumSpecular());
photonRay = Ray(photonSurf.dgGeom.P, wi);

}
�
Record photon specular hit statistics ���
if (!hitSpecular)

specularHits.add(1, 0);

�
Possibly terminate photon path ���
if (photonBSDF->NumSpecular() == 0)

break;
if (nBounces++ > 3) {

Float continueProbability = .2f;
if (RandomFloat() > continueProbability)

break;
L /= continueProbability;

}

We can’t say how much energy each photon carries until we’re done shooting
them; need to evenly divide ...�
Normalize photon dE values and build tree ���
for (u_int i = 0; i < photons.size(); ++i)

photons[i].dE /= Float(nshot);
tree = new KdTree<PhotonData, PhotonProcess>(photons);

Using the photon map

XXX density estimation is the formalization of the basic idea that...
In tricky settings, can be tough to get enough photons to the part of the scene

you’re actually looking at... This is the flip side to the problem of finding the small
reflected light source on the ceiling when only tracing rays from the eye.�
Perform density estimation with photon map ���
if (tree) {

PhotonProcess proc(nLookup, surf.dgShading.P, surf.dgShading.Nn);
Float md = maxDist;
tree->Lookup(surf.dgShading.P, proc, md);�
Accumulate light from nearby photons �

}
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�
Photonmap Local Declarations ��� �
struct ClosePhoton {

ClosePhoton(const PhotonData *d = NULL, Float md2 = HUGE_VAL) {
data = d;
maxDist2 = md2;

}
bool operator<(const ClosePhoton &p2) const {

return maxDist2 < p2.maxDist2;
}
const PhotonData *data;
Float maxDist2;

};
�
Photonmap Local Declarations ��� �
struct PhotonProcess {

PhotonProcess(u_int mp, const Point &p, const Normal &n);
void operator()(const PhotonData &photon, Float &maxDist) const;

const Point &P;
const Normal &N;

mutable vector<ClosePhoton> photons;
u_int maxPhotons;

};
�
Photonmap Method Definitions ��� �
PhotonProcess::PhotonProcess(u_int mp, const Point &p,

const Normal &n)
: P(p), N(n) {
maxPhotons = mp;

}
�
Photonmap Method Definitions ��� �
void PhotonProcess::operator()(const PhotonData &photon,

Float &maxDist) const {
if (Dot(photon.N, N) < .707f) return;
Float d2 = DistanceSquared(photon.P, P);
if (photons.size() == 0)

photons.reserve(maxPhotons);
if (photons.size() < maxPhotons) {�

Add photon to unordered array of photons �
}
else {�

Remove most distant photon from heap and add new photon �
}

}
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�
Add photon to unordered array of photons ���
photons.push_back(ClosePhoton(&photon, d2));
if (photons.size() == maxPhotons) {

std::make_heap(photons.begin(), photons.end());
maxDist = sqrtf(photons[0].maxDist2);

}
�
Remove most distant photon from heap and add new photon ���
std::pop_heap(photons.begin(), photons.end());
photons[maxPhotons-1] = ClosePhoton(&photon, d2);
std::push_heap(photons.begin(), photons.end());
maxDist = sqrtf(photons[0].maxDist2);

Actually, shouldn’t use photons for very glossy surfaces. e.g. consider as we
approach pure specular, it’s more efficient to sample the BSDF and trace new rays,
rather than using photons (analogous to sampling the light), since they’re unlikely
to be from directions we care about...�
Accumulate light from nearby photons ���
vector<ClosePhoton> &photons = proc.photons;
if (photons.size() > 0) {�

Compute photon scale factor with density estimation �
for (u_int i = 0; i < photons.size(); ++i)

L += scale * bsdf->f(wo, photons[i].data->wi) *
fabsf(Dot(photons[i].data->wi, N)) *
photons[i].data->dE;

}

We just scale uniformly. Can reduce blurriness of results slightly by using a
weighting function that gives greater weight to photons the closer they are to the
point being shaded...�
Compute photon scale factor with density estimation ���
Float scale = photons.size() / (nLookup * M_PI * md * md);

� � ��� ��� � ���������	��� � �	� ��� ���

�
irradiancecache.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "transport.h"
#include "scene.h"
#include "mc.h"
#include "octree.h"�
IrradianceCache Forward Declarations ��
IrradianceCache Local Declarations ��
IrradianceCache Declarations ��
IrradianceCache Method Definitions �
Another biased light transport technique is irradiance caching; it computes ac-

curate estimates of irradiance at a sparse set of points throughout the scene and
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then uses them to compute indirect lighting. Recall that irradiance is

E
�
x � � �

H 2
L
�
x � �ω � � cos θ � d �ω �

It is in a sense a weighted average of incoming radiance at a point, giving a sense
of the aggregate illumination there. The technique is most effective in environ-
ments where the indirect illumination is slowly-changing and where the BSDFs
are generally Lambertian.�
IrradianceCache Declarations ���
class IrradianceCache : public SurfaceIntegrator {
public:

IrradianceCache(int md, Float maxerr, int nsamples,
bool ss);

Spectrum L(const Scene *scene, const RayDifferential &ray, const Sample *sample, Float *alpha) const;
Sample *AllocateSample(const Scene *scene) const;

private:�
IrradianceCache Private Data ��
IrradianceCache Private Methods �

};
�
IrradianceCache Method Definitions ���
IrradianceCache::IrradianceCache(int md, Float maxerr, int ns,

bool ss) {
maxDepth = md;
maxError = maxerr;
nSamples = ns;
showSamples = ss;
rayDepth = 0;
indirectDepth = 0;�
IrradianceCache Constructor Implementation �

}
�
IrradianceCache Private Data ���
Float maxError;
bool showSamples;
int nSamples;
mutable int rayDepth, indirectDepth;
int maxDepth;

�
IrradianceCachee Method Definitions ���
Sample *IrradianceCache::AllocateSample(const Scene *scene) const {

vector<int> num;
for (int i = 0; i < 3; ++i)

num.push_back(scene->lights.size());
return new Sample(num, num);

}
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�
Compute reflected radiance with irradiance cache ���
if (indirectDepth == 0) L += surf.Le(-ray.D);�
Evaluate BSDF at hit point �
Vector wo = -ray.D.Hat();�
Compute direct lighting for irradiance cache �
if (rayDepth++ < maxDepth) {

Vector wi;�
Trace rays for specular reflection and refraction �

}
if (indirectDepth++ < maxDepth) {�

Estimate indirect lighting with irradiance cache �
}
--rayDepth;
--indirectDepth;�
Clean up from integration �
XXX ugh, double-counting issues with e.g. environment lighting sphere...�

Compute direct lighting for irradiance cache ���
const Point &P = surf.dgShading.P;
const Normal &N = surf.dgShading.Nn;
L += UniformSampleAllLights(scene, P, N, wo, bsdf, sample, rayDepth);

Recall the scattering equation, 5.4.8. Take the reflection-only part of it and you
have

Lo
�
x � �ωo � � �

H 2
Li
�
x � �ω i � f

� �ωi � �ωo � � cos θi � d �ωi
�

Here we will make the approximation

Lo
�
x � �ωo � �

� �
H 2

Li
�
x � �ωi � � cos θi � d �ωi � � �

H 2
f
� �ωi � �ωo � d �ωi �

� E
�
x � � πρdh

� �ωo ���

Where E denotes irradiance, as defined in Equation 5.2.5 and ρdh is the hemispherical-
directional reflectance, introduced in Section 9.1.

This approximation may have an enormous amount of error, though it’s fine
when either of the two integrands is constant over the integration domain. In par-
ticular, to the degree that if the incident light distribution is uniform, or the BRDF
is Lambertian, there is less error.

Other way to look at irradiance caching is if you separate the BRDF into diffuse
and non-diffuse components, it gives you a way to compute indirect lighting for
the diffuse bit. Sample the rest according to the usual MC techniques...

Irradiance caching uses this approximation as well as the observation that irradi-
ance tends to change slowly in many scenes, particularly if you pull out the direct
lighting bit and do that separately.

Differentiate between indirect depth: fewer rays, higher error and direct depth
from specular stuff where error shouldn’t go down
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�
Estimate indirect lighting with irradiance cache ���
Spectrum E;
const Point &P = surf.dgShading.P;
const Normal &N = surf.dgShading.Nn;
if (!InterpolateIrradiance(scene, P, N, &E)) {�

Compute irradiance at current point ��
Add computed irradiance value to cache �
if (showSamples) E *= 10000;

}
else if (showSamples) E = 0.;
L += E * M_PI * bsdf->rho(wo);

XXX don’t want to include directly emitted light in the E sum
Estimate value of

E � �
H 2

Li
�
x � �ωi � � cos θi � d �ωi

� (15.8.4)

�
Compute irradiance at current point ����

Determine how many samples to take for irradiance estimate �
Float *samples = (Float *)alloca(2 * ns * sizeof(Float));
LatinHypercube(samples, ns, 2);
Float invSumDists = 0.;
for (int i = 0; i < ns; ++i) {�

Trace ray to sample radiance for irradiance estimate �
}
E /= Float(ns);
Float maxDist = ns / invSumDists;

�
Determine how many samples to take for irradiance estimate ���
int ns = nSamples;
for (int r = indirectDepth; r > 1; --r)

ns >>= 1;
if (ns == 0) ns = 1;

We generate samples according to a cosine distribution, using Malley’s method
(Section 14.3.) The sample weight for MC integration should be π � cos θ, where θ
is the ray’s angle with the surface normal. However, bcause there is a cosθ term in
the integrand, Equation 15.8.4, the two cancel out and we just need to weight each
sample by π.

We sample the ray in the canonical reflection coordinate system, with the nor-
mal mapped to the � z axis; to get a world-space ray-direction, we can use the
convenient method from the BSDF class.�
Trace ray to sample radiance for irradiance estimate ����

Update irradiance statistics for rays traced �
Vector w = CosineSampleHemisphere(samples[2*i], samples[2*i+1]);
Ray r(P, bsdf->LocalToWorld(w));
E += M_PI * scene->L(r);
invSumDists += 1.f / (r.maxt * r.D.Length());
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�
Update irradiance statistics for rays traced ���
static StatsCounter nIrradianceRays("Integrator",

"Indirect rays traced for irradiance");
++nIrradianceRays;

�
Add computed irradiance value to cache ���
if (maxError > 0.) {

BBox sampleExtent(P);
sampleExtent.Expand(maxDist);�
Allocate octree if needed �
IrradSample sample(E, P, N, maxDist, indirectDepth);
octree->Add(sample, sampleExtent);�
Update statistics for new irradiance sample �

}
�
Update statistics for new irradiance sample ���
static StatsCounter nSamplesComputed("Integrator",

"Irradiance estimates comupted");
++nSamplesComputed;

�
IrradianceCache Local Declarations ���
struct IrradSample {

IrradSample() { }
IrradSample(const Spectrum &e, const Point &p, const Normal &n,

Float md, int id) : E(e), N(n), P(p) {
maxDist = md;
indirectDepth = id;

}
Spectrum E;
Normal N;
Point P;
Float maxDist;
int indirectDepth;

};
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�
IrradianceCache Local Declarations ��� �
struct IrradProcess {

IrradProcess(const Normal &n, Float me) {
N = n;
maxError = me;
nFound = samplesChecked = 0;
sumWt = 0.;
E = 0.;

}
Normal N;
Float maxError;
// XXX int indirectLevel;
mutable int nFound;
mutable int samplesChecked;
mutable Float sumWt;
mutable Spectrum E;
void operator()(const Point &P, const IrradSample &sample) const;
bool successful() { return (nFound > 0 && sumWt > 0.); }

};
�
IrradianceCache Private Data ��� �
mutable Octree<IrradSample, IrradProcess> *octree;

XXX need to delete it...�
IrradianceCache Constructor Implementation ���
octree = NULL;

�
IrradianceCache Method Definitions ��� �
bool IrradianceCache::InterpolateIrradiance(const Scene *scene,

const Point &P, const Normal &N, Spectrum *E) const {�
Allocate octree if needed �
IrradProcess proc(N, maxError);
octree->Lookup(P, proc);�
Update irradiance cache lookup stats �
if (proc.successful()) {

*E = proc.E / proc.sumWt;
return true;

}
return false;

}
�
Allocate octree if needed ���
if (!octree)

octree =
new Octree<IrradSample, IrradProcess>(scene->WorldBound());

XXX make sure sample was taken at same level or shallower
XXX need to use this fragment again
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�
Update irradiance cache lookup stats ���
static StatsRatio nSuccessfulLookups("Integrator",

"Successful irradiance cache lookups");
static StatsRatio nSamplesFound("Integrator",

"Irradiance samples found per successful lookup", false);
nSuccessfulLookups.add(proc.successful() ? 1 : 0, 1);
nSamplesFound.add(proc.nFound, 1);

�
IrradianceCache Method Definitions ��� �
void IrradProcess::operator()(const Point &P, const IrradSample &sample) const{

++samplesChecked;�
Skip sample if it is behind point being shaded ��
Skip sample if surface normals are too different ��
Skip sample if it’s too far from the sample point ��
Computer estimate error term, err �
if (err < maxError) {

++nFound;
Float wt = 1.f / max(.05f, err);
E += wt * sample.E;
sumWt += wt;

}
}

�
Skip sample if it is behind point being shaded ���
if (Dot(sample.P - P, (sample.N + N).Hat()) > .01)

return;
�
Skip sample if surface normals are too different ���
if (Dot(N, sample.N) < .707f)

return;
�
Skip sample if it’s too far from the sample point ���
Float d2 = DistanceSquared(P, sample.P);
if (d2 > sample.maxDist * sample.maxDist)

return;
�
Computer estimate error term, err ���
Float err = sqrtf(d2) / (sample.maxDist * Dot(N, sample.N));

� � � � � � ! � � � ������� � � ��� ��� �

The Equation of Transfer

The equation of transfer is the fundamental equation that governs the behavior
of light in some medium that absorbs, emits, and scatters radiation (Cha60). As
radiance travels along a beam, a number of processes contribute to change its dis-
tribution. Radiance can be increased due to emission and in-scattering, radiance
along other beams that is scattered into the path of the beam under consideration.
Conversely, radiance can be decreased due to absorption and out-scattering, radi-
ance that is scattered into other beams.
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The equation of transfer describes this process. In its most basic form, it is an
integro-differential equation that describes how the radiance along a beam changes
at a point. It can easily be derived by subtracting the effects of the scattering
processes that reduce energy along the beam (absorption and out-scattering) from
the processes that increase energy along the beam (emission and in-scattering).
Here we will assume that the medium has a constant index of refraction—i.e. a
beam follows a straight line path; see Preisendorfer (Pre65, Section 21) for the
derivation in the more general setting.

We first define the source function as the amount of new light at a point in a
direction due to emission and in-scattered light from other points in the medium:

S
�
x � �ω � � Le

�
x � �ω � � �

S2
p
�
x � �ω �

� �ω � Li
�
x � �ω � � d �ω

�

Consider now a differential volume along a beam of radiation. The beam is
paramaterized along its direction by a variable t � 0 such that points on the beam
are given by x � t �ω. Now by combining the source function with an expression
for the loss in radiation due to attenuation and out-scattering, we have the integro-
differential form of the equation of transfer (Cha60; ?):

∂
∂t

L
�
x

� � � � σtL
�
x

� � � S
�
x

� � (15.9.5)

With suitable boundary conditions, this can be transformed to a purely integral
equation. If we assume that there are no surfaces in the scene, we have

L
�
x � �ω � � � ∞

0
Tr
�
x � x � t �ω � S � x � t �ω � �ω � dt � (15.9.6)

More generally, if there are reflecting and/or emitting surfaces in the scene, we
have:

L
�
x � �ω � � Tr

�
x � x

� � � Le
�
x0 � � �ω � � Lo

�
x0 � � �ω ��� � � t

�

0
Tr
�
x � x � t �ω � S � x � t �ω � �ω � dt

(15.9.7)
where t

�

is the distance along the ray to the first surface, x
�

is the point on the sur-
face, x

� � x � t
� �ω, Leis the emitted radiance from the surface, and Lois the reflected

radiance from the surface (see Equation ??).
XXX draw some figures for this stuff.
introduce idea of “source term” for that delta-function point on the surface at

the end?

Integrators
�
Volume Scattering Declarations ��� �
class VolumeIntegrator {
public:�

VolumeIntegrator Methods �
};

�
VolumeIntegrator Methods ��� �
virtual Spectrum Transmittance(const Scene *, const Ray &ray, const Sample *sample,

Float *alpha) const = 0;
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�
VolumeIntegrator Methods ��� �
virtual Spectrum L(const Scene *, const Ray &ray, const Sample *sample, Float *alpha) const = 0;

Null Integrator
�
null.cc* ����

Source Code Copyright �
#include "volume.h"�
NullVolumeIntegrator Declarations ��
NullVolumeIntegrator Function Definitions �

�
NullVolumeIntegrator Declarations ���
class NullVolumeIntegrator : public VolumeIntegrator {
public:

Spectrum Transmittance(const Scene *, const Ray &ray,
const Sample *sample, Float *alpha) const {
return Spectrum(1.);

}
Spectrum L(const Scene *, const Ray &ray,

const Sample *sample, Float *alpha) const {
return Spectrum(0.);

}
};

Emission-Only Integrator

Just attenuation and emission; ignores light sources.
Make connection to standard models in graphics hardware, for example. Is all

closed form if properties are homogeneous...�
emission.cc* ����

Source Code Copyright �
#include "volume.h"
#include "scene.h"�
EmissionIntegrator Declarations ��
EmissionIntegrator Function Definitions �

�
EmissionIntegrator Declarations ���
class EmissionIntegrator : public VolumeIntegrator {
public:�

EmissionIntegrator Methods �
private:�

EmissionIntegrator Private Data �
};

�
EmissionIntegrator Methods ���
EmissionIntegrator(int ns) { nSamples = ns; }

�
EmissionIntegrator Private Data ���
int nSamples;
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�
EmissionIntegrator Function Definitions ���
Spectrum EmissionIntegrator::Transmittance(const Scene *scene,

const Ray &ray, const Sample *sample, Float *alpha) const {
Spectrum tau(0.);
for (u_int i = 0; i < scene->volumeRegions.size(); ++i) {

VolumeRegion *vr = scene->volumeRegions[i];
tau += vr->tau(ray);

}
return Spectrum(2.712).Pow(-1 * tau);

}�
EmissionIntegrator Function Definitions ��� �
Spectrum EmissionIntegrator::L(const Scene *scene,

const Ray &ray, const Sample *sample, Float *alpha) const {
Spectrum Lv(0.);
for (u_int i = 0; i < scene->volumeRegions.size(); ++i) {

VolumeRegion *vr = scene->volumeRegions[i];
Float t0, t1;
if (!vr->Intersect(ray, &t0, &t1)) continue;�
Do emission-only volume integration in vr �

}
return Lv;

}

XXXX should sample optical depth, then raymatch until we hit it?�
Do emission-only volume integration in vr ���
Spectrum Lvr(0.);
Point Pprev = ray(t0);
Spectrum T(1.);
for (int j = 0; j < nSamples; ++j) {�

Step forward to next volume sample point and update T �
Lvr += T * vr->Le(P, -ray.D);
Pprev = P;

}
Lv += Lvr / nSamples * Distance(ray(t0), ray(t1));�

Step forward to next volume sample point and update T ���
Float t = Lerp((j + RandomFloat()) / Float(nSamples), t0, t1);
Point P = ray(t);
Ray rp(Pprev, P-Pprev, 0, 1);
T *= Spectrum(2.712).Pow(-1. * vr->tau(rp));

Single Scattering Integrator

Will re-use some fragments from emission-only integrator...�
single.cc* ����

Source Code Copyright �
#include "volume.h"
#include "scene.h"�
SingleScattering Declarations ��
SingleScattering Function Definitions �
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�
SingleScattering Declarations ���
class SingleScattering : public VolumeIntegrator {
public:�

SingleScattering Methods �
private:�

SingleScattering Private Data �
};

�
SingleScattering Methods ���
SingleScattering(int ns) { nSamples = ns; }

�
SingleScattering Private Data ���
int nSamples;

Implementation is the same as emission-only integrator; won’t include it here.�
SingleScattering Methods ��� �
Spectrum Transmittance(const Scene *, const Ray &ray, const Sample *sample, Float *alpha) const;

�
SingleScattering Function Definitions ��� �
Spectrum SingleScattering::L(const Scene *scene,

const Ray &ray, const Sample *sample, Float *alpha) const {
Spectrum Lv(0.);
for (u_int i = 0; i < scene->volumeRegions.size(); ++i) {

VolumeRegion *vr = scene->volumeRegions[i];
Float t0, t1;
if (!vr->Intersect(ray, &t0, &t1)) continue;�
Do single scattering volume integration in vr �

}
return Lv;

}

XXXX should sample optical depth, then raymatch until we hit it?�
Do single scattering volume integration in vr ���
Spectrum Lvr(0.);
Point Pprev = ray(t0);
Spectrum T(1.);
for (int j = 0; j < nSamples; ++j) {�

Step forward to next volume sample point and update T �
Lvr += T * vr->Le(P, -ray.D);�
Compute direct lighting at P in volume �
Lvr += T * Ldirect;
Pprev = P;

}
Lv += Lvr / nSamples * Distance(ray(t0), ray(t1));
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�
Compute direct lighting at P in volume ���
Spectrum Ldirect(0.);
Spectrum ss = vr->sigma_s(P, -ray.D);
if (!ss.Black()) {

Spectrum albedo = ss / vr->sigma_t(P, -ray.D);
for (u_int i = 0; i < scene->lights.size(); ++i) {

Light *light = scene->lights[i];�
Compute direct volume lighting from light �

}
}

�
Compute direct volume lighting from light ���
Float weight;
bool deltaLight;
VisibilityTester vis;
Vector wo;
Spectrum L = light->Sample_L(P, RandomFloat(), RandomFloat(),

&wo, &weight, &deltaLight, &vis);
if (!L.Black() && vis.Unoccluded(scene))

Ldirect += L * vis.Transmittance(scene) *
albedo * vr->phase(P, -ray.D, wo);

���"� ������� � � ����� ���

Lommel was the apparently first to derive the equation of transfer (Lom89), in
a not-widely-known paper. Not only did he derive the equation of transfer, but he
solved it in some simplified cases in order to estimate reflection functions from
real world surfaces (including marble and paper) and compared his solutions to
measured reflectance data from these surfaces.

Apparently unaware of Lommel’s work, Schuster was the next worker in ra-
diative transfer to consider the effect of multiple scattering (Sch05). He used the
term self-illumination to describe the fact that each part of the medium is illumi-
nated by every other part of the medium and derived differential equations that
described reflection from a slab along the normal direction assuming the presence
of isotropic scattering; the conceptual framework that he developed remains essen-
tially unchanged in the field of radiative transfer

Soon thereafter, Scharzchild introduced the concept of radiative equilibrium (?)
and Jackson expressed Schuster’s equation in integral form, also noting that “the
obvious physical mode of solution is Liouville’s method of successive substitu-
tions.” (i.e. a Neumann series solution) (Jac10). Finally, King completed the re-
discovery of the equation of transfer by expressing it in the general integral form
(Kin13). (Yanovitskij (Yan97) traces the origin of the integral equation of transfer
to Chvolson (Chv90), but we have been unable to find a copy of this paper.)

Russian roulette introduced to graphics by Kirk and Arvo (KA91).
Lafortune bidir (LW94). Veach and Guibas (VG94). Kollig and Keller bidir

with quasi-random sample patterns (KK00).
Irradiance caching (WRC88; WH92; War94b)
Kajiya (Kaj86), Immel et al (ICG86)
Photon maps. Arvo (Arv86). Collins (Col94). Jensen (Jen96; JC98).
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Shirley thesis (Shi90a; Shi90b), incl sum over paths formulation
Metropolis (VG97) (PKK00)
Radiance (and radiosity stuff) for virtual mirrors for light paths...
The equation of transfer was first introduced to graphics by Kajiya and von

Herzen (KH84); Rushmeier was the first to compute solutions of it in a general
setting (?). However, Arvo was the first to make the essential connections between
previous formalizations of light transport in graphics and the equation of transfer
and radiative transfer in general (?).

Bhate and Tokuta spherical harmonic approach (BT92). Pérez/Pueyo/Sillion
volume globillum survey (PPS97).

Blasi et al two pass Monte Carlo algorithm, somewhat in the spirit of Kajiya
and von Herzen, where first pass shoots energe from lights and stores it in a grid,
second pass does final rendering (BSS93).

Lafortune and Willems bidir stuff (LW96).
Jensen book (Jen01).

� � ��� ����# � #

15.1 The light sources are currently somewhat inefficient since their differen-
tial irradiance dE functions always trace a shadow ray from the point being
shaded to the light, even if the BSDF returns black for that particular direc-
tions. Modify these interfaces so that the BSDF’s value is computed before
the light traces the visibility ray. How much does this speed up lrt?

15.2 To further improve efficiency, Russian roulette can be applied to skip tracing
most of the shadow rays that make a low contribution to the final image. Ten-
tatively compute product of the BSDF and the differential irradiance before
tracing a shadow ray; if the result is low, then apply Russian roulette.

XXX should use efficiency optimized Russian Roulette

15.3 Path tracing to be able to flag important stuff for indirect lighting, be able to
sample it according to dA. Then use MIS to compute weights. Experiments
with scene with substantial indirect lighting: how much help, how much does
it hurt when mostly direct? What if the wrong objects are flagged as impor-
tant? Or if MIS isn’t used? What about dynamically changing probabilities
based on experience...

15.4 Adjoint BSDF: shading normals and transmission both mess up reciprocity
assumptions. Implement Veach methods to account for this, use in photon
tracing and bidir...

15.5 Photons as paths from light for bidir–use as tiny light sources–unbiased.

15.6 Final gather for photon globillum–use using non-specular photons directly
is bad...

15.7 MIS for bidir..

15.8 Bidirectional estimator to compute irradiance cache sample values. Describe
basic formulation, etc..



490 Light Transport [Ch. 15

15.9 Expected values for many light source handling. Can probabilistically as-
sume a value for part of the integrand. Then x% of the time, compute it for
real, weight result by

�
guess � actual ��� x%... Show that this is an unbiased

estimator, etc...

15.10 kajiya-von herzen stuff, precompute illumination on a grid, save all those
redundant-ray marching computations

15.11 MIS for lighting in volums

15.12 bidir for lighting in volumes, cite path integral generalization to volumes by
the volume metropolis guys



� � � � � � � � � � � � � � � � �

Writing a renderer is one of the great pleasures of graphics...
Ray-tracing as a way to get to fundamentals of rendering, regardless of ap-

proach. Framework to understand signal processing, Monte Carlo, etc.
The advent of real-time ray-tracing, hardware accelerated...

� � �
� � � � �
�  � ��� ��� ��#
Parallel rendering

threads/shared memory approach: basic idea of shared address space, etc. gen-
erally an easier programming style than message-passing-based parallel program-
ming, though it can be trickier to get it right.

the key problem is correct access of shared data; need to be careful that one
thread isn’t part-way through modifying one data structure such that if another
thread reads it, it gets garbage. or two threads simultaneously trying to update it
and who knows what the end result is.

mechanism: mutual exclusion–e.g. lock to access a key data structure. ensures
that only one thread is using it at a time.

probably want to do scene parsing, accel building single threaded, render multi,
then cleanup, stats, exit as single.

big issues: mailbox, film/image update, refinement of primitives, sampler. Also
stats...

once primitives are refined (and if no mailboxing...), accel structure is read-only,
so no need to lock it for threads to access it.

for stuff like film/image and sampler, don’t want to e.g. acquire and release a
lock each time an image sample has been computed and the image needs to be

� � �
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updated, or each time a new sample value is needed–the time to get the lock will
probably be more than the computation that is done, and access to such heavily
accessed data structures will see a lot of contention (and thus threads waiting while
one thread is modifying it.)

one approach to this problem is having each thread keeping a separate copy of
the data structures–e.g. separate Film objects. Then when rendering is done, they
are merged into a single Film object and final processing is done serially. For big
data structures like the scene description, this may be too much, but it solves the
contention problem completely.

For sampling, everyone could have the same Sampler object but have the con-
vention that if n threads, the first thread only uses sample number 0 � n � 2n � � � � , the
second thread uses samples 1 � n � 1 � 2n � 1 � � � � , and so forth, where everyone just
ignores the other samples, knowing that another thread will handle them. This may
be slow for samplers that take a relatively large amount of time to generate samples
(e.g. the HammersleySampler, which calls the not-speedy RadicalInverse()
function). Alternatively, samplers could be thread-savvy, and could be instructed
to only generate every n samples.

Other approach to distributed over a set of machines: central server process
hands out sub-regions of image to render, worker processes render those bits, send
back results. More message-passing style.

Memory performance

Keys to lrt’s memory use design:
1. lrt doesn’t do any dynamic allocation during the rendering process, except

for refining primitives as needed; this was carefully designed. (except for BSDF
stuff, but that is easy for a good allocator...)

2. Allocate stuff in large blocks, not single items at a time (except for performance-
unimportant stuff.)

3. Cache-aware alignment and data structures (keep stuff that will be accessed
at about the same time nearby, blocking, avoid L1 cache conflights for key stuff,
pack to small size)

Grunwald et al have shown that the system’s choice of dynamic memory allo-
cation implementation can have a substantial impact on the cache behavior of the
program (GZH93a)

Much lore about dynamic memory allocation, the need to write custom alloca-
tors for speed. (City appropriate section of Stroustroup on overloading new/delete?)

The one type of custom allocator that did lead to performance improvements in
practice was region-based (aka arenas) allocation, which we provide support for
via the XXX object/interface.

We worry more about how the allocator is being called than what it is doing.
(e.g. arrays of objects, not individual allocation, etc.)

Cite data structure reorganization papers and ideas, results with radiance (2 pa-
pers)

texture and geometry caching XXX citations...
computation reordering Pharr et al 97



� ��� � � � � � �

We will now define some of the assorted utility routines that were used through-
out the system. These routines, though key to lrt’s operation, are relatively less
interesting than the rest of the code in the system. It is good to have basic famil-
iarity with them in order to understand other code, but understanding their imple-
mentation in detail isn’t necessary to understand lrt.

First is a set of routines for error reporting; these are used for things ranging
from reporting invalid input from the user to reporting fundamental bugs in lrt.
By gathering all error reporting in a single place, we make it easy to change how
errors of various severities are handled. Next are routines for gathering statistics
about the performance of the ray-tracer. Again, by gathering all of this data through
a common set of interfaces, it’s easy to adjust the detail of statistics reported to the
user. Next is a set of miscellaneous short mathematical functions; these provide
some primitive operations that have wide application. Finally is a random number
generator and various basic 3D data structures (k-d trees and octrees.)

� � �
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�
util.cc* ����

Source Code Copyright �
#include "lrt.h"
#include <malloc.h>�
Error Reporting Includes ��
Error Reporting Definitions ��
Error Reporting Functions ��
Matrix Method Definitions ��
Statistics Definitions ��
Statistics Functions ��
Random Number State ��
Random Number Functions ��
Memory Allocation Functions ��
StringHashTable Method Definitions �

� �
� � ��� �����  ���"���
�	� � � � �	� �	� �
XXX start discussing container classes in general, then specialize down to vec-

tors, sets, and maps XXX
For the benefit of readers unfamiliar with C++’s standard library, we will briefly

review some of its facilities that we will be using. The vector class from the C++
standard library is a parameterized container class. It is similar to an array, though
it can automatically grow as items are added to it. As it is a are template classe, a
vector of ints (for example) is declared as vector<int> v;.

To add a new item to the end of a vector, a push_back method is available:

vector<int> vec;
for (int i = 0; i < 10; ++i)

vec.push_back(i);

We can’t say vec[i] = i in the above loop, since the vector needs to be in-
formed that the user needs it to grow bigger, so that space may need to be allocated
if needed.

A useful operation supported by vectors is the reserve call. This lets us in-
form the vector the number of items that we will be adding to it; this lets it allocate
sufficient space once, rather than needing to grow repeatedly as we insert items
into it (e.g. vec.reserve(100) reserves 100 spaces in the vector.)

The vector class provides a size method, which returns the total number of
items inside of it. This method can be be used in conjunction with the [] operator
to access items in the vector directly:

for (int i = 0; i < vec.size(); ++i)
printf ("%d\n", vec[i]);

After a vector has been filled (e.g. with push_back), its members an be modi-
fied with the [] operator as well.

Vectors also provide an erase method; this takes two iterators to the sequence
and removes all of the items from the first to the one before the last. Thus,
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v.erase(v.begin(), v.end());

empties a vector completely.
Finally, the pair template class will be occasionally used; it provides a conve-

nient way to construct a new object that holds two other objects. For example, if
we’re filling a hash table and are storing an array of pointers to hashed objects Foo
with their integer hash values, we might declare an array of pair<Foo *, int>.
Given a variable p that is a pair of objects, the constituent objects can be accessed as
p.first and p.second. We can create a pair object with the make_pair function:

int i = 0, Foo *foop = NULL;
pair<Foo *, int> p = make_pair(foop, i);
p.first = new Foo;

XXX sets and maps XXX
XXX string XXX

Variable stack allocation

alloca...

� ��� � � � �
� � � � �
� � � � �

We provide four functions for reporting error conditions. In increasing severity,
they are Info, Warning, Error, and Severe. All of them take a formatting string
as their first argument and then a variable number of arguments providing values for
the format. The syntax is identical to that used by the printf family of functions.
For example,

Info("Now tracing ray number %d\n", rayNum);

Some compilers have non-portable ways of indicating that particular functions
take a formatting string like printf with a variable number of arguments. These
compilers can then verify that the types of the extra arguments after the formatting
string are appropriate for the format. Thus, code like:

int FrameNum;
Info("Finished rendering frame number %f\n", FrameNum);

can be properly flagged as incorrect, since the formatting string indicates that
FrameNum is a double, while it is actually an int. We define PRINTF_FORMAT
here depending on which compiler is being used; for those where it’s not possible
to enable this type of syntax check, PRINTF_FORMAT just has an empty definition.�
Setup printf format ���
#ifdef __GNUG__
#define PRINTF_FORMAT __attribute__ \

((__format__ (__printf__, 1, 2)))
#else
#define PRINTF_FORMAT
#endif // __GNUG__
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Now we can declare the four error reporting functions, using PRINTF_FORMAT if
available.�
Global Function Declarations ��� ��

Setup printf format �
extern void Info(const char *, ...) PRINTF_FORMAT;
extern void Warning(const char *, ...) PRINTF_FORMAT;
extern void Error(const char *, ...) PRINTF_FORMAT;
extern void Severe(const char *, ...) PRINTF_FORMAT;

Because all four of these functions do almost the same thing—first format the
error string and then do something with it—all of them call a common function,
passing along the error information from the user as well as information about what
to do with the message. It may be ignored, in which case the message is discarded;
it may be printed and then program execution may continue, or it may be an error
of such severity that it’s impossible to go on and the program must abort.�
Error Reporting Definitions ���
#define LRT_ERROR_IGNORE 0
#define LRT_ERROR_CONTINUE 1
#define LRT_ERROR_ABORT 2

We need to include the header that provides the general functionality for pro-
cessing a variable number of arguments.�
Error Reporting Includes ���
#include <stdarg.h>

Now we can define the shared internal error reporting function, processError.
It takes the error message and arguments from the user, an additional string that
gives the type of error, and an int that should have the value LRT_ERROR_IGNORE,
LRT_ERROR_CONTINUE, or LRT_ERROR_ABORT.�
Error Reporting Functions ���
static void processError(const char *format, va_list args,

const char *message, int disposition) {�
Format error string ��
Report error �

}

First we need to take the formatting string and the additional arguments passed
by the user giving values to be substituted in the formatting string and turn it into a
new string with those substitutions performed. Thankfully, the vsprintf function
in the standard C library takes care of this for us.�
Format error string ���
#define ERR_BUF_SZ 1024
static char errorBuf[ERR_BUF_SZ];
vsprintf(errorBuf, format, args);

Now that we have the error message in errorBuf, we print it or not, and exit
the program it the error was a big one.
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�
Report error ���
switch (disposition) {
case LRT_ERROR_IGNORE:

return;
case LRT_ERROR_CONTINUE:

fprintf(stderr, "%s: %s\n", message, errorBuf);�
Print scene file and line number, if appropriate �
break;

case LRT_ERROR_ABORT:
fprintf(stderr, "%s: %s\n", message, errorBuf);�
Print scene file and line number, if appropriate �
abort();

}
�
Print scene file and line number, if appropriate ���
extern int line_num;
if (line_num != 0) {

extern string current_file;
fprintf(stderr, "\tLine %d, file %s\n", line_num,

current_file.c_str());
}

We can now define the four globally-visible error functions. All are identical,
except for how they prefix the error message and how it is disposed of. Severe is
the only one that aborts execution; code that calls the other error reporting func-
tions must therefore be able to recover from any error that is reported by Error, etc.
These functions are quite straightforward. They use the standard C functions for
getting ready to process a variable number of function arguments; after va_start
is called, the args variable encapsulates information about the remaining argu-
ments to the function. However, rather than calling the va_arg function to exam-
ine the subsequent arguments, we just pass the args variable into processError.
It then passes it in to vsprintf, which handles unpacking the arguments.�
Error Reporting Functions ��� �
void Info(const char *format, ...) {

va_list args;
va_start(args, format);
processError(format, args, "Notice", LRT_ERROR_CONTINUE);
va_end(args);

}
�
Error Reporting Functions ��� �
void Warning(const char *format, ...) {

va_list args;
va_start(args, format);
processError(format, args, "Warning", LRT_ERROR_CONTINUE);
va_end(args);

}
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�
Error Reporting Functions ��� �
void Error(const char *format, ...) {

va_list args;
va_start(args, format);
processError(format, args, "Error", LRT_ERROR_CONTINUE);
va_end(args);

}
�
Error Reporting Functions ��� �
void Severe(const char *format, ...) {

va_list args;
va_start(args, format);
processError(format, args, "Fatal Error", LRT_ERROR_ABORT);
va_end(args);

}

We also define our own version of the standard assert macro. This asserts that
an expression’s value is true; if not, Severe is called with information about where
the assertion failed.�
Global Inline Functions ��� �
#ifdef NDEBUG
#define Assert(expr) ((void)0)
#else
#define Assert(expr) \

((expr) ? (void)0 : Severe("Assertion " #expr " failed in %s, line %d", \
__FILE__, __LINE__))

#endif // NDEBUG

Reporting Progress
�
Global Classes ���
struct ProgressReporter {�

ProgressReporter Methods ��
ProgressReporter Data �

};
�
ProgressReporter Methods ���
ProgressReporter(int t, const string &ti, int wid = 65)

: width(wid - ti.size()), frequency(t / width), total(t) {
count = 0;
nPlusses = 0;
gettimeofday(&start, NULL);
title = ti;

}
�
Global Include Files ��� �
#include <sys/time.h>
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�
ProgressReporter Data ���
const int width, frequency, total;
mutable int count, nPlusses;
struct timeval start;
string title;

�
ProgressReporter Methods ��� �
void operator()(FILE *file) const {

if (count-- == 0) {
count = frequency;�
Update progress plus signs ��
Update elapsed time and estimated time to completion �

}
}

�
Update progress plus signs ���
fprintf(file, "\r%s: [", title.c_str());
++nPlusses;
for (int i = 0; i < nPlusses; ++i)

fprintf(file, "+");
for (int i = 0; i < width - nPlusses; ++i)

fprintf(file, " ");
fprintf(file, "]");

�
Update elapsed time and estimated time to completion ���
struct timeval now;
gettimeofday(&now, NULL);
Float percentDone = (Float)nPlusses / (Float)width;
Float seconds = now.tv_sec - start.tv_sec +

(now.tv_usec - start.tv_usec) / 1e6f;
Float estRemaining = seconds / percentDone - seconds;
fprintf(file, " (%.2fs|%.2fs) ", seconds, max(0.f, estRemaining));

� ���  ����� ��#�� � � #

We also provide a unified interface for gathering statistics. This way, various
parts of the program call into a single point where they can register what sorts of
statistics they will be recording. At program termination, a single function call
causes all such statistics to be printed out.

Two types of statistics can be gathered:


 Counters: These provide a way to count the frequency of something—e.g.
the total number of rays that are traced while making an image.


 Ratios: This records the ratio of the frequency of two events—e.g. the num-
ber of successful ray-triangle intersection tests versus the total number of
ray-triangle intersection tests.

When a statistic type is reported to the statistics system, the caller must provide a
category and a name for the particular statistic. The category gives a way to gather
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related types of statistics in output (e.g. all of the statistics gathered by the camera
module can be reported together.) The name specifically describes the particular
statistic. The caller also passes a pointer to data that holds the value of the statistic.
This data must not go out of scope; it should either be a global or static variable
or dynamically allocated and never freed. This guarantees that the statistics module
can later dereference the supplied pointer to get the appropriate value without risk
of error.

Now we can define a simple struct that holds information about each statistic
that the user asked us to track. It stores the category, name, and level of the par-
ticular statistic as well as a pointer to the variable or variables that hold its value.
For simplicity, we will store both counter and ratio statistics in the same struct,
differentiating between them by setting ptrb to NULL when the StatTracker is
tracking a counter rather than a ratio.�
Global Type Declarations ���
typedef double StatsCounterType;

�
Statistics Definitions ���
struct StatTracker {

StatTracker(const string &cat, const string &n,
StatsCounterType *pa, StatsCounterType *pb = NULL,

bool percentage = true);
string category, name;
StatsCounterType *ptra, *ptrb;
bool percentage;

};

To construct a StatTracker, then, we just copy the strings the user passed in to
us and store the appropriate pointers.�
Statistics Functions ���
StatTracker::StatTracker(const string &cat, const string &n,

StatsCounterType *pa, StatsCounterType *pb, bool p) {
category = cat;
name = n;
ptra = pa;
ptrb = pb;
percentage = p;

}

All of the StatTrackers are stored in a static vector.�
Statistics Definitions ��� �
static vector<StatTracker *> trackers;

We’ll define a short function that takes care of adding a StatTracker to the
trackers array; it first looks through all of the already-registered StatTrackers
and makes sure that this isn’t a duplicate. If it is, an error message is printed and
it isn’t added again. The caller should ensure that each statistic is only reported to
the statistics system once.
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�
Statistics Definitions ��� �
static void addTracker(StatTracker *newTracker) {

for (u_int i = 0; i < trackers.size(); ++i) {
if (newTracker->category == trackers[i]->category &&

newTracker->name == trackers[i]->name)
return;

}
trackers.push_back(newTracker);

}

XXX�
Global Classes ��� �
class StatsCounter {
public:�

StatsCounter Interface �
private:�

StatsCounter Private Data �
};

�
StatsCounter Interface ���
StatsCounter(const string &category, const string &name);

�
Statistics Functions ��� �
StatsCounter::StatsCounter(const string &category, const string &name) {

num = 0;
addTracker(new StatTracker(category, name, &num));

}
�
StatsCounter Interface ��� �
void operator++() { ++num; }
void operator++(int) { ++num; }

�
StatsCounter Interface ��� �
void stat_max(StatsCounterType val) { num = max(val, num); }
void stat_min(StatsCounterType val) { num = min(val, num); }
operator int() { return (int)num; }

�
StatsCounter Private Data ���
StatsCounterType num;

�
Global Classes ��� �
class StatsRatio {
public:�

StatsRatio Interface �
private:�

StatsRatio Private Data �
};

�
StatsRatio Interface ���
StatsRatio(const string &category, const string &name, bool percent = true);
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�
Statistics Functions ��� �
StatsRatio::StatsRatio(const string &category, const string &name, bool percent) {

na = nb = 0;
addTracker(new StatTracker(category, name, &na, &nb, percent));

}
�
StatsRatio Interface ��� �
void add(int a, int b) { na += a; nb += b; }

�
StatsRatio Private Data ���
StatsCounterType na, nb;

Once rendering has started, the values pointed to by the various statistics point-
ers will start to be interesting. As rendering progresses or when it is finished, the
StatsPrint function can be called to print the current statistics values to a FILE.�
Statistics Functions ��� �
struct CmpTracker {

bool operator()(const StatTracker *t1,
const StatTracker *t2) const {

if (t1->category == t2->category)
return (t1->name < t2->name);

return (t1->category < t2->category);
}

};

�
Statistics Functions ��� �
void StatsPrint(FILE *dest) {

fprintf(dest, "Statistics:\n");
vector<StatTracker *> t = trackers;
sort(t.begin(), t.end(), CmpTracker());
string lastCategory;
for (u_int i = 0; i < t.size(); ++i) {�

Print statistic �
}

}

For now we actually won’t sort the various statistics by category and name and
report them cleanly. Just loop through all of them and print out the relevant infor-
mation.
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�
Print statistic ���
if (t[i]->category != lastCategory) {

fprintf(dest, "%s\n", t[i]->category.c_str());
lastCategory = t[i]->category;

}
fprintf(dest, " %s", t[i]->name.c_str());�
Pad out to results column �
if (t[i]->ptrb == NULL)

StatsPrintVal(dest, *t[i]->ptra);
else {

if (*t[i]->ptrb > 0) {
Float ratio = (Float)*t[i]->ptra / (Float)*t[i]->ptrb;
StatsPrintVal(dest, *t[i]->ptra, *t[i]->ptrb);
if (t[i]->percentage)

fprintf(dest, " (%3.2f%%)", 100. * ratio);
else

fprintf(dest, " (%.2fx)", ratio);
}
else

StatsPrintVal(dest, *t[i]->ptra, *t[i]->ptrb);
}
fprintf(dest, "\n");

�
Statistics Functions ��� �
static void StatsPrintVal(FILE *f, StatsCounterType v) {

if (v > 1e9) fprintf(f, "%.3fB", v / 1e9f);
else if (v > 1e6) fprintf(f, "%.3fM", v / 1e6f);
else if (v > 1e4) fprintf(f, "%.1fk", v / 1e3f);
else fprintf(f, "%.0f", (float)v);

}
�
Statistics Functions ��� �
static void StatsPrintVal(FILE *f, StatsCounterType v1,

StatsCounterType v2) {
StatsCounterType m = min(v1, v2);
if (m > 1e9) fprintf(f, "%.3fB:%.3fB", v1 / 1e9f, v2 / 1e9f);
else if (m > 1e6) fprintf(f, "%.3fM:%.3fM", v1 / 1e6f, v2 / 1e6f);
else if (m > 1e4) fprintf(f, "%.1fk:%.1fk", v1 / 1e3f, v2 / 1e3f);
else fprintf(f, "%.0f:%.0f", v1, v2);

}

After printing the name, we print enough spaces so that all of the statistic values
start in the column resultsColumn.�
Pad out to results column ���
int resultsColumn = 56;
int paddingSpaces = resultsColumn - (int) t[i]->name.size();
while (paddingSpaces-- > 0)

putc(’ ’, dest);
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When the program is freeing up memory when it’s about to exit, it can call the
StatsCleanup function, which frees the StatsTrackers that we’ve created.�
Statistics Functions ��� �
void StatsCleanup() {�

Reset user-supplied statistics pointers �
for (u_int i = 0; i < trackers.size(); ++i)

delete trackers[i];
trackers.erase(trackers.begin(), trackers.end());

}

We reset the various counter pointers that the user gave us to zero before we
destroy the trackers; this way, if the renderer runs again before the program exits,
all of the various statistics will start counting from zero again.�
Reset user-supplied statistics pointers ���
for (u_int i = 0; i < trackers.size(); ++i) {

trackers[i]->ptra = 0;
if (trackers[i]->ptrb)

trackers[i]->ptrb = 0;
}

� ��� � � � �"� � � �"�����
� � �����
The conventional wisdom about memory allocation is that allocation based on

the system’s malloc() and new() routines is slow and that it is often worth-while
to write custom allocation routines for objects that will be frequently allocated
and freed. However, this conventional wisdom seems to be wrong. Wilson et
al (WJNB95), Johnstone and Wilson (JW99), and Berger et al (BZM01; BZM02)
have all investigated the performance of memory allocation routines with real ap-
plications and have found that user-written allocators almost always result in worse
performance in both execution time and memory use compared to a well-written
generic system memory allocator.

The one type of custom allocation technique that was found to be useful was
arena-based allocation, which allows the user to quickly allocate objects from a
large contiguous region of memory. In this scheme, individual objects can’t be
freed; only when the lifetime of all of the allocated objects is over is the entire
region of memory freed. Therefore, we will implement a MemoryArena class in
this section.

This section also includes implementations of ReferenceCounted and Reference
classes, which ensure that objects that are referred to by multiple other objects and
have difficult-to-determine lifetimes will be freed when no objects refer to them
any more. Finally, we provide some routines that allocate regions of memory with
guaranteed cache alignment properties, which is useful for reducing cache misses
to frequently-accessed dynamically-allocated data structures.

Arena-Based Allocation
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�
Global Classes ��� �
template <class T> class MemoryArena {
public:�

MemoryArena Interface �
private:�

MemoryArena Private Data �
};

�
MemoryArena Interface ���
MemoryArena() {

nAvailable = 0;
}

�
MemoryArena Private Data ���
T *mem;
int nAvailable;
vector<T *> toDelete;

�
MemoryArena Interface ��� �
˜MemoryArena() { FreeAll(); }

Note doesn’t call destructors...�
MemoryArena Interface ��� �
void FreeAll() {

for (u_int i = 0; i < toDelete.size(); ++i)
FreeCacheAligned(toDelete[i]);

toDelete.erase(toDelete.begin(), toDelete.end());
nAvailable = 0;

}
�
MemoryArena Interface ��� �
T *Alloc() {

if (nAvailable == 0) {
int nAlloc = max((unsigned int)16, 65536/sizeof(T));
mem = (T *)AllocL2CacheAligned(nAlloc * sizeof(T));
nAvailable = nAlloc;
toDelete.push_back(mem);

}
--nAvailable;
return mem++;

}

So can do MemoryArena<Foo> arena; new (arena) Foo;�
MemoryArena Interface ��� �
operator T *() {

return Alloc();
}

Cache-Aligned Memory Allocation

We can reduce the number of cache misses incurred by lrt and slightly improve
its overall performance by making sure that some memory allocations are well
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Figure A.1: Cache-aligned memory allocation ensures that the address returned is
aligned with the start of a cache line. This figure shows the layout of three 16 byte
objects in memory on a system with 32 byte cache lines. On the top, the starting
address is not cache aligned–the first and last of the three objects span two cache
lines, such that we may incur two cache misses when accessing their elements.
On the bottom, the memory is cache aligned, guaranteeing that a maximum of one
cache miss will be incurred per object.

aligned with the blocks of memory that the CPU cache manages. Figure A.1 shows
the basic setting. There, we are allocating three 16 byte objects on a system with
32 byte large cache entries.

By making sure that the first object starts at the start of a cache entry (bottom),
we ensure that we will incur no more than one cache miss when accessing any one
of the items. If we expect to be accessing only some of the items (as opposed to
looping over all of them in order), then performance will generally be improved
with cache-aligned allocation. (lrt’s overall performance speed up by approxi-
mately 3% when allocation for the kd-tree accelerator in Section 4.4 was switched
to use aligned allocation.)

The AllocCacheAligned() and FreeCacheAligned() functions provide a wrap-
per around system memory allocation and freeing routines to do cache-aligned
allocation. If the pre-processor constant L1_CACHE_LINE_SIZE hasn’t been set
previously, we guess a cache line size of 32 bytes, which is typical of many archi-
tectures today.

XXX actually it’s 64 bytes on Pentium 4...�
Memory Allocation Functions ���
void *AllocL1CacheAligned(size_t size) {
#ifndef L1_CACHE_LINE_SIZE
#define L1_CACHE_LINE_SIZE 32
#endif

return memalign(L1_CACHE_LINE_SIZE, size);
}
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�
Memory Allocation Functions ��� �
void *AllocL2CacheAligned(size_t size) {
#ifndef L2_CACHE_LINE_SIZE
#define L2_CACHE_LINE_SIZE 256
#endif

return memalign(L2_CACHE_LINE_SIZE, size);
}

�
Memory Allocation Functions ��� �
void FreeCacheAligned(void *ptr) {

free(ptr);
}

Grunwald et al were one of the first groups of researchers to investigate the
inter-play between memory allocation algorithms and the cache behavior of appli-
cations (GZH93b).

Until recently, most work on cache-efficient programming techniques has been
focused on optimizing easily-predictable memory reference patterns, for example
array accesses in loops, where techniques like blocking can be applied.

Pointer-based data structures are now seeing more attention, however.
Main goal: improve memory reference locality–spatial and temporal.
Can reorder the data structures, so that the order that the program accesses data

values maps to underlying memory access patterns that have good locality.
Or can reorder the computation, so that the program accesses
Associativity: number of different cache locations a given memory address can

be stored. direct mapped means just one.
Lam et al investigated blocking (tiling) for improving cache performance and

developed techniques for selecting appropriate block sizes, given the size of the
arrays and the cache size (LRW91).

Reduce memory use: (unions, bit-fields, etc) gives better locality, less pressure
on the cache (and so fewer capacity misses.)

Truong et al suggest grouping frequently-accessed fields of structures at the start
of the structure (TBS98) to improve locality.

Prefetching
Conflict, capacity, compulsory misses
In lrt, we only worry about cache layout issues for dynamically-allocated stuff.

However, Calder et al show a profile-driven system that optimizes memory layout
of global variables, constant values, data on the stack, and dynamically-allocated
data from the heap in order to reduce cache conflicts among them all (CCJA98),
giving an average 30% reduction in data cache misses for the applications they
studied.

Blocking for tree data structures–keep node and a few levels of children con-
tiguous (CHL99). Among other applications, they applied their tool to the layout
of the acceleration octree in the radiance renderer and reported a 42% speedup in
runtime.

More on structures: possibly split into “hot” and “cold” parts, allocated sepa-
rately, to improve hits on hot parts. Also more on reordering fields inside structure
to improve locality (CDL99).

Reference-Counted Objects
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In languages like C++, where the language doesn’t provide automatic memory
management and the user must deallocate dynamically allocated memory when
through with it, it can be tricky to deal with the case when multiple objects hold a
pointer to some other object. We want to free the second object as soon as no other
object holds a pointer to it, but no sooner, so that we avoid both memory leaks as
well as subtle errors due to memory corruption.

As long as there aren’t circular references (e.g. object A holds a reference to
object B, which holds a reference to object A.), an easy solution to this is to use
reference counting. An integer count is associated with objects that may be held
by multiple objects; it is incremented when another object stores a reference to it
and decremented when a reference goes away (e.g. due to the holding object being
destroyed.)

We will define two classes to make it easy to use reference counted objects in
lrt. First is a template, ReferenceCounted. An object of type Foo should in-
herit from ReferenceCounted<Foo> if it is to be managed via reference counting.
This adds an nReferences field to it. The actual count will be managed by the
Reference class, defined below.�
Global Classes ��� �
template <class T> class ReferenceCounted {
public:

ReferenceCounted() { nReferences = 0; }
int nReferences;

private:
ReferenceCounted(const ReferenceCounted &);
ReferenceCounted &operator=(const ReferenceCounted &);

};

Rather than holding a pointer to a reference counted object Foo, other objects
should declare a Reference<Foo> to hold the reference. The Reference template
class handles updating the reference count as appropriate. For example, consider
the function below:

void func() {
Reference<Foo> r1 = new Foo;
Reference<Foo> r2 = r1;
r1 = new Foo;
r2 = r1;

}

In the first line, a Foo object is allocated; r1 holds a reference to it, and the object’s
nReferences count should be one. A second reference to the object is made in
the second line; r1 and r2 refer to the same Foo object, with a reference count of
two. Next, a new Foo] object is allocated. When a reference to it
is assigned to [[r1, the reference count of the original object is decremented
to one. Now r1 and r2 point to separate objects. Finally, in the last line, r2 is
assigned to refer to the newly-allocated Foo object. The original Foo object now
has zero references, and is automatically deleted. Now, at the end of the function,
when both r1 and r2 go out of scope, the reference count for the second Foo object
goes to zero, causing it to be freed as well.
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The only trick to all this is the low-level C++ syntax that makes all this happen
automatically, so that other code can treat References as much like pointers as
possible. (For example, if the Foo class has a bar() method, we’d like to be able
to write code like r1->bar() in the function above, etc.)�
Global Classes ��� �
template <class T> class Reference {
public:�

Reference constructors ��
Reference assignment operators ��
Reference destructor ��
Reference operators �

private:
T *ptr;

};

The constructors are straightforward; after dealing with the possibility of NULL
pointers, they just need to increment the reference count.�
Reference constructors ���
Reference(T *p = NULL) {

ptr = p;
if (ptr) ++ptr->nReferences;

}
�
Reference constructors ��� �
Reference(const Reference<T> &r) {

ptr = r.ptr;
if (ptr) ++ptr->nReferences;

}

When we have a reference that is being assigned to hold a different reference,
we mostly just need to decrement our old reference count and increment the count
of the new object. The increments and decrements are ordered carefully below, so
that code like r1 = r1; doesn’t inadvertently delete the object r1 is refering to if
it only has one reference.�
Reference assignment operators ���
Reference &operator=(const Reference<T> &r) {

if (r.ptr) r.ptr->nReferences++;
if (ptr && --ptr->nReferences == 0) delete ptr;
ptr = r.ptr;
return *this;

}
�
Reference assignment operators ��� �
Reference &operator=(T *p) {

if (p) p->nReferences++;
if (ptr && --ptr->nReferences == 0) delete ptr;
ptr = p;
return *this;

}
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�
Reference destructor ���
˜Reference() {

if (ptr && --ptr->nReferences == 0)
delete ptr;

}

Finally, a bit of C++ trickery so that we can use -> to call methods of objects we
hold references to, etc. The operator bool allows us to check to see if a reference
points to a NULL object with code like [[if (!r) ...].�
Reference operators ���
T *operator->() { return ptr; }
const T *operator->() const { return ptr; }
operator bool() const { return ptr != NULL; }

� ��� � ��� � � � � � ��� � ��� #
2x2 Linear Systems

Solve Ax � B....�
Matrix Method Definitions ���
bool SolveLinearSystem2x2(const Float A[2][2], const Float B[2],

Float x[2]) {
Float det = A[0][0]*A[1][1] - A[0][1]*A[1][0];
if (fabsf(det) < 1e-5)

return false;
Float invDet = 1.0f/det;
x[0] = (A[1][1]*B[0] - A[0][1]*B[1]) * invDet;
x[1] = (A[0][0]*B[1] - A[1][0]*B[0]) * invDet;
return true;

}

4x4 Matrices

The Matrix4x4 structure provides a low-level representation of 4 by 4 matri-
ces. It is an integral part of the Transform class, which holds two matrices, one
representing a transform and the other representing its inverse. Because we will
often have multiple objects holding identical transformations, we will reference
count Matrix4x4s, so that the Transform class only needs to hold Matrix4x4
references, rather than holding the much larger complete matrices.�
Global Classes ��� �
struct Matrix4x4 : public ReferenceCounted<Matrix4x4> {�

Matrix4x4 Methods �
Float m[4][4];

};

The default constructor sets the matrix to the identity matrix.
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�
Matrix4x4 Methods ���
Matrix4x4() {

for (int i = 0; i < 4; ++i)
for (int j = 0; j < 4; ++j)

if (i == j) m[i][j] = 1.;
else m[i][j] = 0.;

}

We also provide constructors that allow the user to pass an array of floats, or
sixteen individual floats to initialize the Matrix4x4 with.�
Matrix4x4 Methods ��� �
Matrix4x4(Float mat[4][4]) {

memcpy(m, mat, 16*sizeof(Float));
}

�
Matrix4x4 Methods ��� �
Matrix4x4::Matrix4x4(Float t00, Float t01, Float t02, Float t03,

Float t10, Float t11, Float t12, Float t13,
Float t20, Float t21, Float t22, Float t23,
Float t30, Float t31, Float t32, Float t33) {

m[0][0] = t00; m[0][1] = t01; m[0][2] = t02; m[0][3] = t03;
m[1][0] = t10; m[1][1] = t11; m[1][2] = t12; m[1][3] = t13;
m[2][0] = t20; m[2][1] = t21; m[2][2] = t22; m[2][3] = t23;
m[3][0] = t30; m[3][1] = t31; m[3][2] = t32; m[3][3] = t33;

}

We support a few low-level matrix operations, each of which returns a reference
to a newly allocated matrix that holds the result of the operation. For starters,
Transpose() transposes the matrix’s elements.�
Matrix Method Definitions ��� �
Reference<Matrix4x4> Matrix4x4::Transpose() const {

return new Matrix4x4(m[0][0], m[1][0], m[2][0], m[3][0],
m[0][1], m[1][1], m[2][1], m[3][1],
m[0][2], m[1][2], m[2][2], m[3][2],
m[0][3], m[1][3], m[2][3], m[3][3]);

}

Matrix-matrix multiplication of two matrices M1 and M2 is computed by setting
the

�
i � j � th element of the resulting matrix to the sum of the products of the elements

of the ith row of M1 with the jth column of M2.
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�
Matrix4x4 Methods ��� �
static Reference<Matrix4x4> Mul(const Reference<Matrix4x4> &m1,

const Reference<Matrix4x4> &m2) {
Float r[4][4];
for (int i = 0; i < 4; ++i)

for (int j = 0; j < 4; ++j)
r[i][j] = m1->m[i][0] * m2->m[0][j] +

m1->m[i][1] * m2->m[1][j] +
m1->m[i][2] * m2->m[2][j] +
m1->m[i][3] * m2->m[3][j];

return new Matrix4x4(r);
}

Finally, Inverse() returnse the inverse of the matrix. Our implementation, uses
a numerically stable Gauss–Jordan elimination routine to compute the inverse.�
Matrix4x4 Methods ��� �
Reference<Matrix4x4> Inverse() const;

� ��� � ������� � ��� � ���"!�� � � !�� � � ���"�	� � ��� ��#

Now we’ll define a few very short functions that will be useful throughout the
program. First is Lerp. It performs linear interpolation between two values, start
and end, with position given by the pos parameter. When pos is zero, the result is
start; when pos is one, the result is end, etc.

Lerp is written as
lerp

�
t � v1 � v2 � �

�
1 � t � v1 � tv2

in the function below, rather than in the more terse and potentially more efficient
form of

v1 � t
�
v2 � v1 �

in the interests of reducing floating-point error. Not only is less floating point
precision lost, but Lerp returns exactly the values start and end when pos has
values 0 and 1, respectively, with our implementation. This isn’t necessarily the
case with the other formulation, again due to floating point roundoff.�
Global Inline Functions ��� �
inline Float Lerp(Float pos, Float start, Float end) {

return (1.f - pos) * start + pos * end;
}

Clamp clamps a value val to be between the values low and high. If val is out
of that range, low or high is returned as appropriate.�
Global Inline Functions ��� �
inline Float Clamp(Float val, Float low, Float high) {

if (val < low) return low;
else if (val > high) return high;
else return val;

}
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�
Global Inline Functions ��� �
inline int Clamp(int val, int low, int high) {

if (val < low) return low;
else if (val > high) return high;
else return val;

}

Another useful function is SmoothStep; it takes a minimum and maximum
value and a point at which to evaluate the step function. If the point is below
the minimum, zero is returned, and if it’s above the maximum, one is returned.
Otherwise it smoothly interpolates between zero and one.�
Global Inline Functions ��� �
inline Float SmoothStep(Float min, Float max, Float value) {

Float v = Clamp((value - min) / (max - min), 0., 1.);
return -2.f * v * v * v + 3.f * v * v;

}

Mod computes the remainder of a � b. This function is handy since it behaves
predictably and reasonably with negative numbers—the C and C++ standards leave
the behavior of the % operator undefined in that case.�
Global Inline Functions ��� �
inline int Mod(int a, int b) {

int n = int(a/b);
a -= n*b;
if (a < 0)

a += b;
return a;

}

Finally, simple functions that compute the minimum or maximum of two values
and a function that swaps the values of two variables. We just use the appropriate
functions provided by the standard C++ library.�
Global Include Files ��� �
#include <algorithm>
using std::min;
using std::max;
using std::swap;
using std::sort;

Unfortunately, not all system math.h files store the value of π in M_PI. If it is
not defined, we do it ourself.�
Global Constants ��� �
#ifndef M_PI
#define M_PI 3.14159265358979323846f
#endif

One over 255 and one over π.�
Global Constants ��� �
#define INV_255 .00392156862745098039f
#define INV_PI 0.31830988618379067154f
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We define a generally-useful INFINITY value using FLT_MAX from the standard
math library, which is the largest representable floating point number.�
Global Constants ��� �
#ifndef INFINITY
#define INFINITY FLT_MAX
#endif

Two simple functions convert from angles expressed in degrees to radians, and
vice versa.�
Global Inline Functions ��� �
inline Float Radians(Float deg) { return ((Float)M_PI/180.f) * deg; }
inline Float Degrees(Float rad) { return (180.f/(Float)M_PI) * rad; }

Floating-point to integer conversion

On the x86 architecture, it can take as many as 80 processor cycles to convert
a floating-point value to an integer value; the conversion to integer in a simple
sequence of code like:

Float a = ..., b = ...;
int i = (int)(a * b);

may take 80 times longer than the multiplication a*b! The root problem is that the
floating-point unit’s rounding mode needs to be changed from the default before
the built-in conversion instruction is used, and this requires an expensive flush of
the entire floating-point pipeline.

lrt needs to convert Floats to integers in a number of performance-sensitive
areas. These include the sample filtering code, where for every camera sample we
need to compute the extent of pixels that are affected by the sample based on the
filter extent. Similarly, in the Perlin noise evaluation routines, we need to find the
integer lattice cell that a floating-point position is in.

Sree Kotay and Mike Herf have developed some techniques to these conver-
sions much more quickly without needing to change the rounding mode by taking
advantage of low-level knowledge of the layout of IEEE floating-point values in
memory. Using these routines in lrt speed it up by up to 5% for some scenes. We
will not include the details of their implementation here. However, there are four
key functions, all of them taking one Float value and returning an integer:

1. Float2Int(f): This is the same as the basic cast (int)f.

2. Round2Int(f): This rounds the floating point value f to the nearest integer,
returning the result as an int.

3. Floor2Int(f): The first integer value less than or equal to f is returned.

4. Ceil2Int(f): And similarly, the first integer value greater than or equal to
f is returned.

�
Global Inline Functions ��� �
inline int Log2Int(Float v) {

return ((*(int *) &v) >> 23) - 127;
}
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�
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We will provide a pseudo-random number generation function for the system.
This is useful because it allows us to ensure that the system produces the same
results regardless of machine architecture and C library implementation. This is
particularly helpful since many systems provide random number generation rou-
tines with poor statistical distributions.

The random number generate we choose is the “Mersenne Twister” by Makoto
Matsumoto and Takuji Nishimura. The code to the random number generator is
very involved and complex, and we will not present it here. Nevertheless, it is one
of the best random number generators known, can be implemented very efficiently,
and has a period of 219937 � 1 before it repeats the series again. Pointers to details
on the algorithm can be found at the end of this section.

The algorithm provides three main functions, genrand_real1, which generates
uniform random numbers over the � 0 � 1 � interval, genrand_real2, which gener-
ates uniform random numbers over � 0 � 1 � , and genrand_int32, which generates
uniform random positive integer values from 0 to 232 � 1.�
Global Inline Functions ��� �
inline Float RandomFloat(Float min = 0.f, Float max = 1.f) {

return Lerp(genrand_real1(), min, max);
}

inline unsigned long RandomInt() {
return genrand_int32();

}

� ����� ��# � � ���"! � #
For certain operations it will be useful to have an efficient mapping from keys

to data. We implement a simple hashtable that keys from strings to void *s.�
Global Classes ��� �
class StringHashTable {
public:�

StringHashTable Methods �
private:�

StringHashTable Private Data �
};

�
StringHashTable Private Data ���
static const int NUM_BUCKETS = 1047;
typedef vector<pair<string, void *> > ItemType;
ItemType buckets[NUM_BUCKETS];
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�
StringHashTable Method Definitions ���
u_int StringHashTable::Hash(const string &str) const {

u_int hashValue = 0;
for (u_int i = 0; i < str.size(); ++i) {

hashValue <<= 1;
hashValue ˆ= str[i];

}
return hashValue % NUM_BUCKETS;

}
�
StringHashTable Method Definitions ��� �
void *StringHashTable::Search(const string &key) const {

u_int index = Hash(key);
for (u_int i = 0; i < buckets[index].size(); ++i)

if (key == buckets[index][i].first)
return buckets[index][i].second;

return NULL;
}

�
StringHashTable Method Definitions ��� �
void StringHashTable::Add(const string &key, void *data) {

u_int index = Hash(key);
for (u_int i = 0; i < buckets[index].size(); ++i) {

if (key == buckets[index][i].first) {
buckets[index][i].second = data;
return;

}
}
buckets[index].push_back(make_pair(key, data));

}

� � �� � � � ��� #

�
octree.h* ����

Source Code Copyright �
#ifndef OCTREE_H
#define OCTREE_H
#include "lrt.h"
#include "geometry.h"�
Octree Declarations ��
Octree Method Definitions �
#endif // OCTREE_H

The octree is a three-dimensional data structure that recursively splits a region
of space into axis-aligned boxes. Starting with a single box at the top level, each
level of refinement splits the previous level’s boxes into eight child boxes, each
covering one-eigth of the volume of the previous ones–Figure A.2 shows the basic
idea.
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Figure A.2: Basic octree refinement: starting with an axis-aligned bounding box,
the octree is defined by progressively splitting each node into eight equal-sized
child nodes. The order in which the child nodes are assigned numbers 0 � � � 7 is
significant–details of this will be explained later in this section. Different sub-trees
may be refined to different depths, giving an adaptive discretization of 3D space.

The octree class in this section helps accelerate the query “given a collection
of objects and their axis-aligned bounding boxes, which of their bounds over-
lap a given point”. For large numbers of objects, using an octree to answer this
question can be substantially faster than looping over all of the objects directly.
lrt currently only uses octrees to store the irradiance estimates computed by the
IrradianceCache integrator–each estimate has a bounding box associated with
it that gives the maximum region of space where the estimate may be used for
shading computations. However, here we are providing an independent octree im-
plementation in order to simplify the description of the IrradianceCache as well
as to make it easier to re-use the octree class for other applications.

First, we will define the OctNode structure, which represents a node of the tree.
It holds pointers to the eight possible children of the node (some or all of which
may be NULL) and a vector of NodeData objects. NodeData is the object type that
the user of the octree wants to store in the tree; for the IrradianceCache, it’s the
IrradSample structure, which records the results from a single irradiance estimate.
The constructor and destructor of the OctNode just initialize the children to NULL
and delete them, respectively; their implementations won’t be shown here.�
Octree Declarations ���
template <class NodeData> struct OctNode {�

OctNode Method Declarations �
OctNode *children[8];
vector<NodeData> data;

};

Next is the main declaration of the Octree class. It is parameterized by the
NodeData class as well as by a “lookup procedure”, LookupProc, which is es-
sentially a callback function that lets the Octree communicate back to the caller
which elements of NodeData are overlapping a given lookup position.
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�
Octree Declarations ��� �
template <class NodeData, class LookupProc> class Octree {
public:�

Octree Method Declarations �
private:�

Octree Private Data �
};

The constructor just stores the overall bound of the tree. Items are added indi-
vidually with the add() method, below.�
Octree Method Declarations ���
Octree(const BBox &b)

: bound(b) {
}

�
Octree Private Data ���
BBox bound;
OctNode<NodeData> root;

To add a node to the tree, we recursively walk down the tree, creating new
nodes as needed, until termination criteria are met. We then add the given item
to the appropriate nodes that it overlaps. Similar to the KdTreeAccelerator of
Section 4.4, performance is substantially affected depending on what the specific
termination criteria are. For example, we could trivially decide to never refine the
tree and add all items to the root node. This would be a valid octree, though it
would perform poorly for large numbers of objects. However, if we refine the tree
too much, items may span large numbers of nodes, causing excessive memory use.

The entrypoint for adding an item directly calls an internal “add item” method
with a few additional parameters, including the current node being considered, the
bounding box of the node, and the squared length of the diagonal of the data item’s
bounding box. This internal method will itself be called as we recursively work
down the octree.�
Octree Method Declarations ��� �
void Add(const NodeData &dataItem, const BBox &dataBound) {

add(&root, bound, dataItem, dataBound,
DistanceSquared(dataBound.pMin, dataBound.pMax));

}

Here is the internal “add item” method. It either adds the item to the current node
or determines which child nodes the item overlaps, allocates them if necessary, and
recursively calls add() to allow the children to decide whether to stop the recursion
and add the item or to continue down the tree.�
Octree Method Definitions ���
template <class NodeData, class LookupProc>
void Octree<NodeData, LookupProc>::add(OctNode<NodeData> *node,

const BBox &nodeBound, const NodeData &dataItem,
const BBox &dataBound, Float diag2) {�

Possibly add data item to current octree node ��
Otherwise add data item to octree children �

}
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We stop going down the tree and add the item to the current node once the
length of the diagonal of the node is less than the length of the diagonal of the
item’s bounds. This ensures that the item overlaps a relatively small number of
tree nodes, while not being too small relative to the extent of the nodes that it’s
added to. Figure A.3 shows the basic operation of the algorithm in two dimensions
(where the corresponding data structure is known as an quadtree).�
Possibly add data item to current octree node ���
if (DistanceSquared(nodeBound.pMin, nodeBound.pMax) < diag2) {

node->data.push_back(dataItem);
return;

}

If we decide to continue down the tree, we need to determine which of the child
nodes the item’s bounding box overlaps. Rather than computing the bounds of each
child and doing a bounding box overlap test, we can save work by taking advantage
of symmetries, such as the fact that if the x range of the object’s bounding box is
entirely on the left side of the plane that splits the tree node in the x direction, there
is no way that it overlaps any of the four child nodes on the right side. Careful
selection of the child node numbering scheme in Figure A.2 is key to the success
of this approach.

We start by computing pMid, the position of the center of the current node. The
fragment

�
Determine which children the item overlaps � then efficiently sets an

array of boolean vlaues, over, such that the ith element is true only if the bounds
of the data item being added overlap the ith child of the current node. We can then
loop over the eight children and recursively call add() for the ones that the object
overlaps.�
Otherwise add data item to octree children ���
Point pMid = .5 * nodeBound.pMin + .5 * nodeBound.pMax;�
Determine which children the item overlaps �
for (int child = 0; child < 8; ++child) {

if (!over[child]) continue;�
Hand data item down to child number child �

}

Now the child node numbering scheme comes in. The child nodes are numbered
such that the low bit of a child’s number is zero if its z component is on the low side
of the z splitting plane and one if it is on the high side. Similarly, the second bit is
set based on which side the child is of the y plane, and the third bit is set based on
it’s position with respect to the x plane.

Thus, given boolean variables that classify a child node with respect to the split-
ting planes (true if it is above the plane, the child number of a given node is equal
to:

4 * (xHigh ? 1 : 0) + 2 * (yHigh ? 1 : 0) + 1 * (zHigh
? 1 : 0)

We can quickly determine which child nodes a given bounding box overlaps by
classifying its extent with respect to the center point of the node. For example, if the
bounding box’s starting x value is less than the midpoint, then the node potentially
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Figure A.3: Creation of a quadtree (the 2D analog of an octree). In the top row,
we are starting with a tree comprised of just the root node and are adding an object
with bounds around a given point. We refine the tree one level, and add the object
to the single child node that it overlaps (shown schematically underneath the tree.)
In the bottom row, we are adding another new object with a smaller bounding box
than the first. We go down two levels of the tree before adding the item, again to
the single node that it overlaps. In general, items may be stored in multiple nodes
of the tree.
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overlaps children numbers 0, 1, 2, and 3. If its ending x value is greater than the
midpoint, it potentially overlaps 4, 5, 6, and 7. We check the y and z dimensions in
turn, computing the logical and of the results: the item only overlaps a child node
if it overlaps its extent in all three dimensions.�
Determine which children the item overlaps ���
bool over[8];
over[0] = over[1] = over[2] = over[3] = (dataBound.pMin.x <= pMid.x);
over[4] = over[5] = over[6] = over[7] = (dataBound.pMax.x > pMid.x);
over[0] = over[1] = over[4] = over[5] &= (dataBound.pMin.y <= pMid.y);
over[2] = over[3] = over[6] = over[7] &= (dataBound.pMax.y > pMid.y);
over[0] = over[2] = over[4] = over[6] &= (dataBound.pMin.z <= pMid.z);
over[1] = over[3] = over[5] = over[7] &= (dataBound.pMax.z > pMid.z);

And now for the overlapping children, we continue down the tree. Rather than
using memory to store the bounding box of each node in tree, we compute node
bounds incrementally from the parent bounds.�
Hand data item down to child number child ���
if (!node->children[child])

node->children[child] = new OctNode<NodeData>;�
Compute childBound for child �
add(node->children[child], childBound, dataItem, dataBound, diag2);

Here again we take advantage of the child node numbering scheme to quickly
determine which values give the bounding box of the node.�
Compute childBound for child ���
BBox childBound;
childBound.pMin.x = (child & 4) ? pMid.x : nodeBound.pMin.x;
childBound.pMax.x = (child & 4) ? nodeBound.pMax.x : pMid.x;
childBound.pMin.y = (child & 2) ? pMid.y : nodeBound.pMin.y;
childBound.pMax.y = (child & 2) ? nodeBound.pMax.y : pMid.y;
childBound.pMin.z = (child & 1) ? pMid.z : nodeBound.pMin.z;
childBound.pMax.z = (child & 1) ? nodeBound.pMax.z : pMid.z;

After items have been added to the tree, the user can use the tree to look up
the items that have bounds that overlap a given point P. The Lookup() function
walks down the tree, processing the nodes that the given point overlaps. The user-
supplied callback, process is called for each NodeData item that overlaps the
given point.

As with the Add() function, the main lookup function directly calls to an internal
version that takes a pointer to the current node and the current node’s bounds.�
Octree Method Declarations ��� �
void Lookup(const Point &P, const LookupProc &process) {

if (!bound.Inside(P)) return;
lookup(&root, bound, P, process);

}

If the internal lookup function has been called with a given node, the point P
must be inside the node. We start by calling the user-supplied callback for each
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NodeData item that is stored in the node, allowing the user to do whatever process-
ing is appropriate. We then continue down the tree into the single child node that P
is inside until we hit the bottom.�
Octree Method Definitions ��� �
template <class NodeData, class LookupProc>
void Octree<NodeData, LookupProc>::lookup(OctNode<NodeData> *node,

const BBox &nodeBound, const Point &P,
const LookupProc &process) {

for (u_int i = 0; i < node->data.size(); ++i)
process(P, node->data[i]);�

Determine which octree child node P is inside �
if (node->children[child]) {�

Compute childBound for child �
lookup(node->children[child], childBound, P, process);

}
}

Again using the child numbering, we can quickly determine which child a point
overlaps by classifying it with respect to the center of the parent node in each
direcion.�
Determine which octree child node P is inside ���
Point pMid = .5 * nodeBound.pMin + .5 * nodeBound.pMax;
int child = (P.x > pMid.x ? 4 : 0) +

(P.y > pMid.y ? 2 : 0) + (P.z > pMid.z ? 1 : 0);

� �
��� � � � � � � #
�
kdtree.h* ����

Source Code Copyright �
#ifndef KDTREE_H
#define KDTREE_H
#include "lrt.h"
#include "geometry.h"�
Kd Tree Declarations ��
Kd Tree Method Definitions �
#endif // KDTREE_H

The kd tree is another data structure that accelerates the processing of spatial
data. In contrast to the octree, where the data items had a known bounding box and
the caller wanted to find all items that overlap a given point, the kd tree is useful for
handling data items that are just single points in space, with no associated bound,
but where the caller wants to find all such points within a user-supplied distance of
a given point.

The KdTree that will be described here is generally similar to the KdTreeAccelerator
of Section 4.4 in that 3D space is progressively split in half by planes. There are
two main differences, however:


 Here, each tree node stores a single data item. As such, there is exactly one
kd tree node for each data item stored in the tree.
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 Because each item being stored is just a single point, here we don’t have to
worry about items that straddle the splitting plane.

One result of these differences is that we can build a perfectly balanced tree, which
can improve the efficiency of data lookups.

First we’ll declare an enumerant to record which axis each tree node splits along
and the basic KdNode structure, which holds the user-supplied data as well as in-
formation about the topological structure of the tree.�
Kd Tree Declarations ���
enum SplitAxis { SPLIT_X, SPLIT_Y, SPLIT_Z };

�
Kd Tree Declarations ��� �
template <class NodeData> struct KdNode {

KdNode(const NodeData &d, SplitAxis a)
: data(d) {
children[0] = children[1] = NULL;
split = a;

}
˜KdNode() { delete children[0]; delete children[1]; }�
KdNode Data �

};
�
KdNode Data ���
NodeData data;
SplitAxis split;
KdNode *children[2];

The KdTree itself only needs to hold a pointer to the root node of the tree.�
Kd Tree Declarations ��� �
template <class NodeData, class LookupProc> class KdTree {
public:�

KdTree Method Declarations �
private:�

KdTree Private Data �
};

�
KdTree Private Data ���
KdNode<NodeData> *root;

All of the data items must be supplied to the KdTree constructor. We don’t
support incremental addition or removal of NodeData items since this functionality
isn’t needed in lrt and doing so keeps the implementation here straightforward.�
Kd Tree Method Definitions ���
template <class NodeData, class LookupProc>
KdTree<NodeData, LookupProc>::KdTree(const vector<NodeData> &d) {

vector<NodeData> data = d;
recursiveBuild(&root, data, 0, int(data.size()));

}

Tree construction is handled by the recursiveBuild() method. It takes a
pointer to a pointer to a KdNode, which allows us to fill in the root pointer in
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Figure A.4: Creation of a kd tree to store a set of points. Given a collection of
points (left), we first choose a split direction. Here, we have decided to split in the
x direction. We find the point in the middle along x and split along the plane that
goes through the point. Roughly half of points are to the left of the splitting plane
and half are to the right. We then continue recursively in each half, allocating new
tree nodes, splitting and partitioning, until all data points have been processed.

the KdTree or the appropriate children pointer in the parent node. We also pass
down the vector of NodeData items and offsets into the array indicating the subset
of data items � start � end � that need to be processed.

The tree building process selects the “middle” element of the user-supplied data
(to be explained precisely below) and partitions the data, so that all items below
the middle are in the first half of the array and all items above the middle are in
the second half. It constructs a node with the middle element as its data item and
then recursively initializes the two children of the node by processing the first and
second halves of the array (minus the middle element.) Figure A.4 shows the basic
process of bulding the kd tree.�
Kd Tree Method Definitions ��� �
template <class NodeData, class LookupProc>
void
KdTree<NodeData, LookupProc>::recursiveBuild(KdNode<NodeData> **node,

vector<NodeData> &data, int start, int end) {�
Create leaf node of kd tree if we’ve reached the bottom ��
Choose split direction and partition data ��
Allocate Kd tree node and continue recursively �

}

When there is zero or one item to be processed, then we’ve reached the bottom
of the tree. We either NULL out the node pointer (for zero items), or allocate a leaf
KdNode to hold the single item. In either case, we’re done with the current sub-tree,
so we immediately return.



Sec. A.10] Kd Trees 525

526 CompareNodeX
523 KdNode
28 pMax
28 pMin
29 Union
16 Vector

�
Create leaf node of kd tree if we’ve reached the bottom ���
if (start >= end) {

*node = NULL;
return;

}
if (start + 1 == end) {

*node = new KdNode<NodeData>(data[start], SPLIT_X);
return;

}

Otherwise, we need to partition the data into two halves and allocate and ini-
tialize a non-leaf node. We decide to split along whichever coordinate axis the
remaining data items have the largest extent. Then we call the standard library
nth_element() function, which takes three pointers start, mid, and end into a
sequence and partitions it such that the midth element is in the position it would
be in if the range was sorted and where all elements from start to mid-1 are less
than mid, and elements from mid+1 to end are greater than mid. This can all be
done more quickly than sorting the entire range–O

�
n � time rather than O

�
n logn � .�

Choose split direction and partition data ����
Compute bounds of data from start to end �
Vector diag = bound.pMax - bound.pMin;
SplitAxis split;
int splitPos = (start+end)/2;
if (diag.x > diag.y && diag.x > diag.z) {

split = SPLIT_X;
std::nth_element(&data[start], &data[splitPos], &data[end],

CompareNodeX<NodeData>());
}
else if (diag.y > diag.z) {

split = SPLIT_Y;
std::nth_element(&data[start], &data[splitPos], &data[end],

CompareNodeY<NodeData>());
}
else {

split = SPLIT_Z;
std::nth_element(&data[start], &data[splitPos], &data[end],

CompareNodeZ<NodeData>());
}

�
Compute bounds of data from start to end ���
BBox bound;
for (int i = start; i < end; ++i)

bound = Union(bound, data[i].P);

The nth_element() function needs a “comparison object” that determines the
ordering between two data elements. There are three small structures that do com-
parisons in the x, y, and z directions, which are used as appropriate based on the
split axis chosen previously.
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�
Kd Tree Declarations ��� �
template<class NodeData> struct CompareNodeX {

bool operator()(const NodeData &d1,
const NodeData &d2) const {

return d1.P.x < d2.P.x;
}

};

Once we’ve partitioned the data, we allocate a node to store the middle item and
recursively initialize its child node pointers with the two sets of remaining items.�
Allocate Kd tree node and continue recursively ���
*node = new KdNode<NodeData>(data[splitPos], split);
recursiveBuild(&((*node)->children[0]), data, start, splitPos);
recursiveBuild(&((*node)->children[1]), data, splitPos+1, end);

When the user wants to look up items from the tree, they provide a point P, a
callback procedure (similar to the one used in the Octree above), and a maximum
search radius. Rather than passing it by the value, the search radius is passed into
the lookup function by reference. This will allow us to pass it to the callback
procedure by reference, so that it can reduce the search radius as the search goes
on. This can speed up lookups when we can determine partway along that a smaller
search radius was appropriate.

As usual, we immediately call to an internal lookup procedure, passing in a
pointer to the current node to be processed.�
Kd Tree Method Definitions ��� �
template <class NodeData, class LookupProc> void
KdTree<NodeData, LookupProc>::Lookup(const Point &P,

const LookupProc &process, Float &maxDist) const {
recursiveLookup(root, P, process, maxDist);

}

The lookup function has two responsibilities: it needs to recursively process the
children of the current node, based on which of them the search region overlaps,
and it needs to call the callback routine, passing it the data item in the current node
if it is inside the search radius. Figure A.5 shows the basic process.
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Figure A.5: Basic process of kd tree lookups. The point marked with an “x” is the
lookup position, and the region of interest is denoted by the circular region around
it. At the root node of the tree (indicated by a bold splitting line), the data item
is outside of the region of interest, so it is not handed to the callback function.
However, the region overlaps both children of the node, so we have to recursively
consider each of them. We will consider the right child (child number one) first,
however, in order to examine the nearby data items before examining the ones
farther away.

�
Kd Tree Method Definitions ��� �
template <class NodeData, class LookupProc> void
KdTree<NodeData, LookupProc>::recursiveLookup(KdNode<NodeData> *node,

const Point &P, const LookupProc &process,
Float &maxDist) const {

if (!node) return;
if (node->split == SPLIT_X) {�

Process Kd node’s children based on x split �
}
else if (node->split == SPLIT_Y) {�

Process Kd node’s children based on y split �
}
else {�

Process Kd node’s children based on z split �
}�
Hand Kd tree node to processing function �

}

We will walk the tree in a depth-first manner, heading toward the leaf nodes
that are close to the lookup point P before we call the callback method to process
data items. This will ensure that we hand data points to the callback function in a
generally near-to-far order. If the caller is only interested in finding a fixed number
of nearby points, after which they will end the search, this is a more efficient order.

XXX also re-remind that maxDist may be decreased along the way... XXX
We first walk down the side of the tree that the current point lies on. Only after

that lookup has returned do we then go down the other side, if the search radius
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causes the lookup region to cover both sides of the tree. Below is the logic for the
case of a split along the x axis; the code for y and z is similar and is elided.�
Process Kd node’s children based on x split ���
if (P.x <= node->data.P.x) {

recursiveLookup(node->children[0], P, process, maxDist);
if (P.x + maxDist >= node->data.P.x)

recursiveLookup(node->children[1], P, process, maxDist);
}
else {

recursiveLookup(node->children[1], P, process, maxDist);
if (P.x - maxDist <= node->data.P.x)

recursiveLookup(node->children[0], P, process, maxDist);
}

Finally now, at the end of the lookup function, we see if the point stored in
the current node is inside the search radius. We save an expensive square root
computation by comparing squared distances, and pass the data item back to the
callback function if appropriate. In addition to doing whatever processing it needs
to do based on the item, the callback function may decrease maxDist in order to
reduce the region of space searched for the remainder of the processing.�
Hand Kd tree node to processing function ���
if (DistanceSquared(node->data.P, P) < maxDist*maxDist)

process(node->data, maxDist);

� �
� � � �
� � � �	��! ���
� � � !$�

Here we’ll also define the lrt.h file that all source files will #include. In has
the usual structure of a header file: it will include some other headers, declare some
functions, types, and constants, and define some inline functions. Throughout the
rest of the chapters of this book, we will add to the contents of all of these fragments
as we go along.�
lrt.h* ����

Source Code Copyright �
#ifndef LRT_H
#define LRT_H�
Global Include Files ��
Platform-specific definitions ��
Global Type Declarations ��
Global Forward Declarations ��
Global Constants ��
Global Function Declarations ��
Global Classes ��
Global Inline Functions �
#endif // LRT_H

All files that include lrt.h get a number of other include files in the process;
this makes it possible for them to just include lrt.h and not repeatedly include
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the others. We try to keep the number of such automatically included files to a
minimum; the ones here are necessary for almost all other modules, however.�
Global Include Files ��� �
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

Also, we include files from the standard library to get the vector, and pair tem-
plate classes. The using directive brings these container classes into our names-
pace.�
Global Include Files ��� �
#include <iostream>
using std::cout;
using std::cerr;
using std::endl;
using std::ostream;
#include <string>
using std::string;
#include <vector>
using std::vector;
//#ifndef __GNUG__
//#include <pair.h>
//#endif // !__GNUG__
using std::pair;
using std::make_pair;

We will also define a number of types with typedef here. First is Float; rather
than using the built-in float and double types for floating point variables, we
abstract away this choice with Float. This makes it convenient to globally change
from one representation to the other. In general, as long as numerical algorithms
with egregious stability are avoided, the precision provided by float is sufficient
in a ray-tracer.

For convenience, we also define shorthand names for unsigned cardinal types:
u_char, u_short, u_int, and u_long.�
Global Type Declarations ��� �
typedef float Float;
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;

We will also define a macro that holds lrt’s current version number. This is a
floating-point value that will be increased as future versions of lrt are developed.�
Global Constants ��� �
#define LRT_VERSION 1.0

SGI’s old C++ compiler...
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�
Platform-specific definitions ��� �
#ifdef sgi
#define for if (0) ; else for
#endif

���"� ������� � � ����� ���

Detailed information about the random number generator we are using, includ-
ing the original paper from ACM Transactions on Modelling and Computer Simu-
lation (MN98) are available at http://www.math.keio.ac.jp/˜matumoto/emt.html.

Float to int stuff at http://www.stereopsis.com/FPU.html.
Gaussian elimination, pivot stuff(Atk93).
Numerical Recipes, Press (PTVF92).
Samet’s book on octrees (Sam90)
de Berg et al computational geoemtry (dBvKOS00)



� � � � � � � � � � � � � � � �

�
tiffio.cc* ����

Source Code Copyright �
#include "lrt.h"
#include "color.h"
#include <tiffio.h>�
TIFF Function Definitions �
This chapter describes lrt’s interface with libtiff, a library for reading and

writing image files as TIFFs (Tag Image File Format). TIFF is perhaps the mother
of all image file formats, supporting a variety of methods for image compression,
a variety of spectral representations, and a variety of methods of structuring the
image data.

With this flexibility comes complexity. libtiff makes reading and writing
TIFF images easier than it would be without libtiff, though it is still a baroque
process. Like just about every application that reads and writes TIFF images, lrt
is unable to read certain completely valid TIFF files that use obscure features of the
file format. Supporting these would greatly increase the length of this code. Just
about all TIFF images that are encountered in practice should be readable by these
routines.

� � �
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� � � ��� � ���
The function that reads TIFFs deals with three main types of TIFFs:

 Standard RGB eight-bit per pixel TIFFs.


 TIFFs with colormaps: an array of RGB colors where each pixel is repre-
sented by an index into the array (this can reduce storage needs when there
are a small number of colors in the image).


 TIFFs with floating-point RGB pixel values.

We always return the pixel data as a Spectrum array that TIFFRead() allocates.
This can be a wasteful representation; for an eight-bit per pixel TIFF, this is four
times bigger than the original data. However, it greatly simplifies our task.�
TIFF Function Definitions ���
Spectrum *TIFFRead(const string &name, int *xSize, int *ySize) {

Spectrum *pixels = NULL;
Float *fbuf = NULL;
u_char *ubuf = NULL;�
Try to open TIFF file ��
Get basic information from TIFF header ��
Make sure this is a TIFF we can read ��
Read TIFF colormap if present ��
Allocate space for pixels and buffers �
for (int y = 0; y < *ySize; ++y) {�

Read a TIFF scanline �
}�
Close TIFF and return �

}�
Try to open TIFF file ���
TIFF *tiff = TIFFOpen(name.c_str(), "r");
if (!tiff) {

Error("Unable to open TIFF %s", name.c_str());
return NULL;

}

We first determine the resolution of the TIFF and the number of samples per
pixel.�
Get basic information from TIFF header ���
short int nSamples;
TIFFGetField(tiff, TIFFTAG_IMAGEWIDTH, xSize);
TIFFGetField(tiff, TIFFTAG_IMAGELENGTH, ySize);
TIFFGetField(tiff, TIFFTAG_SAMPLESPERPIXEL, &nSamples);
if (nSamples-1 > COLOR_SAMPLES)

// Allow one extra, e.g. for alpha..
Warning("TIFF %s has %d samples, > Spectrum (%d samples)",

name.c_str(), nSamples, COLOR_SAMPLES);
if (nSamples != 1 && nSamples < COLOR_SAMPLES)

Warning("TIFF %s has %d samples, < Spectrum (%d samples)",
name.c_str(), nSamples, COLOR_SAMPLES);
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Now things get a little complicated. We find out how many bits each sample has
and in what format they’re stored in. We require that either each sample is 32 bits
wide and stored as a floating point value, or that it’s 8 bits and stored as unsigned
integer values. If the above is not true, we head to the fragment

�
Clean up after

TIFF reading error � , which will clean up any memory that’s been allocated, close
the file, and return NULL.

Finally we make sure that the RGB samples are interleaved (that is, as RGBRG-
BRGB along a scanline.) TIFFs also support images where each of the channels is
stored in a separate contiguous part of the file; we don’t support these.�
Make sure this is a TIFF we can read ���
short int bitsPerSample, sampleFormat = SAMPLEFORMAT_UINT;
if (!TIFFGetField(tiff, TIFFTAG_BITSPERSAMPLE, &bitsPerSample)) {

Error("TIFFRead: bits per sample not set in TIFF");�
Clean up after TIFF reading error �

}
if (!TIFFGetField(tiff, TIFFTAG_SAMPLEFORMAT, &sampleFormat)) {

if (bitsPerSample == 32)
sampleFormat = SAMPLEFORMAT_IEEEFP;

else
sampleFormat = SAMPLEFORMAT_UINT;

}

if (bitsPerSample == 32) {
if (sampleFormat != SAMPLEFORMAT_IEEEFP) {

Error("TIFFRead: 32 bit TIFF not stored in floating point format");�
Clean up after TIFF reading error �

}
}
else {

if (bitsPerSample != 8 && bitsPerSample != 32) {
Error("TIFFRead: only 8 and 32 bits per sample supported");�
Clean up after TIFF reading error �

}
if (sampleFormat != SAMPLEFORMAT_UINT) {

Error("TIFFRead: 8 bit TIFFs must be stored as unsigned ints");�
Clean up after TIFF reading error �

}
}
int bytesPerSample = bitsPerSample / 8;
if (nSamples * *xSize * bytesPerSample != TIFFScanlineSize(tiff)) {

Error("TIFFRead: RGB not interleaved in TIFF %s", name.c_str());�
Clean up after TIFF reading error �

}

If there is one sample per pixel, we assume that there is a colormap. This may
not be the case; TIFF supports greyscale images as well as color images. If we
check the the PHOTOMETRIC field doesn’t indicate that there is a palette (aka col-
ormap) stored with the image, we just give up, saving the code for that obscure
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case. If it is there, we store pointers to the colormap in mapR, mapG, and mapB.�
Read TIFF colormap if present ���
u_short *mapR = 0, *mapG = 0, *mapB = 0;
if (nSamples == 1) {

short photoType;
TIFFGetField(tiff, TIFFTAG_PHOTOMETRIC, &photoType);
if (photoType != PHOTOMETRIC_PALETTE) {

Error("TIFFRead: colormap not found in one-sample image");�
Clean up after TIFF reading error �

}
TIFFGetField(tiff, TIFFTAG_COLORMAP, &mapR, &mapG, &mapB);

}

Now we can allocate space for the resulting pixels and for buffers for reading
the image. We allocate ubuf or fbuf as appropriate for the format of the image
that we’re reading.�
Allocate space for pixels and buffers ���
pixels = new Spectrum[*xSize * *ySize];
Spectrum *pixelp = pixels;
if (bitsPerSample == 32) fbuf = new float[nSamples * *xSize];
else ubuf = new u_char[nSamples * *xSize];

�
Read a TIFF scanline ���
if (fbuf) {�

Read floating point TIFF scanline �
}
else {�

Read 8-bit TIFF scanline �
}

We read the scanline into fbuf and then copy it into pixels. Because we’re
reading the image from top-to-bottom, we end up going through pixels in order
from start to end. Thus, we just increment pixelp after each pixel is processed.
We also keep a pointer into the data read from the file, fbufp; this is incremented
by nSamples after each pixel to get to the next pixel.�
Read floating point TIFF scanline ���
float *fbufp = fbuf;
if (TIFFReadScanline(tiff, fbuf, y, 1) == -1) {�

Clean up after TIFF reading error �
}
for (int x = 0; x < *xSize; ++x) {

Float cs[COLOR_SAMPLES];
for (int i = 0; i < COLOR_SAMPLES; ++i) {

if (i < nSamples) cs[i] = fbufp[i];
else cs[i] = 0.;

}
*pixelp++ = Spectrum(cs);
fbufp += nSamples;

}
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Similarly, we can do similar tricks with ubuf and ubufp when reading eight-bit
TIFFs.�
Read 8-bit TIFF scanline ���
u_char *ubufp = ubuf;
if (TIFFReadScanline(tiff, ubuf, y, 1) == -1) {�

Clean up after TIFF reading error �
}
for (int x = 0; x < *xSize; ++x) {

if (nSamples == 1) {�
Decode TIFF colormap entry �

}
else {�

Convert standard 8-bit TIFF pixel �
}
++pixelp;
ubufp += nSamples;

}

If there is a colormap, we just use the sample value to index into the colormap
for each of red, green, and blue. We scale by 1 � � 255 � so that the returned image
values lie between zero and one.�
Decode TIFF colormap entry ���
int mapOffset = *ubufp;
Assert(COLOR_SAMPLES == 3);
Float cs[3] = { mapR[mapOffset] * INV_255 * INV_255,

mapG[mapOffset] * INV_255 * INV_255,
mapB[mapOffset] * INV_255 * INV_255 };

*pixelp = Spectrum(cs);

And reading a normal pixel is easy; we just need to scale by 1 � � 255 � .�
Convert standard 8-bit TIFF pixel ���
Float cs[COLOR_SAMPLES];
for (int i = 0; i < COLOR_SAMPLES; ++i)

cs[i] = ubufp[i] * INV_255;
*pixelp = Spectrum(cs);

�
Close TIFF and return ���
delete[] ubuf;
delete[] fbuf;
TIFFClose(tiff);
return pixels;

�
Clean up after TIFF reading error ���
delete[] pixels;
delete[] ubuf;
delete[] fbuf;
TIFFClose(tiff);
return NULL;
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� � � � ��� � ���
We will provide two functions for writing TIFF data: the difference between

them is the format used for storing pixel values. The first function stores them
as unsigned eight-bit quantities–this is the most common format for TIFF files.
For many displays, this is sufficient resolution, especially if gamma correction and
dithering are applied well (see Section 8.5).

The second format stores the pixel values as 32-bit floating point numbers. This
allows us to store the full resolution of the result calculated by the renderer in the
image format. Advantages include the ability to apply different tone reproduction
algorithms without re-rendering the image (see Section 8.4 on page 244.) Un-
fortunately, few widely-used image display programs support floating point TIFF
images.

Both of the output routines have similar structures. The file is opened, individual
scanlines of pixels are written, and the file is closed.�
TIFF Function Definitions ��� �
void TIFFWrite8Bit(const string &name, Float *pixels,

Float *alpha, int XRes, int YRes, int nChannels,
int totXRes, int totYRes) {

Assert(pixels);�
Open 8-bit TIFF file for writing ��
Write 8-bit scanlines ��
Close 8-bit TIFF file �

}

Actually, we should use TIFFSetErrorHandler() and TIFFSetWarningHandler()
and funnel that stuff to our own warning/error routines.

After opening the image (similarly to the fopen() call), we set a variety of flags
which tell the library exactly what kind of TIFF we’re going to give it, how to
encode the samples, etc. Most of these should be reasonably self-explanatory. See
the TIFF documentation (XXX URL?) for a full explanation.�
Open 8-bit TIFF file for writing ���
TIFF *tiff = TIFFOpen(name.c_str(), "w");
if (!tiff) {

Error("Unable to open TIFF %s for writing", name.c_str());
return;

}

�
Compute and set up samples per pixel �
TIFFSetField(tiff, TIFFTAG_IMAGEWIDTH, XRes);
TIFFSetField(tiff, TIFFTAG_IMAGELENGTH, YRes);
if (totXRes != 0) {

TIFFSetField(tiff, TIFFTAG_PIXAR_IMAGEFULLWIDTH, totXRes);
TIFFSetField(tiff, TIFFTAG_PIXAR_IMAGEFULLLENGTH, totYRes);

}
TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 8);
TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_RGB);�
Set Generic TIFF Fields �
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�
Compute and set up samples per pixel ���
int sampleCount = 0;
if (pixels) sampleCount += nChannels;
if (alpha) ++sampleCount;
TIFFSetField(tiff, TIFFTAG_SAMPLESPERPIXEL, sampleCount);
if (alpha) {

short int extra[] = { EXTRASAMPLE_ASSOCALPHA };
TIFFSetField(tiff, TIFFTAG_EXTRASAMPLES, (short)1, extra);

}

There are a few fields that are set the same way for both eight-bit and floating
point TIFF files; we’ll set them in a single fragment that can be shared.�
Set Generic TIFF Fields ���
TIFFSetField(tiff, TIFFTAG_ROWSPERSTRIP, 1L);
TIFFSetField(tiff, TIFFTAG_XRESOLUTION, 1.0);
TIFFSetField(tiff, TIFFTAG_YRESOLUTION, 1.0);
TIFFSetField(tiff, TIFFTAG_RESOLUTIONUNIT, 1);
TIFFSetField(tiff, TIFFTAG_COMPRESSION, COMPRESSION_NONE);
TIFFSetField(tiff, TIFFTAG_PLANARCONFIG, PLANARCONFIG_CONTIG);
TIFFSetField(tiff, TIFFTAG_ORIENTATION, (int)ORIENTATION_TOPLEFT);

And now we can write out the scanlines of pixels. The imaging, tone mapping,
and quantization process should have mapped the pixel values to the range 0–255
(in most cases); we can cast these to unsigned chars and write them out. It
turns out that by walking through the pixels array linearly from start to finish, we
traverse it scanline-by-scanline, from top-to-bottom–exactly the order that we’re
going to write it out in. Thus we can do pointer arithmetic with pixelp to go
through the pixels.�
Write 8-bit scanlines ���
u_char *buf = new u_char[sampleCount * XRes];
Float *pixelp = pixels;
Float *alphap = alpha;
for (int y = 0; y < YRes; ++y) {

u_char *bufp = buf;
for (int x = 0; x < XRes; ++x) {�

Pack 8-bit pixels samples into buf ��
Pack 8-bit alpha samples into buf �

}
TIFFWriteScanline(tiff, buf, y, 1);

}
�
Pack 8-bit pixels samples into buf ���
for (int s = 0; s < nChannels; ++s)

*bufp++ = (u_char)(Clamp(*pixelp++, 0.f, 255.f));

�
Pack 8-bit alpha samples into buf ���
if (alphap)

*bufp++ = (u_char)(Clamp(*alphap++, 0.f, 255.f));
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�
Close 8-bit TIFF file ���
delete[] buf;
TIFFClose(tiff);

Writing out a floating point TIFF file is quite similar. The only differences are
in some of the flags we set (which now say that it’s a floating-point image), and
how we write the data out.�
TIFF Function Definitions ��� �
void TIFFWriteFloat(const string &name, Float *pixels,

Float *alpha, int XRes, int YRes, int nChannels,
int totXRes, int totYRes) {�

Open Float TIFF file for writing ��
Write Float scanlines ��
Close Float TIFF file �

}
�
Open Float TIFF file for writing ���
TIFF *tiff = TIFFOpen(name.c_str(), "w");
if (!tiff) {

Error("Unable to open TIFF %s for writing", name.c_str());
return;

}
TIFFSetField(tiff, TIFFTAG_IMAGEWIDTH, XRes);
TIFFSetField(tiff, TIFFTAG_IMAGELENGTH, YRes);
if (totXRes != 0) {

TIFFSetField(tiff, TIFFTAG_PIXAR_IMAGEFULLWIDTH, totXRes);
TIFFSetField(tiff, TIFFTAG_PIXAR_IMAGEFULLLENGTH, totYRes);

}�
Compute and set up samples per pixel �
TIFFSetField(tiff, TIFFTAG_BITSPERSAMPLE, 32);
TIFFSetField(tiff, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP);
TIFFSetField(tiff, TIFFTAG_PHOTOMETRIC, PHOTOMETRIC_MINISBLACK);�
Set Generic TIFF Fields �
Writing the scanlines is much easier than with eight-bit images, since we don’t

need to convert the Float values to unsigned chars. Note that if Float was type-
def’d to double, then we would need to allocate a temporary buffer and convert
to float, as we did above for unsigned char. We’ll just assert that this hasn’t
happened, and write out the pixel data as given.
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�
Write Float scanlines ���
Float *pixelp = (Float *)pixels;
Float *alphap = alpha;
Float *scanline = new Float[sampleCount * XRes];
for (int y = 0; y < YRes; ++y) {

Float *sp = scanline;
for (int x = 0; x < XRes; ++x) {

if (pixelp)
for (int c = 0; c < nChannels; ++c)

*sp++ = *pixelp++;
if (alphap)

*sp++ = *alphap++;
}
TIFFWriteScanline(tiff, scanline, y, 1);

}
delete[] scanline;

�
Close Float TIFF file ���
TIFFClose(tiff);



��� �



� � � � � � � � � � ��� � � � � �

One of the key parts of lrt’s design was the decision that the lrt executable
would only hold the key core logic of the system. All of the shapes, cameras, lights,
integrators, and accelerators are stored in separate object files on disk; at run-time,
lrt loads in the appropriate object code for the needed objects. This makes it far
easier to extend lrt with new implementations of various types and helps ensure a
clean design by making it much harder to side-step the basic system interfaces.�
dynload.h* ����

Source Code Copyright �
#ifndef DYNLOAD_H
#define DYNLOAD_H
#include "lrt.h"�
Runtime Loading Declarations �
#endif // DYNLOAD_H

��� �
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�
dynload.cc* ����

Source Code Copyright �
#include "dynload.h"
#include "paramset.h"
#include "shapes.h"
#include "materials.h"
#ifndef WIN32
#include <dlfcn.h>
#endif�
Runtime Loading Forward Declarations ��
Runtime Loading Static Data ��
Runtime Loading Local Classes ��
Runtime Loading Methods ��
DSO Method Definitions �

�
Global Include Files ��� �
#ifdef WIN32
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif

� � �  �	� � � �����
�  ����#
We’ll first introduce a class that handles collections of named parameters and

their values. It is a key part of how objects are created at run-time, bundling up the
values of the parameters to the constructors in a single object. For example, it might
record that there is a single floating-point value named “radius” with a value of 2.5,
and an array of four color values named “specular” with various color values. The
ParamSet provides methods for both setting and retrieving values from this kind
of set of parameters.�
ParamSet Declarations ���
class ParamSet {
public:�

ParamSet Constructors �
˜ParamSet();
void init(int n, const char **tokens, void **params, int nv = 0);
void clear();

�
ParamSet Interface ��
ParamSet Public Data �

private:�
ParamSet Data �

};

Internally, the ParamSet stores a vector for each of the different parameter types
that it stores. Each bound parameter is represented by a ParmSetItem of the ap-
propriate type.
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�
ParamSet Data ���
vector<ParamSetItem<int> *> ints;
vector<ParamSetItem<Float> *> floats;
vector<ParamSetItem<Point> *> points;
vector<ParamSetItem<Vector> *> vectors;
vector<ParamSetItem<Normal> *> normals;
vector<ParamSetItem<Spectrum> *> spectra;
vector<ParamSetItem<string> *> strings;

The ParamSetItem structure mostly just needs to store the name of the parame-
ter and a pointer to memory that stores its value. We also keep track of the number
of array elements, if the item holds an array of item values, as well as the type of
this item.�
ParamSet Declarations ��� �
template <class T> struct ParamSetItem {

ParamSetItem(const string &name, const T *val, int type, int count,
int nVertex = 0);

˜ParamSetItem();
ParamSetItem<T> *Clone(int nVertex) const;

string name;
int type, arraySize;
T *data;
bool lookedUp;

};
�
ParamSetItem Methods ���
template <class T>
ParamSetItem<T>::ParamSetItem(const string &n, const T *v, int t,

int c, int nVertex) {
name = n;
type = t;
arraySize = c;
lookedUp = false;�
Determine number of data items for ParamSetItem �
data = new T[nAlloc];
for (int i = 0; i < nAlloc; ++i)

data[i] = v[i];
}

The parameter type includes both the underlying datatype–float, int, etc.–as well
as the parameter’s storage class. These two are stored together in the type member.
We’ll define some constants to represent each of the possible types.
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�
ParamSet Types ���
#define PARAM_TYPE_INT (1<<0)
#define PARAM_TYPE_FLOAT (1<<1)
#define PARAM_TYPE_POINT (1<<2)
#define PARAM_TYPE_VECTOR (1<<3)
#define PARAM_TYPE_NORMAL (1<<4)
#define PARAM_TYPE_STRING (1<<5)
#define PARAM_TYPE_COLOR (1<<6)
#define PARAM_TYPE_VOID (1<<7)
#define PARAM_TYPE_HPOINT (1<<8)

We’ll also specify an illegal value for the type member, in order to signify error
conditions.�
ParamSet Types ��� �
#define PARAM_TYPE_ERROR -1

The storage class accounts for the idea that we may want to have multiple values
of a parameter defined in a way that it can be interpolated over a surface, taking on
a different value at each point being shaded. For example, a triangle mesh might be
defined with a single diffuse color for all of the triangles, but with specular colors
defined at each vertex and interpolated inside each face.

There are three different storage classes to handle these sorts of situations:


 Uniform parameters take on a single value over the entire object


 Varying parameters are specified with four values which are bilinearly inter-
polated according to the

�
u � v � parameter value for a point on the surface.


 Vertex parameters are only available for mesh shapes, and represent values
specefied at each vertex of the mesh.

�
ParamSet Types ��� �
#define PARAM_TYPE_UNIFORM (1<<9)
#define PARAM_TYPE_VARYING (1<<10)
#define PARAM_TYPE_VERTEX (1<<11)

The ParamSet also stores the number of items to expect for items with vertex
storage class.�
ParamSet Constructors ���
ParamSet(int nv = 0) { nVertex = nv; }

�
ParamSet Public Data ���
int nVertex;

Now we can define the fragment that tells us how many items we need to allocate
space for.�
Determine number of data items for ParamSetItem ���
int nAlloc = arraySize;
if (type & PARAM_TYPE_VARYING) nAlloc *= 4;
if (type & PARAM_TYPE_VERTEX) nAlloc *= nVertex;
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�
ParamSetItem Methods ��� �
template <class T>
ParamSetItem<T>::˜ParamSetItem() {

delete[] data;
}

�
ParamSetItem Methods ��� �
template <class T>
ParamSetItem<T> *ParamSetItem<T>::Clone(int nVertex) const {

return new ParamSetItem<T>(name, data, type,
arraySize, nVertex);

}

To add an entry to the parameter set, the user just calls the appropriate method,
passing the name of the parameter, a pointer to its value, and storage class infor-
mation.�
ParamSet Methods ��� �
void ParamSet::AddFloat(const string &name, const Float *data,

int type, int narray) {
type |= PARAM_TYPE_FLOAT;
floats.push_back(new ParamSetItem<Float>(name, data, type,

narray, nVertex));
}

We won’t include the rest of the methods to add other data types to the ParamSet,
but will include their prototypes here for reference.�
ParamSet Interface ��� �
void AddInt(const string &, const int *,

int type = PARAM_TYPE_UNIFORM, int nArray = 1);
void AddPoint(const string &, const Point *,

int type = PARAM_TYPE_UNIFORM, int nArray = 1);
void AddVector(const string &, const Vector *,

int type = PARAM_TYPE_UNIFORM, int nArray = 1);
void AddNormal(const string &, const Normal *,

int type = PARAM_TYPE_UNIFORM, int nArray = 1);
void addSpectrum(const string &, const Spectrum *,

int type = PARAM_TYPE_UNIFORM, int nArray = 1);
void AddString(const string &, const string *, int nArray = 1);

Looking up parameter values is straightforward; we just loop through the values
we have of the requested type and return the value, if any. There are two versions
of the lookup method, a simple one for uniform parameters with array size of one
(or non-array types), that returns the data value directly.
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�
ParamSet Methods ��� �
Float ParamSet::FindOneFloat(const string &name, Float d) const {

for (u_int i = 0; i < floats.size(); ++i)
if (floats[i]->name == name &&

floats[i]->type & PARAM_TYPE_UNIFORM &&
floats[i]->arraySize == 1) {
floats[i]->lookedUp = true;
return *(floats[i]->data);

}
return d;

}

As above, here are the declarations for the rest of the analogous methods.�
ParamSet Interface ��� �
int FindOneInt(const string &, int d) const;
Point FindOnePoint(const string &, const Point &d) const;
Vector FindOneVector(const string &, const Vector &d) const;
Normal FindOneNormal(const string &, const Normal &d) const;
Spectrum FindOneSpectrum(const string &,

const Spectrum &d) const;
string FindOneString(const string &, const string &d) const;

The second lookup method returns a pointer to the data if it’s present. It returns
the storage class information in the given type pointer and the number of array
elements in the nArray value. It’s up to the caller to interpret these appropriately
when accessing the returned pointer.�
ParamSet Methods ��� �
const Float *ParamSet::FindFloat(const string &name, int *type,

int *nArray) const {
for (u_int i = 0; i < floats.size(); ++i)

if (floats[i]->name == name) {
*nArray = floats[i]->arraySize;
*type = floats[i]->type;
floats[i]->lookedUp = true;
return floats[i]->data;

}
return NULL;

}

These are the rest of the analogous lookup functions.
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�
ParamSet Interface ��� �
const int *findInt(const string &, int *type,

int *nArray) const;
const Point *FindPoint(const string &, int *type,

int *nArray) const;
const Vector *FindVector(const string &, int *type,

int *nArray) const;
const Normal *FindNormal(const string &, int *type,

int *nArray) const;
const Spectrum *FindSpectrum(const string &, int *type,

int *nArray) const;
const string *FindString(const string &, int *type,

int *nArray) const;�
ParamSet Methods ��� �
int ParamSet::TypeToNum(int type) {

if (type & PARAM_TYPE_UNIFORM) return 1;
else if (type & PARAM_TYPE_VARYING) return 4;
else if (type & PARAM_TYPE_VERTEX) return nVertex;
else {

Assert(1 == 0);
return 1;

}
}

Because the user may misspell parameter names in the scene description file,
we’ll also provide a function that goes through the parameter set and reports if any
of the parameters present were never looked up. If this happens, odds are good the
user has given an incorrect parameter.�
ParamSet Methods ��� �
void ParamSet::ReportUnused() const {
#define CHECK_UNUSED(v) \

for (i = 0; i < (v).size(); ++i) \
if (v[i]->name[0] != ’_’ && !(v)[i]->lookedUp) \

Warning("Parameter \"%s\" not used", \
(v)[i]->name.c_str())

u_int i;
CHECK_UNUSED(ints);
CHECK_UNUSED(floats);
CHECK_UNUSED(points);
CHECK_UNUSED(vectors);
CHECK_UNUSED(normals);
CHECK_UNUSED(spectra);
CHECK_UNUSED(strings);

}�
ParamSet Methods ��� �
ParamSet::˜ParamSet() {

clear();
}
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�
ParamSet Methods ��� �
void ParamSet::clear() {

u_int i;
#define DEL_PARAMS(name) \

for (i = 0; i < (name).size(); ++i) \
delete (name)[i]; \

(name).erase((name).begin(), (name).end())

DEL_PARAMS(ints);
DEL_PARAMS(floats);
DEL_PARAMS(points);
DEL_PARAMS(vectors);
DEL_PARAMS(normals);
DEL_PARAMS(spectra);
DEL_PARAMS(strings);

#undef DEL_PARAMS
}

� � � � � ����� ��� 	 �	��� � � � � � ��� �	� ����#
In this section, we will describe the general process that lrt uses to link in

implementations at runtime. We will focus on the details only for the Shape class,
since the other times that are loaded at runtime are handled quite similarly.

Creation Functions

All of the object files that hold shape implementations must provide a function
with the same signature. When lrt needs to create a particular shape, it will call
this function from the appropriate object file.�
Shape Creation Declaration ���
Reference<Shape> CreateShape(const Transform &o2w, const ParamSet &params);

Because all Shapes store an object to world transformation, we pass the appro-
priate transformation to this function. However, in general we need to be able to
pass whichever other parameters the particular shape needs and that the user may
have set in the input file. Because we don’t want to hard-code knowledge like
“spheres need to have a floating-point radius value passed to their constructor” into
lrt, we use the ParamSet to handle marshal parameters and their values for use
by the individual shapes.

The dynamic sphere creation routine just pulls the appropriate values out of the
ParamSet and cals the constructor, returning a newly-allocated sphere.�
Sphere Methods ��� �
extern "C" Reference<Shape> CreateShape(const Transform &o2w,

const ParamSet &params) {
Float radius = params.FindOneFloat("_radius", 1);
Float zmin = params.FindOneFloat("_zmin", -radius);
Float zmax = params.FindOneFloat("_zmax", radius);
Float thetamax = params.FindOneFloat("_thetamax", 360);
return new Sphere(o2w, radius, zmin, zmax, thetamax);

}
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The creation routines for other shapes are quite similar, so won’t be included
here.

XXX include the basic signatures for the other object creation functions here,
though XXX

Loading object files

Loading an object file with such a function to be called from disk and linking it
into a running application can be done relatively easy in modern operating systems.
The system calls to use are highly operating-system dependent, however. The DSO
base-class is one key to this process; it hides the operating-system-dependent parts
of it.

Dynamic shared object DSO
Dynamic link library DLL
XXX what is a DSO, DSO vs DLL. Rename this class? XXX�

Global Classes ��� �
class DSO {
public:�

DSO Methods �
private:
#if defined(WIN32)

HMODULE hinstLib;
#else

void *hinstLib;
#endif
};

The DSO constructor handles the first step of loading the shared object into lrt’s
address spade. It takes a pathname to the object file.�
DSO Method Definitions ���
DSO::DSO(const string &fname) {
#ifdef WIN32

hinstLib = LoadLibrary(fname.c_str());
if (!hinstLib)

Error("DSO Loader can’t open DLL %s", fname.c_str());
#else

hinstLib = dlopen(fname.c_str(), RTLD_LAZY);
if (!hinstLib)

Error("DSO Loader can’t open DLL %s (%s)", fname.c_str(),
dlerror());

#endif
}

And the destructor makes the system call to remove the library from our address
space.
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�
DSO Method Definitions ��� �
DSO::˜DSO() {
#ifdef WIN32

FreeLibrary(hinstLib);
#else

dlclose(hinstLib);
#endif
}

Once a library has been loaded into memory, the GetSymbol function lets us ask
for a function inside the DSO with a particular name. If that function exists, then
this returns a pointer to it which we can use to actually call it.�
DSO Method Definitions ��� �
void *DSO::GetSymbol(const string &symname) {

void *data;
#ifdef WIN32

data = GetProcAddress(hinstLib, symname.c_str());
#else

data = dlsym(hinstLib, symname.c_str());
#endif

if (!data)
Error("Couldn’t get symbol \"%s\" in DSO.", symname.c_str());

return data;
}

For each base type for which we are able to load implementations at runtime,
we inherit from DSO. Here is the implementation of ShapeDSO. All of these imple-
mentations just call the DSO GetSymbol function in the constructor, passing in the
name of the object creation function (e.g. CreateShape, which was introduced
previously in this section.) All Shape shared object files implement this function
and return a new Shape of their particular type when it is called.�
Runtime Loading Local Classes ���
class ShapeDSO : public DSO {
public:�

ShapeDSO Constructor �
typedef Reference<Shape> (*CreateShapeFunc)(const Transform &o2w,

const ParamSet &params);
CreateShapeFunc CreateShape;

};

One possibly dangerous thing that the constructor does is cast the returned sym-
bol to be a pointer to a function with the right signature for creating shapes. If
the person who implemented a particular Shape defined it with a CreateShape
function that only took a ParamSet and didn’t have a Transform parameter, the
program would probably crash at run-time if it tried to call that function. In the
interests of making it easier to keep lrt portable across architectures, we’ll just
take that risk and keep the code here simpler.
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�
ShapeDSO Constructor ���
ShapeDSO(const string &name)

: DSO(name) {
CreateShape = (CreateShapeFunc)(GetSymbol("CreateShape"));

}

XXX call this function something else! XXX
The function that the main section of lrt uses when it actually needs to create

a shape is also called CreateShape. It takes the name of the shape to be created,
the object to world transformation, and the ParamSet for the new shape. It calls
GetShapeDSO, which will be defined shortly–it returns the DSO for the named shape
if it exists–and it then calls the creation function pointer that the DSO holds to
actually cause the particular shape to be made.�
Runtime Loading Methods ���
Reference<Shape> CreateShape(const string &name, const string &searchpath,

const Transform &object2world, const ParamSet &paramSet) {
ShapeDSO *dso = LoadDSO<ShapeDSO>(name, shape_dsos, "shapes/",

searchpath);
if (dso)

return dso->CreateShape(object2world, paramSet);
return NULL;

}
�
Runtime Loading Forward Declarations ���
template <class D> D*LoadDSO(const string &name,

StringHashTable &hashTable, const string &subdir,
const string &searchPath) {

D *dso = (D *)hashTable.Search(name);
if (!dso) {

string filename = subdir + name;
#ifdef WIN32

filename += ".dll";
#else

filename += ".so";
#endif

string path = SearchPath(searchPath, filename);
if (path != "") {

dso = new D(path.c_str());
hashTable.Add(name, dso);

}
else

Error("Unable to find DSO/DLL for \"%s\"",
name.c_str());

}
return dso;

}



Material 303
Spectrum 155

surfaceParams 575
Texture 323

552 Dynamic Object Creation [App. C

�
Runtime Loading Static Data ���
static StringHashTable shape_dsos, filter_dsos;
static StringHashTable material_dsos, bump_dsos;
static StringHashTable light_dsos, arealight_dsos, volume_dsos;
static StringHashTable surf_integrator_dsos, vol_integrator_dsos, tonemap_dsos;
static StringHashTable accelerator_dsos, camera_dsos, sampler_dsos;

�
Runtime Loading Methods ��� �
static string SearchPath(const string &searchpath,

const string &filename) {
const char *start = searchpath.c_str();
const char *end = start;
while (*start) {

while (*end && *end != ’:’)
++end;

string component(start, end);

string fn = component + "/" + filename;
FILE *f = fopen(fn.c_str(), "r");
if (f) {

fclose(f);
return fn;

}
if (*end == ’:’) ++end;
start = end;

}
return "";

}

creation stuff�
Material creation macros ��� �
#define SURF_TEX_S(var, def) \

Texture<Spectrum> *(var) = Material::MakeSpecTex(geomParams, surfaceParams, \
#var, def)

#define SURF_TEX_F(var, def) \
Texture<Float> *(var) = Material::MakeFloatTex(geomParams, surfaceParams, \

#var, def)
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�
Material Method Definitions ��� �
Texture<Spectrum> *Material::MakeSpecTex(const ParamSet &pGeom, const ParamSet &pShader,

const string &name, const Spectrum &def) {
int type, narray;
const Spectrum *s = pGeom.FindSpectrum(name, &type, &narray);
if (!s) s = pShader.FindSpectrum(name, &type, &narray);
if (!s) return new ConstantTexture<Spectrum>(def);
Assert(narray == 1); // XXX for now

if (type & PARAM_TYPE_UNIFORM)
return new ConstantTexture<Spectrum>(*s);

else if (type & PARAM_TYPE_VARYING)
return new BilerpTexture<Spectrum>(new IdentityMapping2D,

s[0], s[1], s[2], s[3]);
else {

if (pGeom.nVertex != 0)
return new VertexTexture<Spectrum>(s, pGeom.nVertex);

else {
Warning("Vertex texture for \"%s\" not supported "

"for this object", name.c_str());
return NULL;

}
}

}



Assert 498
BilerpTexture 330

ConstantTexture 324
FindFloat 546

FindOneFloat 546
FindOnePoint 546

FindOneSpectrum 546
HomogeneousRegion 384
IdentityMapping2D 327

Material 303
PARAM TYPE UNIFORM 544
PARAM TYPE VARYING 544

ParamSet 542
Point 21

Spectrum 155
Texture 323

Transform 32
VertexTexture 332
VolumeRegion 383

Warning 497

554 Dynamic Object Creation [App. C

�
Material Method Definitions ��� �
Texture<Float> *Material::MakeFloatTex(const ParamSet &pGeom, const ParamSet &pShader,

const string &name, Float def) {
int type, narray;
const Float *s = pGeom.FindFloat(name, &type, &narray);
if (!s)

s = pShader.FindFloat(name, &type, &narray);
if (!s) return new ConstantTexture<Float>(def);
Assert(narray == 1); // XXX for now
if (type & PARAM_TYPE_UNIFORM)

return new ConstantTexture<Float>(*s);
else if (type & PARAM_TYPE_VARYING)

return new BilerpTexture<Float>(new IdentityMapping2D,
s[0], s[1], s[2], s[3]);

else {
if (pGeom.nVertex != 0)

return new VertexTexture<Float>(s, pGeom.nVertex);
else {

Warning("Vertex texture for \"%s\" not supported "
"for this object", name.c_str());

return NULL;
}

}
}

�
HomogeneousRegion Definitions ���
extern "C" VolumeRegion *CreateVolumeRegion(const Transform &volume2world,

const ParamSet &params) {
Spectrum sigma_a = params.FindOneSpectrum("sigma_a", 0.);
Spectrum sigma_s = params.FindOneSpectrum("sigma_s", 0.);
Float g = params.FindOneFloat("g", 0.);
Spectrum Le = params.FindOneSpectrum("Le", 0.);
Point p0 = params.FindOnePoint("p0", Point(0,0,0));
Point p1 = params.FindOnePoint("p1", Point(1,1,1));
return new HomogeneousRegion(sigma_a, sigma_s, g, Le, BBox(p0, p1),

volume2world);
}
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�
VolumeGrid Definitions ��� �
extern "C" VolumeRegion *CreateVolumeRegion(const Transform &volume2world,

const ParamSet &params) {
Spectrum sigma_a = params.FindOneSpectrum("sigma_a", 0.);
Spectrum sigma_s = params.FindOneSpectrum("sigma_s", 0.);
Float g = params.FindOneFloat("g", 0.);
Spectrum Le = params.FindOneSpectrum("Le", 0.);
Point p0 = params.FindOnePoint("p0", Point(0,0,0));
Point p1 = params.FindOnePoint("p1", Point(1,1,1));
string filename = params.FindOneString("filename", "");
return new VolumeGrid(sigma_a, sigma_s, g, Le, BBox(p0, p1),

volume2world, filename);
}

�
ExponentialMist Definitions ���
extern "C" VolumeRegion *CreateVolumeRegion(const Transform &volume2world,

const ParamSet &params) {
Spectrum sigma_a = params.FindOneSpectrum("sigma_a", 0.);
Spectrum sigma_s = params.FindOneSpectrum("sigma_s", 0.);
Float g = params.FindOneFloat("g", 0.);
Spectrum Le = params.FindOneSpectrum("Le", 0.);
Point p0 = params.FindOnePoint("p0", Point(0,0,0));
Point p1 = params.FindOnePoint("p1", Point(1,1,1));
Float A = params.FindOneFloat("A", 1.);
Float B = params.FindOneFloat("B", 1.);
return new ExponentialMist(sigma_a, sigma_s, g, Le, BBox(p0, p1),

volume2world, A, B);
}



� ���



� � � � � � � � � � � � ����� ���

�
ri.h* ����

Source Code Copyright �
#ifndef RI_H
#define RI_H
#include "lrt.h"
#ifdef __cplusplus
extern "C" {
#endif /* C++ */

�
RI Function Declarations �
#ifdef __cplusplus
}
#endif /* C++ */
#endif /* RI_H */

� � �
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�
api.cc* ����

Source Code Copyright �
#include "paramset.h"
#include "ri.h"
#include "lrt.h"
#include "film.h"
#include "primitives.h"
#include "camera.h"
#include "color.h"
#include "light.h"
#include "sampling.h"
#include "materials.h"
#include "transport.h"
#include "scene.h"
#include "texture.h"
#include "dynload.h"
#include <ctype.h>
#ifdef _WIN32
#include <malloc.h>
#else
#include <alloca.h>
#endif�
API Includes ��
API Local Classes ��
API Static Data ��
API Macros ��
API Static Methods ��
RI Function Definitions �
In this chapter we will describe our implementation of an external interface to

lrt. The need for such an interface is clear: there must be a convenient way in
which the scene to be rendered can be described to the renderer. There have been
two main approaches to this problem in graphics: the interface may specify how to
rendering the scene, configuring a rendering pipeline at a low-level, or it may spec-
ify what the scene’s objects, lights, and material properties are, and leave it to the
renderer to decide how to transform that description into the best-possible image.
The first approach has been successfully used for interactive graphics, as seen in
the OpenGL and Direct3D APIs. The second, declarative approach, has been most
successful for high-end offline rendering, e.g. as embodied by the RenderMan
interface. For lrt, we will use an interface based on the declarative approach.

The interface to the renderer is defined by a carefully-chosen set of function
calls that allow the user to specify the scene. For convenience, we will also support
text scene description files; the statements in these files have a one-to-one mapping
with the API’s function calls.
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The user can declare their own parameters and their types—for example, this

provides a general mechanism to attach arbitrary data to geometric primitives for
later use in surface shaders.

We use a token table to record the names of the declared parameters and their
types. When a parameter is declared (using RiDeclare(), below), a const char
* object is returned. This is a pointer to a string that is a copy of the token’s name
which can later be passed back through the RI layer when a parameter name is
needed. If such a const char * is passed, rather than a const char * pointing
to the name, better performance may be possible.

Tokens are stored in a small hash table. Strings are hashed to compute an offset
into the table and then we walk through the list of tokens at that position to find the
token being looked for. In addition to the string that is their name, we store an int
with each one where we encode its type.�
API Local Classes ���
struct Token {

Token(const char *n, int t = 0, int a = 0) {
token = n;
type = t;
arrayLength = a;

}
string token;
int type;
int arrayLength;

};
�
API Static Data ���
StringHashTable TokenTable;

The RiDeclare function returns a new token for a user-supplied variable of
name name with type type. The type should be something like uniform float,
vertex point, etc. A token can be declared repeatedly with no ill effect; however,
it is an error to redeclare a token with a different type than was originally used to
declare it.�
RI Function Definitions ���
const char *RiDeclare(char *name, char *type) {�

Compute integer type code for variable ��
Search for token in token table ��
Add token to table if not found �

}

First we turn the type into an integer that compactly encodes it (see stringToType()
below. If an error is returned, indicating that the type couldn’t be decoded, we re-
turn NULL.�
Compute integer type code for variable ���
int narray;
int tokenType = stringToType(type, &narray);
if (tokenType == PARAM_TYPE_ERROR)

return NULL;
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Now we’ll look through the linked-list at the appropriate hash table position and
see if a token with this name has already been declared. If so, we make sure that
the user isn’t redeclaring a variable with a new type, printing a warning if so.�
Search for token in token table ���
Token *token = (Token *)TokenTable.Search(name);
if (token) {�

Complain if token was redeclared to a different type �
return token->token.c_str();

}
�
Complain if token was redeclared to a different type ���
if (token->type != tokenType || token->arrayLength != narray) {

string s1 = typeToString(token->type, token->arrayLength);
string s2 = typeToString(tokenType, narray);
Warning("RiDeclare: Token ’%s’ redeclared from %s to %s.",

name, s1.c_str(), s2.c_str());
}

If we didn’t exit earlier after finding the token in the table already, we will add
it to the table. We copy the string with its name and add the token and its type int
to the linked list at the hash table position.�
Add token to table if not found ���
Token *newToken = new Token(name, tokenType, narray);
TokenTable.Add(name, newToken);
return newToken->token.c_str();

�
System-wide Initialization ��� �
RiDeclare("Cs", "vertex color");
RiDeclare("Os", "float");
RiDeclare("N", "vertex normal");
RiDeclare("P", "vertex point");
RiDeclare("Pw", "vertex float[4]");
RiDeclare("Pz", "vertex float");
RiDeclare("s", "vertex float");
RiDeclare("st", "vertex float[2]");
RiDeclare("t", "vertex float");
RiDeclare("shadows", "float");

We won’t include the implementations of the stringToType and typeToString
functions here; both are just a matter of parsing and string management. The first
function, stringToType, takes strings of the form

uniform point[2],

parses them, and returns two integer values. The integer returned directly encodes
the basic type, using the PARAM_TYPE_ values defined in Section C.1. For the type
above, it would return

PARAM_TYPE_UNIFORM | PARAM_TYPE_POINT.
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The nArray pointer allows it to return the number of array elements for the type,
in this case 2.�
API Static Methods ���
static int stringToType(const char *strType, int *nArray);

The typeToString function just goes the other way, returning a string from an
encoded type and array length.�
API Static Methods ��� �
static string typeToString(int type, int narray);

And this takes a name and returns the type of a declared variable.�
RI Function Declarations ��� �
bool lookupType(const char *tok, int *type, int *narray, string &name);

Extra ParamSet Stuff

We provide a default constructor, that does nothing, and a version that lets the
caller pass in the parameters to the RI function.�
ParamSet Constructors ��� �
ParamSet(int n, const char **tokens, void **params, int nv = 0) {

init(n, tokens, params, nv);
}

The user can also call an init method to re-initialize a ParamSet with new
parameter values.�
ParamSet Methods ��� �
void ParamSet::init(int n, const char **tokens,

void **params, int nv) {
nVertex = nv;
clear();�
Initialize ParamSet data values �

}

Initializing these vectors is straightforward; we just loop over the parameters.
For each one, we try to determine its type from its name (as set by a previous
RiDeclare call, or from an inline parameter type declaration.)�
Initialize ParamSet data values ���
for (int i = 0; i < n; ++i) {

int type, narray;
string name;
if (lookupType(tokens[i], &type, &narray, name)) {�

Process successful token lookup for ParamSet �
}
else

Warning("Type of parameter \"%s\" is unknown",
tokens[i]);

}

If we were successful at determining the type of the parameter, we just add it
to the appropriate vector. We won’t include the fragment Process successful
token lookup for ParamSet here XXX.
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The rendering system is initialized by a call to RiBegin() (see Section D.2.) Af-
ter this, general rendering options like the camera position and the image resolution
can be set. RiWorldBegin() is called next and the options are fixed; they can’t be
changed any more. The user then provides the geometric primitives and lights that
are in the scene along with their various attributes. When all of the primitives have
been supplied, RiWorldEnd() is called. The image will be rendered and written to
disk before RiWorldEnd() returns. Finally, RiEnd() is called; this handles final
cleanup of the system.

We can now move forward and start to define more of the API functions. We’ll
start with the first function that should be called as well as the last: RiBegin() and
RiEnd()–these do all of the system-wide initialization and cleanup.

Most of the guts of RiBegin will be filled in by pieces added to the
�
RiBegin

Initialization � throughout the rest of this appendix.�
RI Function Definitions ��� �
void RiBegin() {�

System-wide Initialization �
}

Similarly most of RiEnd is filled in elsewhere as well.�
RI Function Definitions ��� �
void RiEnd() {�

System-wide cleanup �
StatsCleanup();

}

State tracking

Because almost all of the API calls are illegal before RiBegin() is called and
because most of the others are only legal before or after RiWorldBegin(), we will
provide some facilities for tracking what state the API is in. We use a module static
variable currentApiState. It starts out with value STATE_UNINITIALIZED and
is updated by RiBegin(), RiWorldBegin(), and RiEnd().�
API Static Data ��� �
#define STATE_UNINITIALIZED 0
#define STATE_BEGIN 1
#define STATE_WORLD_BEGIN 2
static int currentApiState = STATE_UNINITIALIZED;

�
System-wide Initialization ��� �
if (currentApiState != STATE_UNINITIALIZED)

Severe("RiBegin() has already been called.");
currentApiState = STATE_BEGIN;

�
System-wide cleanup ���
currentApiState = STATE_UNINITIALIZED;

Now, all RI procedures that are only valid in particular states call the VERIFY_STATE
macro, passing the state that they expect us to be in as well as a string that is their
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procedure name. If the states don’t match, we print an error message and return
immediately from the function.�
API Macros ���
#define VERIFY_STATE(s, func) \

if (currentApiState != s) { \
Error("Must have called %s before calling %s(). Ignoring.", \

missingStateCall[s], func); \
return; \

} \
else /* swallow trailing semicolon */

Through some array indexing trickery, we can take the expected state value s,
and find the string name of the procedure that needs to be called before the current
function can be used.�
API Static Data ��� �
static const char *missingStateCall[] = { "RiEnd()",

"RiBegin()", "RiWorldBegin()" };

Options

The user can set a variety of options before the scene to be rendered is specified.
These include things such as the camera position and type, image sampling and
reconstruction options, the type of image file to write out, etc. We store all of this
information in a GfxOptions structure. It has a number of public data members
that subsequent API calls will set and a number of methods to help create objects
used by the rest of the system for rendering.�
API Local Classes ��� �
GfxOptions::GfxOptions() {�

GfxOptions Constructor Implementation �
}

We have a single instance of the GfxOptions that is available to the rest of the
functions in this file.�
API Static Data ��� �
static GfxOptions *curGfxOptions = NULL;

When RiBegin is called, we need to ensure that the GfxOptions is re-initialized
to hold default values.�
System-wide Initialization ��� �
curGfxOptions = new GfxOptions;

�
System-wide cleanup ��� �
delete curGfxOptions;
curGfxOptions = NULL;

�
GfxOptions Method Declarations ���
void WorldEnd() {

primitives.erase(primitives.begin(), primitives.end());
lights.erase(lights.begin(), lights.end());
volumeRegions.erase(volumeRegions.begin(), volumeRegions.end());

}
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Camera and Film

Most of the camera and film functions completely straightforward; the following
functions just directly set the appropriate fields in GfxOptions with the parameters
passed to them.

For starters, the RiPixelSamples function sets the number of samples to take
in the x and y directions for each pixel in the image. We use the VERIFY_STATE
macro to make sure that RiBegin has been called but that RiWorldBegin has not
yet been called.�
RI Function Definitions ��� �
void RiPixelSamples(Float x, Float y) {

VERIFY_STATE(STATE_BEGIN, "RiPixelSamples");
curGfxOptions->PixelSamples[0] = max(1, Round2Int(x));
curGfxOptions->PixelSamples[1] = max(1, Round2Int(y));

}

And appropriate fields are added to GfxOptions.�
Graphics Options ���
int PixelSamples[2];

�
GfxOptions Constructor Implementation ���
PixelSamples[0] = PixelSamples[1] = 2;

The RiFormat function sets the x and y resolution of the final image as well as
the pixel aspect ratio; this allows the user to specify pixel size for devices where
the physical pixel-spacing in the x direction is different than in the y direction.�
RI Function Declarations ��� �
extern void RiFormat(int x, int y, Float aspect);
extern void RiFrameAspectRatio(Float aspect);
extern void RiScreenWindow(Float left, Float right, Float bottom,

Float top);
extern void RiCropWindow(Float left, Float right, Float bottom, Float top);
extern void RiClipping(Float hither, Float yon);
extern void RiShutter(Float time0, Float time1);
extern void RiDepthOfField(Float fstop, Float focallen, Float focaldist);

�
Graphics Options ��� �
Float PixelAspectRatio, FrameAspectRatio;
int XResolution, YResolution;

�
GfxOptions Constructor Implementation ��� �
PixelAspectRatio = 1.f;
FrameAspectRatio = 4.f / 3.f;
XResolution = 640;
YResolution = 480;
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�
Update screen window from format values ���
if (curGfxOptions->ScreenExtentSet == false) {

if (curGfxOptions->FrameAspectRatio >= 1)
curGfxOptions->ScreenExtent =

Extent2D(-curGfxOptions->FrameAspectRatio,
curGfxOptions->FrameAspectRatio, -1, 1);

else
curGfxOptions->ScreenExtent =

Extent2D(-1, 1, -1.f / curGfxOptions->FrameAspectRatio,
1.f / curGfxOptions->FrameAspectRatio);

}
�
Graphics Options ��� �
Extent2D ScreenExtent;
bool ScreenExtentSet;

�
GfxOptions Constructor Implementation ��� �
ScreenExtent = Extent2D(-4.f / 3.f, 4.f / 3.f, -1, 1);
ScreenExtentSet = false;

Furthermore, the user can provide their own screen window instead of letting it
be computed implicitly by RiFormat.�
RI Function Definitions ��� �
void RiScreenWindow(Float left, Float right,

Float bottom, Float top) {
VERIFY_STATE(STATE_BEGIN, "RiScreenWindow");
curGfxOptions->ScreenExtent = Extent2D(left, right,

bottom, top);
curGfxOptions->ScreenExtentSet = true;

}

In addition to specifying the overall image size, the user can select a rectangular
subset of the image to render.

As usual, appropriate members are added to GfxOptions.�
Graphics Options ��� �
Extent2D Crop;

�
GfxOptions Constructor Implementation ��� �
Crop = Extent2D(0, 1, 0, 1);

RiClipping sets near and far clipping planes for the camera; these are two
planes that are perpendicular to the z axis in camera space that delineate the extent
of the scene that the camera will consider.�
Graphics Options ��� �
Float ClipHither, ClipYon;

�
GfxOptions Constructor Implementation ��� �
ClipHither = RAY_EPSILON;
ClipYon = 1e30f;

For scenes with moving objects or cameras, RiShutter lets the range of time
that the shutter is open be specified.
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�
Graphics Options ��� �
Float ShutterStart, ShutterEnd;

By default, the shutter is only open for an instant, so no motion blur is seen.�
GfxOptions Constructor Implementation ��� �
ShutterStart = ShutterEnd = 0;

There is also a function to set depth of field parameters for Cameras that support
this effect.�
Graphics Options ��� �
Float LensRadius, FocalDistance;

�
GfxOptions Constructor Implementation ��� �
LensRadius = 0.f;
FocalDistance = INFINITY;

After all those boring functions that just set values in GfxOptions, we can now
move on to RiProjection, which is a bit more interesting.

We first verify that RiBegin() has been called but not yet RiWorldBegin().
We then record the name of the camera type the user asked for and its parameters.
We will later use these to load and initialize the appropriate Camera from disk.�
RI Function Definitions ��� �
void RiProjectionV(const char * name, int nArgs, const char * tokens[],

void * params[]) {
VERIFY_STATE(STATE_BEGIN, "RiProjection");
curGfxOptions->cameraName = name;
curGfxOptions->cameraParams.init(nArgs, tokens, params);
curTransform[0] = Transform();

}
�
Graphics Options ��� �
string cameraName;
mutable ParamSet cameraParams;

�
GfxOptions Constructor Implementation ��� �
cameraName = "orthographic";

When RiWorldBegin is called, the camera-to-world transformation is set from
the current transformation that the user has specified. We grab this transformation
then, store it away in the GfxOptions, and reset the current transformation to the
identity transformation.�
RiWorldBegin initialization ���
for (int i = 0; i < MOTION_LEVELS; ++i) {

curGfxOptions->WorldToCamera[i] = curTransform[i];
curTransform[i] = Transform();

}
�
Graphics Options ��� �
Transform WorldToCamera[MOTION_LEVELS];

Display
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There are a number of further options that affect the final image; they include
how the film reacts to exposure by light, how the image samples are filtered and
reconstructed, quantization and image output settings, etc. A handful of additional
RI functions handles setting these options and storing them in GfxOptions.�
RI Function Declarations ��� �
extern void RiExposure(Float gain, Float gamma);

�
Graphics Options ��� �
Float Gain, Gamma;

�
GfxOptions Constructor Implementation ��� �
Gain = Gamma = 1.;

The pixel filter function is set by passing the name of the filter function and the
width of the filter’s extent.�
RI Function Declarations ��� �
extern void RiPixelFilter(const char *filter, Float xwidth, Float ywidth,

int nArgs, const char * tokens[], void * params[]);
�
Graphics Options ��� �
string filterName;
Float FilterXWidth, FilterYWidth;
ParamSet FilterParams;

�
GfxOptions Constructor Implementation ��� �
filterName = "mitchell";
FilterXWidth = FilterYWidth = 2.;

The RiQuantize() function sets parameter values for the color and depth quan-
tization parts of the imaging pipeline (see Section 8.5.) After checking whether it’s
the color quantization or the depth quantization parameters to be set, it updates the
appropriate fields in the Image’s options.�
RI Function Definitions ��� �
void RiQuantize(const char * type, int one, int minimum,

int maximum, Float ditheramp) {
if (strcmp(type, "rgba") == 0) {

curGfxOptions->ColorQuantOne = one;
curGfxOptions->ColorQuantMin = minimum;
curGfxOptions->ColorQuantMax = maximum;
curGfxOptions->ColorQuantDither = ditheramp;

}
else if (strcmp(type, "z") == 0) {

RI_UNIMP();
}
else

Error("Unknown type %s passed to RiQuantize()", type);
}

�
Graphics Options ��� �
int ColorQuantOne, ColorQuantMin, ColorQuantMax;
Float ColorQuantDither;
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�
GfxOptions Constructor Implementation ��� �
ColorQuantOne = 255;
ColorQuantMin = 0;
ColorQuantMax = 255;
ColorQuantDither = 0.5;

The RiDisplay() function tells what to do with the final image. Since we only
support writing TIFFs out to disk, all that there is to do is to figure out which
channels the user wants us to save (RGB, alpha, depth, etc.) and what filename to
store the image in. Again, we will omit the non-vector version of RiDisplay()
since it fits the RiProjection() mold.�
RI Function Declarations ��� �
extern void RiDisplayV(char *name, const char * type, const char * mode, int nArgs,

const char * tokens[], void * parameters[]);
�
Graphics Options ��� �
string DisplayType;
string DisplayName;
bool displayRGB, displayA, displayZ;

�
GfxOptions Constructor Implementation ��� �
DisplayType = "tiff";
DisplayName = "lrt.tiff";
displayRGB = displayA = true;
displayZ = false;

Miscellaneous
�
RI Function Definitions ��� �
void RiSamplerV(const char * name, int n, const char * tokens[],

void * params[]) {
curGfxOptions->samplerName = name;
curGfxOptions->samplerParams.init(n, tokens, params);

}
�
Graphics Options ��� �
string samplerName;
ParamSet samplerParams;

�
GfxOptions Constructor Implementation ��� �
samplerName = "bestcandidate";

�
RI Function Definitions ��� �
void RiAcceleratorV(const char * name, int n, const char * tokens[],

void * params[]) {
curGfxOptions->acceleratorName = name;
curGfxOptions->acceleratorParams.init(n, tokens, params);

}
�
Graphics Options ��� �
string acceleratorName;
ParamSet acceleratorParams;
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�
GfxOptions Constructor Implementation ��� �
acceleratorName = "grid";

XXXX where should this go?? XXXX�
GfxOptions Method Declarations ��� �
Scene *MakeScene() const;

�
RI Function Definitions ��� �
Scene *GfxOptions::MakeScene() const {�

Initialize filter with pixel filter ��
Initialize sampler from API settings ��
Initialize film and camera from API settings ��
Initialize displayInfo from API settings ��
Initialize surfaceIntegrator from API settings ��
Initialize volumeIntegrator from API settings ��
Initialize accelerator from API settings �
if (!camera || !sampler || !film || !camera || !accelerator ||

!displayInfo || !surfaceIntegrator || !volumeIntegrator) {
Severe("Unable to create scene due to missing DSOs");
return NULL;

}
Scene *ret = new Scene(camera, surfaceIntegrator, volumeIntegrator,

sampler, accelerator, lights, volumeRegions, displayInfo);
lights.erase(lights.begin(), lights.end());
volumeRegions.erase(volumeRegions.begin(), volumeRegions.end());
return ret;

}
�
Initialize filter with pixel filter ���
Filter *filter = CreateFilter(filterName, SearchPath, FilterParams,

FilterXWidth, FilterYWidth);
�
Initialize sampler from API settings ���
Sampler *sampler = CreateSampler(samplerName, SearchPath, samplerParams,

XResolution, YResolution, PixelSamples[0],
PixelSamples[1], Crop, filter);

�
Initialize film and camera from API settings ���
Film *film = new Film(XResolution, YResolution, Crop);
cameraParams.AddFloat("_ShutterOpen", &ShutterStart);
cameraParams.AddFloat("_ShutterClose", &ShutterEnd);
cameraParams.AddFloat("_ClipHither", &ClipHither);
cameraParams.AddFloat("_ClipYon", &ClipYon);
cameraParams.AddFloat("_LensRadius", &LensRadius);
cameraParams.AddFloat("_FocalDistance", &FocalDistance);
cameraParams.AddFloat("_PixelAspectRatio", &PixelAspectRatio);
cameraParams.AddFloat("_ScreenExtent", (Float *)&ScreenExtent,

PARAM_TYPE_UNIFORM, 4);
Camera *camera = CreateCamera(cameraName, SearchPath, cameraParams,

WorldToCamera[0], film);
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�
Initialize displayInfo from API settings ���
DisplayInfo *displayInfo = new DisplayInfo;
if (ToneMapping != "")

displayInfo->toneMap = CreateToneMap(ToneMapping, SearchPath,
ToneMapParams);

displayInfo->gain = Gain;
displayInfo->invGamma = 1.f / Gamma;
displayInfo->integerFormat = ColorQuantOne != 0;
displayInfo->maxDisplayValue = ColorQuantMax;
displayInfo->ditherAmount = ColorQuantDither;
displayInfo->filename = DisplayName;

�
Initialize surfaceIntegrator from API settings ���
SurfaceIntegrator *surfaceIntegrator = CreateSurfaceIntegrator(surfIntegratorName,

curGfxOptions->SearchPath, surfIntegratorParams);
�
Initialize volumeIntegrator from API settings ���
VolumeIntegrator *volumeIntegrator = CreateVolumeIntegrator(volIntegratorName,

curGfxOptions->SearchPath, volIntegratorParams);
�
Initialize accelerator from API settings ���
Primitive *accelerator = CreateAccelerator(acceleratorName,

SearchPath, primitives, acceleratorParams);
if (!accelerator) {

ParamSet ps;
accelerator = CreateAccelerator("grid", SearchPath,

primitives, ps);
}
Assert(accelerator);
primitives.erase(primitives.begin(), primitives.end());

Updates SearchPath, handles stuff like ampersand to refer to original path, etc.�
RI Function Declarations ��� �
extern void RiSearchPath(const char *path);

�
Graphics Options ��� �
string SearchPath;

�
GfxOptions Constructor Implementation ��� �
#ifdef LRT_BUILDDIR
SearchPath = ".:" LRT_BUILDDIR ":./texture";
#else
SearchPath = ".";
#endif

�
RI Function Declarations ��� �
extern void RiToneMap(const char *name, int n, const char *tokens[],

void *params[]);
�
Graphics Options ��� �
string ToneMapping;
ParamSet ToneMapParams;
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�
RI Function Definitions ��� �
void RiSurfaceIntegratorV(const char *name, int n, const char * tokens[],

void * params[]) {
curGfxOptions->surfIntegratorName = name;
curGfxOptions->surfIntegratorParams.init(n, tokens, params);

}
�
RI Function Definitions ��� �
void RiVolumeIntegratorV(const char *name, int n, const char * tokens[],

void * params[]) {
curGfxOptions->volIntegratorName = name;
curGfxOptions->volIntegratorParams.init(n, tokens, params);

}
�
Graphics Options ��� �
string surfIntegratorName, volIntegratorName;
ParamSet surfIntegratorParams, volIntegratorParams;

�
GfxOptions Constructor Implementation ��� �
surfIntegratorName = "whitted";
volIntegratorName = "null";

	���� � � � � ��� ��#  �������
XXX intro/ideas of hierarchical graphic state !! XXXX
After the user has set up the overall settings for the scene (camera position,

image output options, etc), they call RiWorldBegin. This tells the renderer that�
RI Function Definitions ��� �
void RiWorldBegin() {

VERIFY_STATE(STATE_BEGIN, "RiWorldBegin");
currentApiState = STATE_WORLD_BEGIN;�
RiWorldBegin initialization �

}

XXX actually, want to clean out the primitives and lights from gfx options only�
RI Function Definitions ��� �
void RiWorldEnd() {�

Check for valid WorldEnd state ��
Create scene and render �
currentApiState = STATE_BEGIN;
curGfxOptions->WorldEnd();�
Print per-frame statistics �

}
�
Print per-frame statistics ���
StatsPrint(stderr);
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�
Check for valid WorldEnd state ���
while (hierarchicalState.size()) {

char c = hierarchicalState.back();
if (c == ’t’) Error("Missing end to RiTransformBegin");
else if (c == ’a’) Error("Missing end to RiAttributeBegin");
else Severe("Internal error in gfx state management");
hierarchicalState.pop_back();

}

Scene destructor frees up the memory for primitives and lights.

Attributes

As the stream of commands comes in that specifies the scene geometry, a variety
of attributes can be updated as well. These include information about the current
surface shader, the object to world transformation, etc. When a geometric primi-
tive or light source is then added to the scene, various parts of the current set of
attributes are used to initialize their specific parameters.

The current set of active attributes can be managed with the attribute stack. This
allows the user to push the current set of attributes, make changes to their values
and then later pop back to the previously pushed attribute values. For example, a
scene description file might have lines such as:

Surface "matte"
AttributeBegin # push current attributes
Surface "plastic"
Translate 5 0 0
Sphere 1 -1 1 360 # this sphere is plastic and translated
AttributeEnd # pop attributes
Sphere 1 -1 1 360 # this sphere is matte and not translated

Changes to attributes made inside an AttributeBegin/AttributeEnd block
are forgotten at the end of the block. There are also TransformBegin and TransformEnd
calls that only push and pop the current transformation matrix; they are more
lightweight than the ones that save the entire attribute state.

We store pushed transformations in a list of Transforms. We also keep track of
a list of characters, “t” or “a” to keep track of the nesting of transform and attribute
begin and end calls. This ensures that we report an error and don’t do something
invalid if the user gives incorrectly nested RIB like:

AttributeBegin
TransformBegin
AttributeEnd

�
API Static Data ��� �
static vector<Transform> transformStack[MOTION_LEVELS];
static vector<char> hierarchicalState;
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�
RI Function Definitions ��� �
void RiTransformBegin() {

for (int i = 0; i < MOTION_LEVELS; ++i)
transformStack[i].push_back(curTransform[i]);

hierarchicalState.push_back(’t’);
}

�
RI Function Definitions ��� �
void RiTransformEnd() {

if (!transformStack[0].size() ||
hierarchicalState.back() != ’t’) {
Error("Unmatched RiTransformEnd encountered. Ignoring it.");
return;

}
for (int i = 0; i < MOTION_LEVELS; ++i) {

curTransform[i] = transformStack[i].back();
transformStack[i].pop_back();

}
hierarchicalState.pop_back();

}

We store the rest of set of current attributes in the GfxState structure. As with
GfxOptions, we’ll be adding members to it throughout this section.�
API Local Classes ��� �
struct GfxState {

GfxState();�
Graphics State ��
Graphics State Methods �

};
�
API Local Classes ��� �
GfxState::GfxState() {�

GfxState Constructor Implementation �
}

When RiWorldBegin is called, we initialize the current graphics state to hold
default values.�
RiWorldBegin initialization ��� �
curGfxState = GfxState();

We also keep a list of GfxStates; when RiAttributeBegin is called, we copy
the current GfxState and push it on to the list. Attribute end pops the state to
restore to back off of the list.�
API Static Data ��� �
static GfxState curGfxState;
static vector<GfxState> gstates;

Pushing and popping attribute state also implicitly pushes and pops the transfor-
mation stack, so we make the RiTransformBegin call for starters.
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�
RI Function Definitions ��� �
void RiAttributeBegin() {

RiTransformBegin();
VERIFY_STATE(STATE_WORLD_BEGIN, "RiAttributeBegin");
gstates.push_back(curGfxState);
hierarchicalState.push_back(’a’);

}
�
RI Function Definitions ��� �
void RiAttributeEnd() {

VERIFY_STATE(STATE_WORLD_BEGIN, "RiAttributeEnd");
if (!gstates.size() || hierarchicalState.back() != ’a’) {

Error("Unmatched RiAttributeEnd encountered. Ignoring it.");
return;

}
curGfxState = gstates.back();
gstates.pop_back();
hierarchicalState.pop_back();
RiTransformEnd();

}

We will also track a current color; when we create materials, we will make sure
that their color is multiplied by the spectrum specified here.�
RI Function Definitions ��� �
void RiColor(Float *Cs) {

Assert(COLOR_SAMPLES == 3);
curGfxState.color = Spectrum(Cs);

}
void RiOpacity(Float *Os) {

RI_UNIMP();
}

�
Graphics State ���
Spectrum color;

�
GfxState Constructor Implementation ���
color = Spectrum(1.);

The current material is specified by RiSurface. We gather up all of the addi-
tional parameters and their values passed along with the name of the material and
store them away in the graphics state. When we later go create the material, we’ll
use these to set up its textures.�
RI Function Definitions ��� �
void RiSurfaceV(const char * name, int n, const char * tokens[],

void * params[]) {
curGfxState.surfaceParams.init(n, tokens, params);
curGfxState.surface = name;

}
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�
Graphics State ��� �
ParamSet surfaceParams;
string surface;

�
GfxState Constructor Implementation ��� �
surface = "matte";

�
RI Function Definitions ��� �
void RiDisplacementV(const char * name, int n, const char * tokens[],

void * params[]) {
curGfxState.displaceParams.init(n, tokens, params);
curGfxState.displacement = name;

}
�
Graphics State ��� �
ParamSet displaceParams;
string displacement;

�
GfxState Constructor Implementation ��� �
displacement = "";

	���� � � �"��# � �
� � ��� ��� ��#
There are a number of basic functions to update the current transformation ma-

trix; they all basically compose the current transformation matrix with a new trans-
formation. These functions are slightly complicated by the need to be able to spec-
ify multiple transformations for moving objects that are at different positions at
different points in time. We store up to two current transformations, updating only
one of them when a transformation call is made, depending on which transform of
a moving object is being specified. If the object is not moving, we just update the
first of the two of them.�
API Includes ���
#define MOTION_LEVELS 2

�
API Static Data ��� �
static int motionLevel = 0;
static bool inMotionBlock = false;
static Transform curTransform[MOTION_LEVELS];

�
System-wide Initialization ��� �
for (int i = 0; i < MOTION_LEVELS; ++i)

curTransform[i] = Transform();

The transformations of moving objects are given within motion blocks, like:

MotionBegin [ 10 11 ]
Translate 1 0 0
Translate 0 1 0
MotionEnd
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This specifies that at time 10, the first translation should be appended to the cur-
rent transformation and at time 11, the second translation should be. The RiMotionBegin
function takes an array of time values that specifies how many transformations will
be given.�
RI Function Definitions ��� �
void RiMotionBeginV(int N, Float times[]) {

Assert(!inMotionBlock);
inMotionBlock = true;
motionLevel = 0;
if (N > 2)

Warning("Only two levels in motion block will be used.");
}

�
RI Function Definitions ��� �
void RiMotionEnd() {

if (!inMotionBlock)
Error("Unmatched MotionEnd statement");

inMotionBlock = false;
}

The actual transformation functions, then, all start out with a little housekeep-
ing for the motion-related stuff, then apply the given transformation, and then do
motion-related cleanup.�
RI Function Definitions ��� �
void RiIdentity() {�

Prepare for motion transform �
curTransform[xform] = Transform();�
Update transform for motion block �

}

If there is no current motion block, then we just update curTransform[0].
Otherwise, we update the appropriate one depending on how many transforms have
been given in this block so far.�
Prepare for motion transform ���
int xform = 0;
if (inMotionBlock)

xform = motionLevel;
if (motionLevel > MOTION_LEVELS) {

Warning("Only %d motion levels are supported. Ignoring.",
motionLevel);

return;
}

�
Update transform for motion block ���
if (inMotionBlock)

++motionLevel;
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�
RI Function Declarations ��� �
extern void RiTransform(Float transform[16]);
extern void RiConcatTransform(Float transform[16]);
extern void RiPerspective(Float fov);
extern void RiRotate(Float angle, Float dx, Float dy, Float dz);
extern void RiScale(Float sx, Float sy, Float sz);
extern void RiLookAt(Float ex, Float ey, Float ez, Float lx, Float ly,

Float lz, Float ux, Float uy, Float uz);

�
RI Function Definitions ��� �
void RiTranslate(Float dx, Float dy, Float dz) {�

Prepare for motion transform �
curTransform[xform] = curTransform[xform] * Translate(Vector(dx, dy, dz));�
Update transform for motion block �

}

	���� � � � � ��� � � �  � ��� � � � � � #
We can now introduce the RI routines for describing the geometric primitives in

the scene. These are all mostly similar; they process the function arguments, create
appropriate Shape objects, and pass them on to a routine that creates GeometricPrimitives
that include the material, etc, that is bound to the shape.

The first geometric primitive function that we’ll implement is RiPolygon. This
call allows the user to specify polygons with arbitrary numbers of vertices, so long
as the the polygon is convex. Here, we will tessellate the given polygon and create
a TriangleMesh.�
RI Function Definitions ��� �
void RiPolygonV(int nverts, int n, const char * tokens[],

void * params[]) {
ParamSet geomParams(n, tokens, params, nverts);�
Get vertex positions from parameters ��
Tessellate single convex polygon �

}

We also walk through the parameters to find the one named “P”, which gives the
vertex positions.�
Get vertex positions from parameters ���
Point *P = NULL;
int i;
for (i = 0; i < n; ++i)

if (strcmp(tokens[i], "P") == 0)
P = (Point *)params[i];

We now go ahead and tessellate the polygon into triangles. All triangles have the
same first vertex (arbitrarily chosen as the first point in the P array). The indices
array holds the three vertex indices for each triangle in the mesh, stored in turn.
The TriangleMesh constructor then uses them to know the topology of the mesh.
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�
Tessellate single convex polygon ���
int nTris = nverts-2;
int nIndices = 3*nTris;
int *indices = (int *)alloca(nIndices * sizeof(int));
int *nv = (int *)alloca(nTris * sizeof(int));
for (i = 0; i < nTris; ++i)

nv[i] = 3;
for (i = 0 ; i < nverts-2 ; i++) {

indices[3*i] = 0;
indices[3*i+1] = i+2;
indices[3*i+2] = i+1;

}
geomParams.AddInt("_ntris", &nTris);
geomParams.AddInt("_nverts", &nverts);
geomParams.AddInt("_vertexIndices", indices,

PARAM_TYPE_UNIFORM, nIndices);
curGfxState.AddShape(

CreateShape("trianglemesh", curGfxOptions->SearchPath,
curTransform[motionLevel], geomParams), geomParams);

After the primitive creation methods have created a new Shape, they pass it
along to AddShape for further processing.�
API Static Methods ��� �
void GfxState::AddShape(const Reference<Shape> &shape,

ParamSet &geomParams) {
if (!shape) return;
AreaLight *area = NULL;�
Initialize area light for shape ��
Create N and S textures, if needed ��
Initialize material for shape �
Reference<Primitive> prim = new GeometricPrimitive(shape,

mtl, area, Ntex, Stex);
curGfxOptions->primitives.push_back(prim);
if (area != NULL) {�

Create area lights given number of light samples �
}
geomParams.ReportUnused();

}
�
Create area lights given number of light samples ���
int nSamples = areaLightParams.FindOneInt("nsamples", 1);
if (nSamples == 1)

curGfxOptions->lights.push_back(area);
else

for (int i = 0; i < nSamples; ++i)
curGfxOptions->lights.push_back(new MultiAreaLight(area, nSamples));

All of the Primitives and Lights that are defined are stored in a big vector as
we process the RIB file; they are later passed off to the Scene when it is created.
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�
Graphics Options ��� �
mutable vector<Reference<Primitive> > primitives;
mutable vector<Light *> lights;
mutable vector<VolumeRegion *> volumeRegions;

�
Create N and S textures, if needed ���
int type, narray;
Texture<Normal> *Ntex = NULL;
const Normal *N = geomParams.FindNormal("N", &type, &narray);
if (N) {

Assert(type & PARAM_TYPE_NORMAL);
int count = geomParams.TypeToNum(type);
Normal *Nw = new Normal[count];
for (int i = 0; i < count; ++i)

Nw[i] = curTransform[motionLevel](N[i]);

if (type & PARAM_TYPE_UNIFORM)
Ntex = new ConstantTexture<Normal>(*Nw);

else if (type & PARAM_TYPE_VARYING) {
Ntex = new BilerpTexture<Normal>(new IdentityMapping2D,

Nw[0], Nw[1], Nw[2], Nw[3]);
}
else if (type & PARAM_TYPE_VERTEX) {

if (geomParams.nVertex != 0)
Ntex = new VertexTexture<Normal>(Nw,

geomParams.nVertex);
else

Error("Vertex texture not supported for shape");
}
delete[] Nw;

}�
Create S texture �
We need to create the Material that is bound to the shape. We first determine

which one to create based on the string stored in GfxState::surface, which was
set by RiSurface.�
Initialize material for shape ���
Texture<Float> *displace = CreateBump(displacement, curGfxOptions->SearchPath,

curTransform[0], geomParams, displaceParams);
Reference<Material> mtl = CreateMaterial(surface, curGfxOptions->SearchPath,

curTransform[0], geomParams, surfaceParams, color, displace);
if (!mtl)

mtl = CreateMaterial("plastic", curGfxOptions->SearchPath,
curTransform[0], geomParams, surfaceParams, color,
displace);

Assert(mtl);

Each of the various materials takes a number of parameters to set its properties.
The binding of these parameters is a bit tricky; consider the “matte” material, which
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takes a color texture named “Kd”. Matte defines a default value for Kd that can be
overridden when the RiSurface call is made.

Surface "matte" "color Kd" [ .5 1 .5 ]

However, this value can then be overridden again when the primitive is created:

Surface "matte" "color Kd" [ 1 0 0 ]
Sphere 1 -1 1 360 # red sphere
Sphere 1 -1 1 360 "color Kd" [ 0 1 0 ] # green sphere

Therefore, we create a ParamSet from the parameters given when the material
is defined in an RiSurface call. When creating the Material, however, we first
look for parameter values in geomParams, which was set from the parameters to
the primitive-creation API call. If this doesn’t have a value, we fall back to the
value in GfxState::surfaceParams, and from there to a default value.

The rest of the materials are analogous.
The routines to create the various quadrics are all quite simple. We will only

include RiSphere here, since the rest are quite similar.�
RI Function Definitions ��� �
void RiSphereV(Float radius, Float zmin, Float zmax,

Float thetaMax, int n, const char * tokens[],
void * params[]) {

ParamSet geomParams(n, tokens, params);
geomParams.AddFloat("_radius", &radius);
geomParams.AddFloat("_zmin", &zmin);
geomParams.AddFloat("_zmax", &zmax);
geomParams.AddFloat("_thetamax", &thetaMax);
curGfxState.AddShape(

CreateShape("sphere", curGfxOptions->SearchPath,
curTransform[motionLevel], geomParams),

geomParams);
}
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Finally, we’ll define the routines that allow the user to specify light sources for

the scene. RI provides two ways of doing this: the first, RiLightSource defines
a light source that doesn’t have geometry associated with it (e.g. a point light or
a directional light). The second, RiAreaLightSource specifies an active are light
source; the primitives that follow it up to the end of the current attribute block are
treated as emitting geometry as given by the area light description.�
RI Function Definitions ��� �
void *RiLightSourceV(const char * name, int nArgs,

const char *tokens[], void * params[]) {
ParamSet paramSet(nArgs, tokens, params);
bool shadows = paramSet.FindOneInt("shadows", 1) != 0;
Light *lt = CreateLight(name, curGfxOptions->SearchPath,

shadows, curTransform[motionLevel],
paramSet);�

Add new light to graphics state �
return lt;

}
�
Add new light to graphics state ���
if (lt == NULL)

Error("RiLightSource: light type ’%s’ unknown.", name);
else

curGfxOptions->lights.push_back(lt);

When an area light is specified, we can’t create it immediately–we need to wait
for the upcoming primitives which will define the light source’s geometry. There-
fore, as in RiSurface, we just save away the name of the area light source type
and the parameters given here.�
RI Function Definitions ��� �
void *RiAreaLightSourceV(const char *name, int n,

const char *tokens[], void *params[] ) {
curGfxState.areaLightParams.init(n, tokens, params);
curGfxState.areaLight = name;
return NULL;

}
�
Graphics State ��� �
ParamSet areaLightParams;
string areaLight;

We can now define the fragment
�
Initialize area light for shape � from the GfxState::AddShape

function. This just takes the area light information from RiAreaLightSource and
the Shape passed in to GfxState::AddShape to create an AreaLight object.
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�
Initialize area light for shape ���
if (areaLight != "") {

bool shadows = areaLightParams.FindOneInt("shadows", 1) != 0;
area = CreateAreaLight(areaLight, curGfxOptions->SearchPath,

shadows, curTransform[motionLevel],
areaLightParams, shape);

}

	���� � � ! � � � #
�
RI Function Definitions ��� �
void RiVolumeV(const char *name, int nArgs, const char *tokens[],

void *params[]) {
ParamSet paramSet(nArgs, tokens, params);
VolumeRegion *vr = CreateVolumeRegion(name, curGfxOptions->SearchPath,

curTransform[motionLevel], paramSet);
if (vr) curGfxOptions->volumeRegions.push_back(vr);

}

���"� ������� � � ����� ���

RenderMan companion(Ups89)
RI Spec(Pix89)
Advanced RMan book
OpenGL stuff
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(Xavier Pueyo and Peter Schröder, eds.), Eurographics, Springer
Wien, June 1996, ISBN 3-211-82883-4, pp. 21–30.

, Realistic image synthesis using photon mapping, A. K. Pe-
ters, Ltd., Natick, MA, 2001.

Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat
Hanrahan, A practical model for subsurface light transport, Pro-
ceedings of ACM SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, August 2001, pp. 511–518.

Mark S. Johnstone and Paul R. Wilson, The memory fragmentation
problem: solved?, ACM SIGPLAN Notices 34 (1999), no. 3,
26–36.



BIBLIOGRAPHY 591

David B. Kirk and James Arvo, Unbiased sampling techniques for
image synthesis, Computer Graphics (SIGGRAPH ’91 Proceed-
ings) (Thomas W. Sederberg, ed.), vol. 25, July 1991, pp. 153–
156.

James T. Kajiya, Anisotropic reflection models, Computer Graphics
(Proceedings of SIGGRAPH 85), vol. 19, July 1985, pp. 15–21.

, The rendering equation, Computer Graphics (SIGGRAPH
’86 Proceedings) (David C. Evans and Russell J. Athay, eds.),
vol. 20, August 1986, pp. 143–150.

Devendra Kalra and Alan H. Barr, Guaranteed ray intersections
with implicit surfaces, Computer Graphics (Proceedings of SIG-
GRAPH 89), vol. 23, July 1989, pp. 297–306.

Alexander Keller, Quasi-monte Carlo radiosity, Eurographics Ren-
dering Workshop 1996 (New York City, NY) (Xavier Pueyo and
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